• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 21
  • 12
  • 6
  • 6
  • 5
  • 4
  • 2
  • 1
  • 1
  • Tagged with
  • 66
  • 16
  • 16
  • 15
  • 10
  • 8
  • 7
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Anatomical and physiological outcomes of nocturnal normobaric hyperoxia treatment in a patient with diabetic macular edema

Song, Soobin 29 January 2022 (has links)
PURPOSE: Diabetes Mellitus (DM) is one of the most prevalent metabolic diseases worldwide and can lead to ocular complications such as diabetic retinopathy (DR). As chronic hyperglycemia leads to endothelial pathologies in the retina, diabetic macular edema (DME) develops and worsens visual acuity. Current treatment methods include laser photocoagulation, intravitreal anti-vascular endothelial growth factor (anti-VEGF) injections, and surgical interventions. This case report explores the effects of nocturnal normobaric hyperoxia (NNBH) treatment in a patient with DME. METHODS: A 64-year-old pseudophakic man with bilateral DME regularly treated with anti-VEGF injections was instructed to self-administer 40% fraction of inspired oxygen (FiO2) at 5 liters per minute (LPM) for 6 to 8 hours per day during sleep. Retrospective data of visual acuity (VA), optical coherence tomography (OCT) imaging, and number of injections during a one-year time frame prior to starting NNBH was compared with newly collected data of a one-year time frame while on NNBH. RESULTS: The patient was treated with a total of 12 anti-VEGF injections in the year prior to starting NNBH treatment. After one year of supplemental oxygen, subject’s VA stabilized to 20/20 in both eyes. When comparing average values of OCT data prior to NNBH and during NNBH, all measurements including central macular thickness (CMT), maximum macular thickness (MMT), foveal volume (FV), and total macular volume (TMV) decreased anywhere from 5.4% to 20.3%, reflecting a stabilization of the retina bilaterally. Subject did not require any intravitreal injections during NNBH treatment. After one month of planned cessation of NNBH, DME recurred. CONCLUSION: This model case demonstrates NNBH may be a novel treatment approach in reducing DME and improving VA in patients with DR. NNBH can be a cost-effective, convenient, and accessible therapy for patients with complications from diabetic retinopathy.
22

PERFLUOROCHEMICAL AUGMENTED INTRATRACHEAL DELIVERY OF ANTIOXIDANT ENZYMES AND GENES TO ATTENUATE OXIDATIVE STRESS-INDUCED LUNG AND RESPIRATORY MUSCLE ALTERATIONS

Malone, Daniel Joseph January 2009 (has links)
Supraphysiologic concentrations of oxygen are used in the management of critically ill patients across the lifespan. However, hyperoxia (HO) results in alveolar- capillary membrane destruction, pulmonary edema, pleural effusions, infiltration and activation of inflammatory cells, altered pulmonary mechanics and gas exchange prompting increased loading of the respiratory muscle. These abnormalities of pulmonary structure and function increase the work of breathing necessitating increased respiratory muscle force production to maintain alveolar ventilation. When the load placed on the respiratory muscle pump exceeds its capacity, respiratory failure develops and is ultimately fatal unless therapeutic interventions are able to reduce the ventilatory load. The use of perfluorochemical (PFC) liquids as a respiratory medium has been effective in the treatment of respiratory distress syndrome and acute lung injury (ALI) requiring mechanical ventilation. Mechanistically, by eliminating the air-liquid interface, PFC liquids reduce surface tension enabling lung volume recruitment at low inspiratory pressures and have high respiratory gas solubility which supports gas exchange. Additionally, through mechanical as well as cytoprotective mechanisms, intrapulmonary PFC liquids reduce inflammatory cell activation and recruitment. Cell culture, animal and human studies have suggested that acute and chronic lung injury secondary to prolonged HO may be ameliorated by administration of antioxidant enzymes (AOE), with superoxide dismutases (SOD) having significant protective effects. Because the lung is exposed to the highest O2 concentrations, a logical strategy to reduce HO-induced damage is to specifically target antioxidant enzymes to the lungs. However, intratracheal delivery of AOE by vehicles like normal saline may transiently impair lung function and be poorly distributed. PFC fluids have previously been shown to be effective respiratory media for pulmonary administration of various drugs. The premise of the proposed studies are to to characterize hyperoxic lung injury in a spontaneously breathing animal model and to develop therapeutic strategies to reduce oxidatative stress and supplement endogenous AOE. With respect to the diaphragm, we reason that HO-induced lung damage and oxidative stress will increase contractile demand of the diaphragm. If AOE activity could be increased in the lungs and respiratory muscles with AOE proteins or the genes encoding these enzymes, then cell damage, inflammatory changes, damage to the lung and respiratory "pump" might be ameliorated or prevented. The results show that PFC and SOD can attenuate the HO- induced decline in lung mechanics and gas exchange, ameliorate the inflammatory and oxidative stress profiles, and promote lung and muscle structural integrity resulting in a survival benefit. These findings support the novel application of PFC liquids in a spontaneously breathing model and support the concept that PFC preconditioning and AOE supplementation play a protective role by reducing mortality and morbidity in hyperoxic lung injury. / Physiology
23

Hyperoxygenering : – I vilken utsträckning exponeras patienter för höga syrgaskoncentrationer under anestesi?

Brage, Olivia, Berglund, Sara January 2017 (has links)
Det har under en längre tid funnits en stor vilja att under den perioperativa fasen ge patienter höga koncentrationer av syrgas med motiveringen att förbättra vävnadsperfusion och därmed den postoperativa återhämtningen. Nyare studier har påvisat de komplikationer vilka hyperoxygenering skulle kunna medföra i form av ökad mortalitet och morbiditet. Syftet med föreliggande studie var att undersöka huruvida patienter utsätts för hyperoxygenering peroperativt. Studien inkluderade 100 patienter och har genomförts genom en deskriptiv retrospektiv journalgranskning med tillägg av jämförande analyser mellan de undersökta operationsavdelningarna. Huvudresultat för studien var att samtliga undersökta operationsavdelningar hyperoxygenerade patienter under anestesi. För hela det undersökta underlaget uppmättes medelvärdet av parametern maximalt PaO2 till 30,7 ±11,7 kPa och medelvärdet av det genomsnittligt inspiratoriska FiO2 uppmättes till 45,5 ±7,6 %. Det högst uppmätta PaO2-värdet var vid en av de undersökta operationsavdelningarna 66,5 kPa. Slutsatsen vilken kan dras av denna studie är att patienter som undergår anestesi hyperoxygeneras till en nivå som visats innebära ökade risker och hyperoxygenering skulle potentiellt kunna vara ett större peroperativt problem än vad som idag är känt. / For a long period of time, there has been a great desire to provide high concentrations of oxygen in patients during the perioperative phase with the motivation to improve tissue perfusion and postoperative recovery. Recent studies have shown that hyperoxygenation may result in complications such as increased mortality and morbidity. The purpose of the present study was to investigate if patients are exposed to hyperoxygenation perioperatively. The study included 100 patients and was conducted through a descriptive retrospective journal review, with the addition of comparative analyzes between the investigated surgical departments. The main result of the study was that all investigated surgical departments hyperoxygenated patients under anesthesia. For the entire sample material examined, the average parameter of the substrate PaO2 was measured to 30.7 ±11.7 kPa, and the mean of the average inspirational FiO2 was measured to 45,5 ±7,6 %. The highest measured PaO2 value at one of the surgical departments being investigated was 66,5 kPa. In conclusion, the results from this study shows that patients undergoing anesthesia are presently being hyperoxygenated up to a level associated with increased risks, and that hyperoxygenation potentially is a greater peroperative problem than currently known.
24

Modelo de lesão pulmonar em coelhos prematuros: influência da idade gestacional e da concentração de oxigênio / Model of lung injury in premature rabbits: influence of gestational age and oxygen concentration

Manzano, Roberta Munhoz 03 October 2011 (has links)
INTRODUÇÃO: A lesão pulmonar da nova displasia broncopulmonar se caracteriza por uma diminuição da septação alveolar e do desenvolvimento vascular, ocorre um bloqueio no desenvolvimento pulmonar e consequentemente uma diminuição da alveolarização. A lesão pulmonar ocorre devido à associação de diversos fatores, incluindo a prematuridade, defesas antioxidantes inadequadas, e a ativação da resposta inflamatória. A exposição prolongada ao oxigênio também resulta em anormalidades na formação e na morfologia dos alvéolos, com redução tanto do volume pulmonar como da área de superfície interna alveolar. O objetivo do presente estudo foi comparar dois modelos de indução de lesão pulmonar através da exposição à hiperoxia prolongada em coelhos. MÉTODOS: Coelhas grávidas da raça New-Zealand-White foram sedadas para realização do parto cesáreo no 28º dia de gestação (termo = 31dias), coelhos prematuros foram expostos ao ar ambiente ou FiO295%. Outro grupo nasceu no 29º dia de gestação e foi exposto ao ar ambiente ou a uma FiO2=80%. Os animais foram mantidos em incubadora com controle de temperatura e alimentação e uma fórmula especial de leite similar ao leite de coelha por 11 dias. Desta forma, foram constituídos quatro grupos de estudo: Ar ambiente com 28 dias de gestação (Ar 28); exposição ao oxigênio (FiO2 95%) com 28 dias de gestação (O2 28); ar ambiente com 29 dias de gestação (Ar 29); exposição ao oxigênio (FiO2 = 80%) com 29 dias de gestação (O2 29). Após o sacrifício os pulmões foram fixados com 30 cmH2O de pressão transtraqueal. As lâminas do tecido pulmonar foram submetidas às seguintes colorações: hematoxilina e eosina para análise morfométrica; Weigert, resorcina-orceína modificado para a análise das fibras elásticas e Picrosirius para análise do colágeno. Foi realizada a contagem do Intercepto Linear Médio (Lm), determinada a Área de Superfície Interna (ISA), o número de alvéolos por campo microscópico, o espessamento septal e a proporção de fibras elásticas e colágenas. Análise Estatística: As variáveis contínuas foram analisadas por ANOVA One Way e a análise da sobrevida foi realizada através de uma curva de Kaplan-Meyer. O nível de significância adotado foi de 0.05. RESULTADOS: A sobrevida nos grupos de 29 dias foi melhor quando comparados com o grupo 28 dias. A hiperoxia bloqueou o desenvolvimento normal do pulmão, demonstrado por um aumento no Lm, uma diminuição significativa na ISA, uma diminuição no número de alvéolos, um aumento na espessura do septo interalveolar e também um aumento na proporção de fibras elásticas e uma diminuição na proporção de fibras colágenas nos dois grupos de animais expostos ao oxigênio em relação aos grupos que permaneceram em ar ambiente. CONCLUSÕES: Em coelhos prematuros o uso de uma concentração de oxigênio menor e um dia a mais de gestação reduziu a taxa de mortalidade mantendo os achados histopatológicos compatíveis aos da displasia broncopulmonar em humanos / INTRODUCTION: The lung injury of the \"new\" bronchopulmonary dysplasia is characterized by a decrease in alveolar septation and vascular development, resulting in a pulmonary arrest and a decrease in alveolarization. Lung damage occurs due to the association of many factors, including prematurity, inadequate antioxidant defenses and activation of the inflammatory response. Prolonged exposure to oxygen also results in abnormalities in the formation and morphology of the alveoli, with reduced lung volume and alveolar internal surface area. The aim of this study was to compare two models of lung injury induced by prolonged exposure to hyperoxia in rabbits. METHODS: New Zealand-White pregnant rabbits were sedated to perform a cesarean section on day 28 of gestation (term = 31days), premature rabbits were exposed to room air or FiO295%. Another group of animals was born at day 29 of gestation and was exposed to room air or FiO2=80%. The animals were kept in an incubator with temperature control and fed with a special milk formula similar to rabbit milk for 11 days. Four study groups were formed: Room air and 28 days of gestation (Air 28); exposure to oxygen (FiO295%) and 28 days of gestation (O2 28); room air and 29 days of gestation (Air 29 ); exposure to oxygen (FiO2=80%) and 29 days of gestation (O2 29). For microscopic evaluation, after sacrifice the lungs were fixed in situ at a constant inflation pressure of 30 cm H20. Lung slices were processed for hematoxylin-eosin staining - for morphometric analysis, Weigert\'s resorcin-orcein modified for the analysis of elastic fibers and Picrosirius - for analysis of collagen. The mean linear intercept (Lm), the internal surface area (ISA), the number of alveoli, the septal thickness and the proportion of elastic and collagen fibers were quantified. Statistical analysis was by One Way ANOVA for continuous variables, survival analysis was performed using a Kaplan-Meyer plot. The level of significance was 0.05. RESULTS: Survival in both 29 days groups was better when compared with 28 days groups. Hyperoxia impaired the normal development of the lung, demonstrated by an increase in Lm, a significant decrease in ISA, a decrease in the alveoli number, an increase in the septal thickness and an increase in the proportion of fibers elastic and a decrease in the proportion of collagen fibers in oxygen exposed animals. CONCLUSIONS: In premature rabbits using a lower concentration of oxygen and one more day of gestation reduced the mortality rate maintaining the histopathological findings similar to bronchopulmonary dysplasia in humans
25

Modelo de lesão pulmonar em coelhos prematuros: influência da idade gestacional e da concentração de oxigênio / Model of lung injury in premature rabbits: influence of gestational age and oxygen concentration

Roberta Munhoz Manzano 03 October 2011 (has links)
INTRODUÇÃO: A lesão pulmonar da nova displasia broncopulmonar se caracteriza por uma diminuição da septação alveolar e do desenvolvimento vascular, ocorre um bloqueio no desenvolvimento pulmonar e consequentemente uma diminuição da alveolarização. A lesão pulmonar ocorre devido à associação de diversos fatores, incluindo a prematuridade, defesas antioxidantes inadequadas, e a ativação da resposta inflamatória. A exposição prolongada ao oxigênio também resulta em anormalidades na formação e na morfologia dos alvéolos, com redução tanto do volume pulmonar como da área de superfície interna alveolar. O objetivo do presente estudo foi comparar dois modelos de indução de lesão pulmonar através da exposição à hiperoxia prolongada em coelhos. MÉTODOS: Coelhas grávidas da raça New-Zealand-White foram sedadas para realização do parto cesáreo no 28º dia de gestação (termo = 31dias), coelhos prematuros foram expostos ao ar ambiente ou FiO295%. Outro grupo nasceu no 29º dia de gestação e foi exposto ao ar ambiente ou a uma FiO2=80%. Os animais foram mantidos em incubadora com controle de temperatura e alimentação e uma fórmula especial de leite similar ao leite de coelha por 11 dias. Desta forma, foram constituídos quatro grupos de estudo: Ar ambiente com 28 dias de gestação (Ar 28); exposição ao oxigênio (FiO2 95%) com 28 dias de gestação (O2 28); ar ambiente com 29 dias de gestação (Ar 29); exposição ao oxigênio (FiO2 = 80%) com 29 dias de gestação (O2 29). Após o sacrifício os pulmões foram fixados com 30 cmH2O de pressão transtraqueal. As lâminas do tecido pulmonar foram submetidas às seguintes colorações: hematoxilina e eosina para análise morfométrica; Weigert, resorcina-orceína modificado para a análise das fibras elásticas e Picrosirius para análise do colágeno. Foi realizada a contagem do Intercepto Linear Médio (Lm), determinada a Área de Superfície Interna (ISA), o número de alvéolos por campo microscópico, o espessamento septal e a proporção de fibras elásticas e colágenas. Análise Estatística: As variáveis contínuas foram analisadas por ANOVA One Way e a análise da sobrevida foi realizada através de uma curva de Kaplan-Meyer. O nível de significância adotado foi de 0.05. RESULTADOS: A sobrevida nos grupos de 29 dias foi melhor quando comparados com o grupo 28 dias. A hiperoxia bloqueou o desenvolvimento normal do pulmão, demonstrado por um aumento no Lm, uma diminuição significativa na ISA, uma diminuição no número de alvéolos, um aumento na espessura do septo interalveolar e também um aumento na proporção de fibras elásticas e uma diminuição na proporção de fibras colágenas nos dois grupos de animais expostos ao oxigênio em relação aos grupos que permaneceram em ar ambiente. CONCLUSÕES: Em coelhos prematuros o uso de uma concentração de oxigênio menor e um dia a mais de gestação reduziu a taxa de mortalidade mantendo os achados histopatológicos compatíveis aos da displasia broncopulmonar em humanos / INTRODUCTION: The lung injury of the \"new\" bronchopulmonary dysplasia is characterized by a decrease in alveolar septation and vascular development, resulting in a pulmonary arrest and a decrease in alveolarization. Lung damage occurs due to the association of many factors, including prematurity, inadequate antioxidant defenses and activation of the inflammatory response. Prolonged exposure to oxygen also results in abnormalities in the formation and morphology of the alveoli, with reduced lung volume and alveolar internal surface area. The aim of this study was to compare two models of lung injury induced by prolonged exposure to hyperoxia in rabbits. METHODS: New Zealand-White pregnant rabbits were sedated to perform a cesarean section on day 28 of gestation (term = 31days), premature rabbits were exposed to room air or FiO295%. Another group of animals was born at day 29 of gestation and was exposed to room air or FiO2=80%. The animals were kept in an incubator with temperature control and fed with a special milk formula similar to rabbit milk for 11 days. Four study groups were formed: Room air and 28 days of gestation (Air 28); exposure to oxygen (FiO295%) and 28 days of gestation (O2 28); room air and 29 days of gestation (Air 29 ); exposure to oxygen (FiO2=80%) and 29 days of gestation (O2 29). For microscopic evaluation, after sacrifice the lungs were fixed in situ at a constant inflation pressure of 30 cm H20. Lung slices were processed for hematoxylin-eosin staining - for morphometric analysis, Weigert\'s resorcin-orcein modified for the analysis of elastic fibers and Picrosirius - for analysis of collagen. The mean linear intercept (Lm), the internal surface area (ISA), the number of alveoli, the septal thickness and the proportion of elastic and collagen fibers were quantified. Statistical analysis was by One Way ANOVA for continuous variables, survival analysis was performed using a Kaplan-Meyer plot. The level of significance was 0.05. RESULTS: Survival in both 29 days groups was better when compared with 28 days groups. Hyperoxia impaired the normal development of the lung, demonstrated by an increase in Lm, a significant decrease in ISA, a decrease in the alveoli number, an increase in the septal thickness and an increase in the proportion of fibers elastic and a decrease in the proportion of collagen fibers in oxygen exposed animals. CONCLUSIONS: In premature rabbits using a lower concentration of oxygen and one more day of gestation reduced the mortality rate maintaining the histopathological findings similar to bronchopulmonary dysplasia in humans
26

Cardiovascular response to hyperoxemia, hemodilution and burns : a clinical and experimental study

Bak, Zoltan January 2007 (has links)
The last decades less invasive monitoring and analytical tools have been developed for the evaluation of myocardial mechanics in clinical praxis. In critical care, these are longed-for complements to pulmonary artery catheter monitoring, additionally offering previously inaccessible information. This work is aimed, during fluid-replacement and oxygen therapy, to determine the physiological interface of ventricular and vascular mechanical properties, which result in the transfer of blood from the heart to appropriate circulatory beds. In prospective clinical studies we investigated previously cardiovascular healthy adults during hyperoxemia, and during preoperative acute normovolemic hemodilution or early fluid resuscitation of severe burn victims. Echocardiography was used in all studies, transthoracic for healthy volunteers and transesophageal for patients. For vascular parameters and for control purposes pulmonary artery Swan-Ganz catheter, calibrated external pulse recordings, whole body impedance cardiography, and transpulmonel thermodilution method were applied. We detected no significant change in blood pressure or heart rate, the two most often used parameters for patient monitoring. During preoperative acute normovolemic hemodilution a reduction of hemoglobin to 80 g/l did not compromise systolic or diastolic myocardial function. Cardiac volumes and flow increased with a concomitant fall in systemic vascular resistance while oxygen delivery seemed maintained. Supplemental oxygen therapy resulted in a linear dose-response between arterial oxygen and cardiovascular parameters, suggesting a direct vascular effect. Cardiac flow decreased and vascular resistance increased from hyperoxemia, and a decrease of venous return implied extracardial blood-pooling. Severe burns result in hypovolemic shock if not properly treated. The commonly used Parkland fluid replacement strategy, with urinary output and mean arterial pressure as endpoints, has recently been questioned. Applying this strategy, only transient early central hypovolemia was recorded, while dimensional preload, global left ventricular systolic function and oxygen delivery or consumption remained within normal ranges during the first 36 hours after accident. Signs of restrictive left ventricular diastolic function were detected in all patients and regional unstable systolic dysfunction was recognized in every other patient, and was consistent with myocardial marker leakage. Severe burns thereby cause myocardial stiffness and systolic regional dysfunction, which may not be prevented only by central normovolemia and adequate oxygenation. / On the day of the defence date the status of article II was: In Press.
27

The Effects of Oxygen on the Electrophysiology of CO2/H+-Chemosensitive and -Insensitive Neurons of the Solitary Complex of the Rat

Matott, Michael Patrick 01 January 2012 (has links)
This study tested the hypothesis that decreasing the control O2 level from 95% to 40% (5% CO2 + 55% N2) maintains viability in caudal solitary complex (cSC) neurons in transverse slices (~300-400ꝳ) prepared from neonatal rat (P2-22) maintained at 32-34°C. The underlying rationale is to reduce exposure to redox and nitrosative stimuli generated during several hours of exposure to 95% O2 that produces a tissue O2 tension throughout the slice which is in excess of 203 kPa (2.0 atmospheres absolute,ATA) oxygen. Whole cell recordings of cSC neurons maintained in 40% O2 exhibited spontaneous firing and had similar membrane potentials (Vm) and input resistances (Rin) as cSC neurons maintained in 95% O2. Neurons maintained in 40% O2, however, had significantly lower intrinsic firing rates than those maintained in 95% O2. 67% of neurons maintained in 40% O2 control were stimulated by hyperoxia, compared to 81% of neurons maintained in 95% O2 that were stimulated by reoxygenation from relative hypoxia. cSC neurons maintained in 40% O2 also exhibited CO2/H+-sensitivity, including CO2/H+-excitation (31%) and CO2H+-inhibition (31%) and most CO2/H+-sensitive neurons were also stimulated by hyperoxia and reoxygenation or inhibited by lower O2. It is also suggested that acute exposure to lower concentrations of O2 may increase the incidence of CO2-inhibited cSC neurons. Anoxia reduced or eliminated all firing in essentially all cSC neurons. Our findings indicate that brainstem slice viability is retained in 40% O2 control and that hyperoxia is a general stimulant of many cSC neurons, including chemosensitive neurons. We therefore recommend that 40% O2 be used for brainstem electrophysiology studies.
28

Myocardial protection by hyperoxia /

Tähepõld, Peeter, January 2002 (has links)
Diss. (sammanfattning) Stockholm : Karol. inst., 2002. / Härtill 5 uppsatser.
29

Influence des conditions environnementales sur le métabolisme de Plasmodium falciparum / Impact of environmental conditions on Plasmodium Falciparum metabolism

Torrentino-Madamet, Marylin 01 December 2010 (has links)
P. falciparum est le principal responsable des formes graves du paludisme. Le parasiteévolue entre deux hôtes (homme et moustique) qui lui imposent différents environnements; ettout particulièrement, des modifications des pressions partielles d’O2 nécessitant des capacitésd’adaptation surprenantes pour un parasite microaérophile. Chez l’hôte vertébré, lesphénomènes de cytoadhésion, ralentissant la progression du parasite notamment au niveau despoumons, augmentent la durée d’exposition aux conditions hyperoxiques.La dynamique de la réponse parasitaire à l’hyperoxie a été étudiée par une approchecombinée de transcriptomique et de protéomique. Certains mécanismes de défense contre lesespèces réactives d’oxygène ont été appréciés, dont une éventuelle fonction oxydasealternative.L’exposition du parasite à 21% d’O2 induit un retard de croissance au niveau de laschizogonie. Le stress oxydatif induit par l’hyperoxie entraîne des perturbations métaboliquescomme une inhibition de la glycolyse en faveur de la respiration et un ralentissement dumétabolisme de la vacuole digestive. Cette action combinée sur le métabolisme mitochondrialet vacuolaire permet au parasite de s’adapter à un environnement hyperoxydant, en régulant laproduction d’espèces réactives d’oxygène. Nos travaux ont montré qu’un inhibiteur de lafonction oxydase alternative, l’acide salicylhydroxamique ou SHAM, avec un effet mineur surla croissance parasitaire en microaérophilie, avait un effet létal sur les parasites en hyperoxie.Une meilleure compréhension de la biologie parasitaire pourrait contribuer audéveloppement de nouveaux traitements antipaludiques associés à une thérapie hyperbarique. / P. falciparum is the main species responsible for severe case of malaria. The parasiteevolves between two hosts (human and mosquito), imposing to it different environments;especially changes in the O2 pressure, demanding astonishing adaptation skills for amicroaerophilic parasite. In the vertebrate host, the phenomena of cytoadhesion, which slowdown the spread of the parasite among others in the lungs, increase the timing of exposure tohyperoxic conditions.The parasitic response dynamic to hyperoxia has been analysed by a combinedtranscriptomic and proteomic approach. Some of the defense mechanisms against reactiveoxygen species have been evaluated, among which a potential alternative oxidase function.The exposure of the parasite to 21%O2 atmosphere leads to a growth delay atschizogony level. The oxidative stress resulting from the hyperoxia conducts to metabolicalterations, as an inhibition of the glycolysis in favour of respiration and as a slowdown of themetabolism of the digestive vacuole. This combined action on the mitochondrial and vacuolarmetabolisms allows the parasite to adapt itself to hyperoxic environment, by regulatingreactive oxygen species. Our works have shown that an inhibitor of the alternative oxidasefunction, the salicylhydroxamic acid or SHAM, with a minor effect on the parasite growth inmicroaerophily, had letal effect on parasites in hyperoxia.A better understanding of the parasitic biology could contribute to the development ofnew antimalarial treatments, associated with a hyperbaric oxygen therapy.
30

Vliv různého nasycení vody kyslíkem na příjem krmiva a růst candáta obecného (Sander lucioperca) v intenzivním chovu. / The effect of different oxygen saturation on feed intake and growth of pikeperch (Sander lucioperca) in intensive culture.

MATOUŠEK, Jan January 2012 (has links)
This diploma thesis is focused on culture of pikeperch under controlled conditions and tested the optimal environmental conditions for their good growth and survival. The aim of this work was to test the effect of different oxygen saturation on survival, growth, feed intake, feed conversion rate and condition of pikeperch Pikeperch (mean body weight 10.3 g; n=810) habituated to artificial feed were placed in culture tank of the same volume of water and environmental conditions. Fish were fed ad-libitum. Three different oxygen saturations were tested in triplicate: normoxia with saturation of 85-95% O2, hypoxia with saturation of 55-65% O2 and hyperoxia with saturation of 145-155% O2. The experiment lasted 82 days and was divided into five periods. Biometric measurements of fish were performed at the end of each period. Cumulative survival, fish growth, amount of received feed, specific growth rate and condition factor were used for evaluation of our results. The results showed the positive effect of hyperoxia on feed intake and growth of fish. Slower growth was observed in hypoxia. The mean weight gain for the whole experiment was followed: normoxia 28.2 g, hyperoxia 37.7 g and hypoxia 22.9 g.

Page generated in 0.0486 seconds