• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 23
  • 8
  • 3
  • Tagged with
  • 33
  • 33
  • 33
  • 33
  • 33
  • 23
  • 22
  • 22
  • 21
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Développement d'antennes supraconductrices basées sur les réseaux de SQUID pour la résonance magnétique nucléaire à champ faible / Development of superconducting antennas based on SQUID arrays for low-field nuclear magnetic resonance

Labbe, Aimé 10 October 2019 (has links)
L'imagerie par résonance magnétique (IRM) est une modalité qui offre de bons contrastes et une bonne résolution spatiale, mais qui souffre d'un important problème de sensibilité. Pour répondre à cette problématique, le paradigme actuel est d'accroitre le champ magnétique des aimants d'IRM. Ceci mène toutefois à une explosion des coûts et à des contraintes accrues vis-à-vis des patients. L'approche que nous présentons est radicalement différente~: il s'agit de travailler à champ faible. Les antennes classiques n'étant pas assez sensibles pour recueillir le signal, l'idée est d'utiliser des SQIF. Ces derniers sont une nouvelle technologie d'antennes supraconductrices ultra-sensibles basées sur les réseaux de SQUID. Le projet vise à optimiser les capteurs SQIF et à les adapter pour la première fois à la RMN afin de mesurer un signal sur un aimant à 0.2~T.Pour ce faire, nous avons développé et étudié les performances de nouvelles architectures d'antennes SQIF afin de définir la géométrie la plus adaptée à la RMN. Nous avons également cherché à mieux comprendre comment le contexte d'utilisation de ces nouvelles antennes pouvait influencer leurs performances. Le jeu d'antennes le plus performant réalisé avait un facteur de transfert de 8.4~kVperT et un seuil de détection de 190~fTperHz. Il fut également observé que la présence d'un champ magnétique pendant le refroidissement de ces capteurs supraconducteurs dégradait leur réponse, phénomène à prendre en compte en RMN.Un Démonstrateur Super-QIF intégrant un SQIF dans l'IRM à 0.2~T fut conçu en tenant compte des contraintes géométriques et de l'environnement magnétique. Après sa fabrication, la température du cryostat était de 50~K, donc suffisante pour le bon fonctionnement des SQIF. Les premiers tests ont montrés que la présence du système ne perturbait pas le signal de RMN.Le démonstrateur est toujours en cours de développement et devrait permettre de mesurer un de RMN dans les mois à venir. À long terme, ces travaux pavent la voie à des applications des SQIF en IRM à champ terrestre. / Magnetic resonance imaging (MRI) is a modality that offers good contrasts and good spatial resolution, but suffers from a significant sensitivity problem. To address this issue, the current paradigm is to increase the magnetic field of MRI magnets. However, this leads to an explosion of costs and to increased constraints on patients. The approach we present is radically different: it involves working in a weak field. As conventional antennas are not sensitive enough to collect the signal, the idea is to use SQIF. These are a new ultra sensitive superconducting antenna technology based on SQUID networks. The project aims to optimize SQIF technology and adapt it to measure an NMR signal in a 0.2~T magnet.To do this, we developed and studied the performance of new SQIF antenna architectures in order to define the geometry most suitable for NMR. We also sought to better understand how the context of use of these new antennas could influence their performance. The best performing antennas set had a transfer factor of 8.4~kVperT and a detection threshold of 190~fTperHz. It was also observed that the presence of a magnetic field during the cooling of these superconducting sensors degraded their response, a phenomenon to be accounted for in NMR.The Super-QIF Demonstrator incorporating a SQIF in the 0.2~T MRI was designed considering the geometric constraints and the magnetic environment. After its assembly, the temperature of the cryostat was 50~K, therefore sufficient for the proper operation of SQIF. The first tests showed that the system presence did not disturb the NMR signal.The demonstrator is still under development and is expected to measure an NMR signal in the forthcoming months. In the long term, this work paves the way for applications of SQIF in Earth's field MRI.
32

Modélisation et étude du métabolisme énergétique cérébral. Applications à l'imagerie des gliomes diffus de bas grade. / Modeling and analysis of the energetic cerebral metabolism. Applications to medical imaging of low-grade glioma. / Modellizzazione e analisi del metabolismo energetico del cervello. Applicazioni alle lastre mediche del glioma diffuso di basso grado

Perrillat-Mercerot, Angélique 22 October 2019 (has links)
Tout ce qui vit, naît, se nourrit, se reproduit et meurt. Pour le cerveau, la question se complexifie car à la survie des neurones s'ajoute le coût de l'activité cérébrale. La question de la gestion énergétique pour les neurones est particulière car les cellules de notre cerveau évoluent de manière concertée et non par compétition. On sait avec l'imagerie médicale que l'usine neuronale ne fonctionne pas uniquement grâce au glucose ; elle utilise d'autres apports énergétiques tels que le lactate ou le glutamate pour soutenir sa production. Lorsqu'une tumeur apparaît, elle change le métabolisme énergétique pour survivre et soutenir sa propre croissance. En particulier, les cellules cancéreuses se fournissent en lactate et choisissent leur substrat préféré en fonction de l'oxygène disponible. La modélisation mathématique des substrats énergétiques est un outil de choix pour décrire et prédire de tels flux. Coupler ces modèles à des données issues de l'IRM et de la SRM permet d'améliorer la prise en charge du patient présentant un gliome.Cette thèse propose l'approche de plusieurs dynamiques en substrat dans le cerveau sain et gliomateux en se basant sur des systèmes d'équations : échanges locaux en lactate (EDO, système lent-rapide), échanges globaux en substrats (EDO), cycle glutamate/glutamine (EDR) et échanges en lactate en dimensions supérieures (EDP). Ces modèles sont expliqués, décrits grâce aux mathématiques et permettent l'élaboration de simulations ajustées selon des données patient ou issues de la littérature.L'énergie est nécessaire au maintien de la vie. Mais si votre voisin consomme une partie de vos ressources, pouvez-vous encore espérer survivre ? / Everything that lives is born, eats, reproduces and dies. For the brain, the question is more complex because neurons have to survive and to support brain activity. Energy management is also particular because brain cells evolve together with no competition. Thanks to medical imaging, we know that neurons do not consume only glucose. They can use others energetic substrates such as lactate and glutamate as a power source.When a tumor appears, it changes the energetic metabolism to survive and support its own growth. In particular, cancer cells like to consume lactate. They also choose their favorite substrate based on the available oxygen. Modeling of energy substrates is useful to describe and predict energetic kinetics and changes. Mathematical models could get with clinical and medical results to describe, explain or predict low grade glioma dynamics. They can help to characterize and quantify a tumor evolution, then leading to improve their therapeutical management. Exchanges between mathematics and MRI (and MRS) enable to get accurate data and to build suitable mathematical models.This thesis deals with several approaches of substrates dynamics in healthy and gliomatous brains. These researches are based on systems of equations. We model local lactate exchanges (ODE, fast-slow systems), global substrates exchanges (ODE), glutamate/glutamine cycle (RDE) and local lactate exchanges in higher dimensions (PDE). We describe, analyze and give simulations of these models. Simulations are fitted on patient MRI data or literature data. Energy is necessary to live. But if your neighbor consumes a part of your resources, can you still survive ? / Tutto ciò che vive nasce, si nutre, si riproduce e muore. Per il cervello, la questione è più complessa perché i neuroni devono sopravvivere e sostenere l'attività cerebrale. La gestione energetica cerebrale è particolare anche perché le cellule cerebrali evolvono insieme, senza concorrenza. Inoltre, grazie alle immagini mediche, sappiamo che i neuroni non consumano solo del glucosio ma usano altri substrati energetici come il lattato o il glutammato.Quando un tumore si stabilisce, cambia il metabolismo energetico del cervello per sopravvivere e sostenere la propria crescita. In particolare, cellule tumorali consumano del lattato e scelgono il loro substrato preferito basandosi all'ossigeno disponibile.La matematica, e in particolare l'elaborazione di modelli matematici può aiutarci a ottimizzare i dati disponibili, che possono essere, di volta in volta, delle proprietà cellulare o delle lastre MRI o MRS. La modellizzazione dei substrati energetici potrebbe descrivere, spiegare o prevedere le dinamiche energetiche nel cervello.Questa tesi tratta di diversi approcci della dinamica dei substrati nei cervelli sani e gliomatosi. Queste ricerche si basano su sistemi di equazioni. Modellizziamo scambi locali di lattato (ODE, sistemi fast-slow), scambi globali di substrati (ODE), ciclo glutammato/glutammina (RDE) e scambi locali di lattato in dimensioni superiori (PDE). Descriviamo, analizziamo e diamo simulazioni di questi modelli. Le simulazioni sono adeguate su dati MRI paziente o dati di letteratura.Per vivere, l’energia è una necessità. Ma se i Suoi vicini consumassero le Sue risorse, riuscirebbe ancora a sopravvivere ?
33

Résilience et vieillissement cognitif : une approche de modération en neuro-imagerie structurelle et fonctionnelle

Ducharme-Laliberté, Gabriel 09 1900 (has links)
De nombreux changements cérébraux s’opèrent au cours du vieillissement normal, et ce, tant au niveau structurel que fonctionnel. Ces changements résultent le plus souvent en une certaine détérioration du fonctionnement cognitif et se répercutent ainsi sur la qualité de vie des personnes âgées. Il appert toutefois que certaines personnes se voient relativement épargnées et parviennent à maintenir un niveau de fonctionnement cognitif comparativement élevé en dépit de l’avancement en âge. En présence d’une accélération du vieillissement populationnel, il devient donc criant de comprendre les facteurs et les mécanismes neurobiologiques qui contribueraient à cette meilleure résilience face aux effets du vieillissement sur le cerveau et la cognition. Bien que plusieurs modèles aient tenté de rendre compte de ce phénomène, la compréhension des mécanismes qui le sous-tendent demeure à ce jour relativement lacunaire. L’objectif principal de cette thèse était ainsi d’exposer les corrélats neurobiologiques associés à une meilleure résilience face aux effets du vieillissement normal sur le cerveau et la cognition, et ce, par l’entremise de mesures d’imagerie par résonance magnétique structurelle (IRM) et fonctionnelle (IRMf). Cette thèse contient quatre articles. L’intention du premier article (Chapitre II) était de faire une synthèse des connaissances quant aux mécanismes impliqués dans la résilience contre les effets délétères du vieillissement normal sur la cognition. Dans cette revue de la littérature, nous nous sommes intéressés à deux des principaux modèles visant à rendre compte de ce phénomène de protection : la réserve cérébrale et la réserve cognitive. L’examen de la littérature empirique amène à la conclusion qu’une meilleure résilience pourrait reposer sur des différences cérébrales à la fois structurelles et fonctionnelles, et donc que les deux modèles proposés pourraient amener une contribution indépendante au phénomène de résilience. Par ailleurs, nous soulevons l’hypothèse que les corrélats de la résilience s’apparentent grandement aux différences cérébrales associées aux entraînements cognitifs. Les trois articles suivants sont des articles empiriques qui s’intéressent à la mémoire de travail, une fonction qui décline avec l’âge, mais qui montre d’importantes différences interindividuelles. L’objectif du second article (Chapitre III) était d’investiguer la relation entre la scolarité, un indicateur de réserve (reserve proxy) bien établi, et le volume régional de la substance grise, ainsi qu’entre la scolarité et les activations cérébrales lors d’une tâche de mémoire de travail chez des participants âgés et cognitivement sains. Les résultats indiquent qu’un nombre d’années de scolarité plus élevé est à la fois associé à une moindre perte de volume liée à l’âge dans les régions frontales et pariétales, ainsi qu’à une plus grande activation liée à l’âge dans certaines régions préfrontales faisant partie du réseau de la mémoire de travail. La troisième étude (Chapitre IV) visait à examiner si les différences cérébrales fonctionnelles associées à la scolarité sont compatibles avec des mécanismes d’efficacité ou de flexibilité neuronale. Elle avait ensuite pour objectif d’examiner l’effet « protecteur » de ces différences fonctionnelles sur le plan de la performance en mémoire de travail. Les résultats suggèrent que les deux mécanismes posés seraient associés à une meilleure préservation de la mémoire de travail face aux effets de l’âge, mais que leur implication respective dépendrait du niveau d’exigence de la tâche. Enfin, l’objectif de la quatrième étude (Chapitre V) était de tester, dans un premier temps, la relation entre l’engagement dans un style de vie stimulant et le maintien de l’intégrité de la substance blanche. Puis, l’étude visait dans un second temps à examiner si une plus grande intégrité de la substance blanche diminuait l’impact de l’âge sur la mémoire de travail. Les résultats de l’étude suggèrent qu’un style de vie plus stimulant serait associé à un moindre volume de lésions de la substance blanche liées à l’âge et que ce moindre volume de lésions de la substance blanche serait en retour associé à de meilleures performances en mémoire de travail. / Many changes to the brain occur in normal aging, both structurally and functionally. These changes most often result in a certain deterioration of cognitive functioning, and thus affect the quality of life of the elderly. It appears, however, that some people are relatively spared and manage to maintain a comparatively high level of cognitive functioning despite advancing in age. In the presence of an acceleration of population aging, there is a striking need to understand the factors and neurobiological mechanisms that may contribute to this better resilience to the effects of aging on the brain and on cognition. Although several models have attempted to account for this phenomenon, the understanding of the mechanisms that underpin it is still relatively incomplete. The main objective of this thesis was to expose the neurobiological correlates associated with a better resilience to the effects of normal aging on the brain and cognition, through structural (MRI) and functional magnetic resonance imaging (fMRI). This thesis contains four articles. The intention of the first article (Chapter II) was to synthesize knowledge about the mechanisms involved in the resilience against the degenerative effects of normal aging on cognition. In this literature review, we were interested in the two main models attempting to account for this protective phenomenon: the brain reserve and cognitive reserve. Examining the empirical literature leads to the conclusion that better resilience might be based on both structural and functional brain differences, and therefore that the two proposed models could make an independent contribution to the resilience phenomenon. In addition, we hypothesize that the correlates of resilience are very similar to the brain differences associated with cognitive training. The following three articles are empirical articles which focus on working memory, a function that declines with age but shows significant inter-individual differences. The purpose of the second article (Chapter III) was to investigate the relationship between education, a well-established reserve proxy, and the regional volume of gray matter, as well as between education and brain activation during a working memory task in cognitively healthy elderly participants. Results indicate that higher years of education are associated with lower age-related loss of volume in the frontal and parietal areas, as well as greater age-related activation in some prefrontal regions that are part of the working memory network. The third study (Chapter IV) sought to examine whether functional education-related brain differences are compatible with neuronal efficiency and/or flexibility mechanisms. It further aimed to examine the "protective" effect of these functional differences on working memory performance. The results suggest that the two proposed mechanisms would be associated with a better preservation of working memory in the face of the effects of age, but that their respective involvement would depend on the level of the task requirement. Finally, the objective of the fourth study (Chapter V) was to first test the relationship between engagement in a stimulating lifestyle and white matter integrity maintaining. Then, the study aimed to examine whether greater white matter integrity decreased the impact of age on working memory. The results of the study suggest that a more stimulating lifestyle would be associated with a lesser age-related white matter lesions volume, and that this smaller white matter lesions volume would in turn be associated with better working memory performance.

Page generated in 0.0964 seconds