• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 4
  • 3
  • 2
  • 1
  • Tagged with
  • 27
  • 12
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Analysis Of The Ikkβ/Nf-Κb Signaling Pathway During Embryonic Angiogenesis And Tumorigenesis Of Breast Cancer

Hou, Yanjun 01 October 2008 (has links)
No description available.
12

The IkB kinase complex is a regulator of mRNA stability

Mikuda, Nadine 26 April 2018 (has links)
Bisher wurde davon ausgegangen, dass der IKK-komplex durch Regulation des Transkriptionsfaktors NF-kappaB die stressinduzierte Expression von Zielgenen steuert. Im Rahmen der hier vorgelegten Dissertation konnte jedoch gezeigt werden, dass der IKK-Komplex unabhängig von seiner Rolle in der NF-kappaB-Aktivierung die Stabilität einer Vielzahl von mRNAs kontrolliert. Mittels der Kombination von Ko-Immunopräzipitationsstudien und SILAC-MS konnte die induzierte Interaktion der regulatorischen Untereinheit des IKK-Komplexes IKKgamma mit dem Gerüstprotein EDC4 (Enhancer of Decapping 4) nachgewiesen werden. EDC4 ist eine essentielle Komponente sogenannter zytoplasmatischer „Processing Bodies“ (P-Bodies). Diese fungieren als Depots für die Speicherung von mRNAs, aber auch als Orte der mRNA-Degradation und der miRNA-vermittelten Repression spezifischer Zielgene. Die Interaktion von IKKgamma mit EDC4 konnte durch verschiedene Stimuli induziert werden. Dazu zählen DNA-Schäden durch Doppelstrangbrüche, aber auch die Aktivierung von Oberflächenrezeptoren durch TNFalpha und IL-1beta. EDC4 dient darüber hinaus als Substrat der Kinase IKKbeta. Mittels Massenspektrometrie und Kinaseassays konnten vier IKK-abhängige Phosphorylierungsstellen identifiziert werden. Die IKK-vermittelte Phosphorylierung von EDC4 ist essentiell für die Regulation von mRNAs und die damit verbundene Bildung der zytoplasmatischen P-Bodies. Diese Befunde konnten sowohl in stabilen induzierbaren Zelllinien, mittels transienter Transfektion und durch den Gebrauch von Kinaseinhibitoren in primären als auch in Krebszelllinien bestätigt werden. mRNA-Stabilitätsassays und eine RNA-Seq Analyse bestätigten die stressinduzierten Änderungen in den Halbwertszeiten spezifischer Transkripte und offenbarten einen gemeinsamen Regulationsmechanismus des IKK-Komplexes mit EDC4. / The IKK complex is deemed to regulate gene expression through the activation of the transcription factor NF-kappaB. Here I describe an NF-kappaB-independent function of the IKK complex in regulating mRNA stability across different cell types and stimuli. A SILAC-MS screen for interaction partners of the regulatory subunit IKKgamma revealed an inducible interaction with Enhancer of mRNA Decapping 4 (EDC4). EDC4 is an essential component of cytoplasmic processing bodies (P-bodies). P-bodies function as sites of mRNA storage, degradation and miRNA-mediated silencing. Interaction between IKKgamma and EDC4 can be induced by various stimuli, including DNA damage, TNFalpha and IL-1beta. EDC4 was identified as a novel IKK substrate and four IKKbeta phosphorylation sites were determined by mass spectrometry and in kinase assays. Stable inducible cell lines, transient transfection and kinase inhibitors were used in different human cancer and in primary cell lines and demonstrated that phosphorylation of EDC4 by IKK is essential for formation of P-Bodies in response to numerous stimuli. mRNA stability assays confirmed stress-induced changes in the half-life of target mRNAs and revealed common regulation of mRNA stability by IKK and EDC4. The transcriptome-wide reach of this joint regulation was assessed via RNA-Seq analysis.
13

Using structural analysis to investigate the function of Suppressor of IKK-epsilon (SIKE)

McKinley, Sean W 01 January 2014 (has links)
The innate immune system provides the body’s first line of defense against pathogenic challenge through pathogen recognition and initiation of the immune response. Among the various cellular mechanisms of pathogen recognition in mammals, Toll-like receptor 3 (TLR3) recognizes viral dsRNA. Stimulation of TLR3 signaling pathway leads to transcription of pro-inflammatory cytokines and type-1 Interferons. Suppressor of IKKε (SIKE) interacts with two kinases in the signaling pathway, IKKε and TANK binding kinase 1 (TBK1), inhibiting the transcription of type I interferons. Recently, the Bell Laboratory discovered that SIKE blocks TBK1-mediated activation of type I interferons by acting as a high affinity, alternative substrate of TBK1. To further characterize SIKE’s function within the antiviral response, this study focused on defining the overall SIKE structure. Using recombinant protein expressed from E. coli and purified via immobilized metal affinity chromatography, SIKE crystals were obtained from a sample concentrated to 15 mg/ml under several crystallization conditions. Yet, reproducing these results has been difficult. In this study, we have modified the purification scheme to remove an E. coli contaminant, SlyD. Purification under denaturing conditions, removal of soluble proteins, incorporation of ion exchange and different IMAC (immobilized metal ion affinity chromatography) resins has been tested. For each scheme, size exclusion chromatography and SDS-PAGE/Coomassie/silver stain were used to assess purity. Crystallization trials for samples from each purification scheme were completed. In addition to crystallization trials, hydrogen-deuterium exchange (HDX) was investigated, accompanied with pepsin digests, in order to further characterize the dynamic structure of SIKE.
14

Role of a highly conserved region of the NF-kappaB essential modulator in its scaffolding function

Shaffer, Robert 05 February 2019 (has links)
Scaffold proteins facilitate many aspects of intracellular signaling. These proteins can regulate two or more proteins in the same pathway, or coordinate signaling from multiple pathways. Scaffold proteins are therefore key control points for the flux of signaling and play essential roles in biological systems. There are four possible mechanisms by which scaffold proteins achieve activation and propagate signaling: 1) rigid protein binding between two or more proteins to co-localize binding partners, 2) ligand-induced activation such as may result from a conformational change, 3) disorder-to-order transition where the scaffold protein folds as a result of a protein-protein interaction, and 4) dynamic processes such as phosphorylation. The scaffold protein NF-κB essential modulator (NEMO) functions via ligand-induced activation and serves as the key control point for canonical NF-κB signaling. The work described in this thesis investigates the role of a previously uncharacterized domain within NEMO that is required for function, which we term the Intervening Domain (IVD). Bioinformatic analysis reveals a high level of sequence conservation across species within this domain. Conformational changes following ligand binding are observed for NEMO and these changes require conserved sequences in the IVD. Additionally, a functional IVD is shown to increase the binding affinity of NEMO for IKKβ, enhance the thermal stability of NEMO, and is required to propagate NF-κB signaling in cells. A fluorescence-based assay is also developed to characterize the formation of a complex composed of NEMO, a zinc ion, and IκBα. A separate fluorescence-based assay is developed to measure IKK activity and is used to determine that NEMO alone or in the presence of linear tetraubiquitin does not enhance the rate of IKKβ phosphorylation of an IκBα-derived peptide. Furthermore, a number of organic small molecules and macrocycles are screened against the NEMO-IKKβ interaction. One small molecule was validated as an inhibitor and its biophysical properties and inhibition kinetics are described in this thesis. These analyses represent the first characterization of a highly conserved domain required for the function of the key control point in NF-κB signaling. The IVD domain of NEMO could be targeted for development of an allosteric effector for therapeutic discovery.
15

Phosphorylation and mechanistic regulation of a novel IKK substrate, ITCH

Perez, Jessica Marie 02 February 2018 (has links)
No description available.
16

The Role of IκB kinase β in Redox Modulation

Peng, Zhimin 20 April 2009 (has links)
No description available.
17

IkappaB Kinase beta in the Regulation of Cell Migration, Senescence and Fibrosis

Chen, Liang 19 April 2012 (has links)
No description available.
18

The Role of AKT1 And IKKβ in Ovarian Cancer Tumorigenesis and Chemotherapeutic Resistance

Niculaita, Roxana 26 November 2008 (has links)
No description available.
19

Signalisation en amont de la voie NF-[kappa]B et son impact sur la production de cytokines chez les neutrophiles humains

Ear, Thornin January 2008 (has links)
En premier lieu, en utilisant des inhibiteurs pharmacologiques du NF-[kappa]B, nous avons constaté que l'inhibition du facteur de transcription NF-[kappa]B chez ces cellules diminue de beaucoup l'expression génique et la sécrétion de diverses cytokines et chimiokines (TNF-[alpha], IL-8 ou CXCL8, Mip-1[alpha]/[bêta] induites par des stimuli tels que TNF-[alpha] ou LPS. Nous montrons ensuite que le complexe IKK (IKK[alpha], IKK[bêta], et IKK[gamma]) est aussi partiellement localisé dans le noyau, alors que les kinases reliées à IKK (IKK[epsilon] et TBK-1) sont cytoplasmiques; la kinase NIK, quant à elle, est strictement nucléaire. Suite à une activation des neutrophiles, IKK[bêta] et IKK[gamma] deviennent transitoirement phosphorylées dans le cytoplasme et le noyau, alors qu'IKK[alpha] disparaît temporairement de ces deux compartiments cellulaires d'une manière qui semble dépendante de IKK[bêta]. Ces réponses s'accompagnent, dans les deux compartiments, de la dégradation d'I[kappa]B[alpha] et de la phosphorylation du RelA sur la sérine 536. Bien que les deux protéines puissent être des substrats de IKK, l'inhibition de ce dernier empêche la dégradation d'I[kappa]B[alpha], tandis que le niveau de phosphorylation du RelA est essentiellement inchangé. Nous apportons enfin une preuve que des isoformes de IKK nucléaires s'associent à la chromatine suivant l'activation des neutrophiles, ce qui suggère un rôle potentiel dans la régulation de gènes. Deuxièmement, nous rapportons que les neutrophiles expriment la MAP3K, TAK1, ainsi que ses partenaires associés, TAB1/2, dans le cytoplasme et le noyau. La kinase TAK1 est associée de façon constitutive aux protéines TAB1 et TAB2, ainsi qu'au complexe IKK[alpha]/[bêta] dans les neutrophiles au repos. Le niveau d'interaction de ces complexes demeure inchangé suite au traitement des neutrophiles avec le TNF-[alpha] ou le LPS. La kinase TAK1 devient rapidement et transitoirement activée suite à une stimulation des cellules avec le TNF-[alpha] ou le LPS. L'inhibition de l'activité kinase de TAK1 avec un inhibiteur hautement sélectif (5z-7-oxozeaenol) a empêché la phosphorylation d'IKK[alpha]/[bêta], de RelA, et la dégradation de I[kappa]B[alpha] dans les fractions cytoplasmiques et nucléaires, ainsi que la liaison à l'ADN du NF-[kappa]B dans des neutrophiles activés.En conséquence, l'expression et la sécrétion de cytokines inflammatoires induites par le TNF-[alpha] ou le LPS ont été profondément altérées suivant une inhibition de TAK1.En revanche, la phosphorylation de IKK[gamma] induite par le LPS n'a pas été affectée par l'inhibition de TAK1. Finalement, nos résultats indiquent que l'activation du NF-[kappa]B et les réponses cellulaires dépendantes du NF-[kappa]B sont indépendantes des ROS endogènes dans les neutrophiles humains primaires ou dans la lignée promyélocytaire PLB-985, qui peut être différenciée en granulocytes et se comporte comme les neutrophiles. Parallèlement, nous avons optimisé les conditions de transfection des PLB-985 différenciées, ce qui nous a permis de montrer pour la première fois l'activation de promoteurs [kappa]B-dépendants chez des granulocytes humains. Ces travaux rendent par ailleurs possibles les études portant sur l'activation des promoteurs chez les granulocytes. Dans leur ensemble, ces observations démontrent l'importance du NF-[kappa]B dans la génération inductible de cytokines et chimiokines par les neutrophiles. Il s'agit de la première étude qui montre la présence et l'activation (phosphorylation) du complexe IKK et la phosphorylation des protéines NF-[kappa]B/Rel dans les neutrophiles humains. Plus important encore, nos résultats dévoilent un mode d'activation de la cascade de signalisation IKK/I[kappa]B/NF-[kappa]B dans le noyau de cellules primaires. Nos données établissent également le rôle central de TAK1 dans le contrôle de la cascade de signalisation IKK/I[kappa]B/NF-[kappa]B cytoplasmique et nucléaire dans les neutrophiles primaires humains, ce qui pourrait représenter une cible prometteuse pour une intervention thérapeutique considérant le rôle critique des neutrophiles dans plusieurs conditions inflammatoires.
20

Rôles des kinases IKK et IKK-related dans les maladies inflammatoires chroniques : implications dans l’athérosclérose et la réponse hypoxique

Gravel, Simon-Pierre 12 1900 (has links)
L’inflammation est un procédé complexe qui vise l’élimination de l’agent causal de dommages tissulaires en vue de faciliter la réparation du tissu affecté. La persistance de l’agent causal ou l’incapacité à résoudre l’inflammation mène à un dérèglement homéostatique chronique qui peut avoir une incidence sur la morbidité et la mortalité. L’athérosclérose est une condition inflammatoire chronique des vaisseaux sanguins dont l’origine est multifactorielle. L’hypertension et l’état infectieux représentent respectivement des facteurs de risque classiques et émergents du développement de cette maladie. Les fondements initiaux de l’inflammation font intervenir l’immunité innée, la première ligne de défense dont disposent les cellules pour répondre à un signal de danger. Le but de cette thèse est d’examiner le rôle pro-inflammatoire d’une famille de kinases essentielles à l’immunité innée, soit celle des kinases de IkappaB (IKK) et des kinases IKK-related. Les kinases IKKalpha et IKKbeta forment le complexe IKK avec la molécule adaptatrice NEMO/IKKgamma. Ce complexe est chargé d’effectuer la phosphorylation de l’inhibiteur de NF-kappaB, IkappaBalpha, ce qui mène à sa dégradation et à la libération du facteur de transcription NF-kappaB. Nous montrons que le peptide vasoactif angiotensine II (AngII) induit l’activité phosphotransférase d’IKKbeta dans les VSMC par immunoprécipitation de NEMO puis essai kinase in vitro. Grâce à une approche ARN interférence (ARNi) dirigée contre IKK, nous montrons que cette kinase est responsable de la phosphorylation de p65/RelA. Nous montrons que le mécanisme d’induction de NF-kappaB par l’AngII est atypique, puisqu’il ne module pas IkappaBalpha, et montrons à l’aide d’inhibiteurs pharmacologiques que l’activation de p65 est indépendante des voies MEK-ERK-RSK, PI3K et de la transactivation du récepteur de l’EGF. Les kinases IKK-related Tank-binding kinase 1 (TBK1) et IKK-i sont quant à elles principalement activées suite à une infection bactérienne ou virale. Ces kinases phosphorylent directement le facteur de transcription interferon regulatory factor (IRF)-3. Nous montrons que le cytomégalovirus humain, un pathogène associé à l’athérosclérose, a la capacité d’induire l’activation de TBK1 dans les VSMC. L’usage d’ARNi dirigé contre TBK1 et IKKi montre que les 2 kinases sont impliquées dans l’activation d’IRF-3. De plus, nous montrons à l’aide d’une lignée de VSMC exprimant une version dominante négative d’IRF-3 que ce dernier est essentiel à la synthèse des chimiokines RANTES et IP-10, tel qu’analysé par RT-PCR. Par ailleurs, il a récemment été montré que les kinases IKK-related étaient étroitement liées à la transformation oncogénique, et que TBK1 était pro-angiogénique. Or, l’angiogenèse est le plus souvent modulée par la réponse hypoxique qui est d’ailleurs commune à la majorité des processus inflammatoires. Le facteur de transcription hypoxia inducible factor (HIF)-1 module l’angiogenèse, l’inflammation et la survie cellulaire. Nous montrons à l’aide de cellules Tbk1 et Ikbke -/- et d’une approche lentivirale que TBK1 est spécifiquement impliquée dans l’induction traductionnelle de HIF-1alpha en condition de stress hypoxique. L’expression de TBK1 est induite sous ces conditions, et cette kinase module la phosphorylation de ERK, RSK, Akt et TSC1. Les résultats originaux présentés dans cette thèse montrent donc que les kinases IKK et IKK-related exercent leurs actions pro-inflammatoires par des mécanismes distincts. / Inflammation is a complex process that allows elimination of tissular damaging agents and thus facilitates wound repair. Persistance of a damaging agent or the incapacity to resolve the inflammatory state leads to chronic homeostatic deregulation with putative incidence on morbidity and mortality. Atherosclerosis is an inflammatory state of blood vessels which origins are multifactorial. Hypertension and the infectious state represent classical and emerging factors of atherosclerosis development, respectively. The innate immune response takes place in the initial steps of inflammation, and represents the first cellular line of defense against danger signals. The goal of this thesis is to examine the pro-inflammatory roles of the IkB kinases (IKK) and the IKK-related kinases, which are essential innate immune response protein kinases. IKKalpha and IKKbeta form, together with NEMO/IKKgamma, the IKK complex. This complex is responsible of the phosphorylation of the inhibitor of NF-kappaB, IkappaBalpha, a process that leads to its degradation and NF-kappaB release. By immunoprecipitation of NEMO and assessment of the IKK complex activity in vitro, we show that the vasoactive peptide angiotensin II (AngII) induces IKKbeta phosphotransferase activity in vascular smooth muscle cells (VSMC). The use of RNA interference (RNAi) against IKKbeta reveals that this kinase is responsible for p65/RelA phosphorylation. AngII modulation of NF-kappaB is atypical since it does not modulate IkappaB. Moreover, the use of pharmacological inhibitors shows that p65 induction is independent of both MEK-ERK-RSK and PI3K pathways, and that it does not involve EGF receptor transactivation. IKK-related kinases Tank-binding kinase 1 (TBK1) and IKK-i are known to be induced by bacterial and viral infections. These kinases are able to phosphorylate directly interferon regulatory factor (IRF)-3 transcription factor. Human cytomegalovirus (HCMV) seropositivity was shown to be linked to atherosclerosis development. We show that TBK1 activity is induced in HCMV-infected VSMC. RNAi directed against TBK1 and IKK-i reveals that both kinases are required for IRF-3 activation. The use of a VSMC line that express a dominant negative version if IRF-3 shows that this transcription factor is involved in the induction of RANTES and IP-10 chemokines, as assessed by RT-PCR. In addition, IKK-related kinases were recently shown to be implicated in oncogenic transformation. TBK1 was also shown to be pro-angiogenic. Angiogenesis is known to be regulated by the hypoxic response, a common condition of inflammatory processes. Hypoxia-inducible factor (HIF)-1 is a transcription factor that modulates angiogenesis, inflammation and cell survival. We show with the use of Tbk1 and Ikbke -/- cells combined with the use of a lentiviral approach that TBK1 is specifically involved in HIF-1alpha translational induction under hypoxic stress. We also show that TBK1 expression is enhanced under theses conditions, and that this kinase modulates the phosphorylation of ERK, RSK, Akt and TSC1. In conclusion, the results presented in this thesis show that the IKK and IKK-related kinases are both pro-inflammatory, and exert their actions by distinct mechanisms.

Page generated in 0.0158 seconds