Spelling suggestions: "subject:"impedanz"" "subject:"bioimpedanz""
21 |
Integrated nanoscaled detectors of biochemical speciesSchütt, Julian 02 October 2020 (has links)
Rapid and reliable diagnostics of a disease represents one of the main focuses of today’s academic and industrial research in the development of new sensor prototypes and improvement of existing technologies. With respect to demographic changes and inhomogeneous distribution of the clinical facilities worldwide, especially in rural regions, a new generation of miniaturized biosensors is highly demanded offering an easy deliverability, low costs and sample preparation and simple usage. This work focuses on the integration of nanosized electronic structures for high-specific sensing applications into adequate microfluidic structures for sample delivery and liquid manipulation.
Based on the conjunction of these two technologies, two novel sensor platforms were prototyped, both allowing label-free and optics-less electrochemical detection ranging from molecular species to eukaryotic micron-sized human cells.:Table of Figures
List of Tables
Abbreviations
List of Symbols
1 Introduction
1.1 Motivation
1.2 State of the art
1.3 Scope of this thesis
2 Fundamentals
2.1 Sensors at the nanoscale
2.2 Transistors technology
2.2.1 p-n junction
2.2.3 The MOSFET
2.2.4 The ISFET and BioFET
2.3 Impedance measurements for biodetection
2.3.1 Electrical impedance spectroscopy
2.3.2 Electrical impedance cytometry
2.4 Microfluidics
2.4.1 Definition
2.4.2 Droplet-based microfluidics
2.5 Biomarkers for sensing applications
2.5.1 Peripheral blood mononuclear cells (PBMCs)
2.5.2 Physical parameters
3. Material and methods
3.1 General
3.1.1 Materials and chemicals
3.1.2 Surface cleaning
3.2 Lithography
3.2.1 Electron beam lithography
3.2.2 Laser lithography
3.2.3 UV lithography
3.2.4 Soft lithography
3.3 Thermal deposition of metals
3.4 APTES functionalization
3.4.1 Fluorescent labeling of APTES
3.5 Measurement devices
3.5.1 SiNW FET measurements
3.5.2 Electrical Impedance cytometry measurements
3.6 Bacteria and cell cultivation
3.6.1 PBMC purification and treatment
3.6.2 Bacteria cultivation
4. Compact nanosensors probe microdroplets
4.1 Overview
4.2 Fabrication
4.2.1 SiNW FET fabrication
4.2.2 SiNW FET modification for top-gate sensing
4.3 Electrical characterization
4.4 Flow-focusing droplet generation
4.4.1 Flow-focusing geometry
4.4.2 Flow-focusing droplet characterization
4.4.3 Microfluidic integration
4.5 Deionized water droplet sensing
4.6 Phosphate-buffered saline (PBS) droplet sensing
4.6.1 Influence of the droplet’s ionic concentration
4.6.2 Plateau formation in dependence of the droplet’s settling time
4.6.3 Droplet analysis by their ratio
4.6.4 Dependence on pH value
4.6.5 Long time pH sensing experiment
4.6.6 Dependence on ionic concentration
4.7 Tracking of reaction kinetics in droplets
4.7.1 Principle and setup of the glucose oxidase (GOx) enzymatic test
4.7.2 GOx enzymatic assay
4.8 Stable baseline by conductive carrier phase
5. Impedance-based flow cytometer on a chip
5.1 Overview
5.2 Overview of the fabrication of the sensor device
5.3 COMSOL simulation of sensing area
5.3.1 Prototyping of the sensing geometry
5.3.2 Optimization of the sensing geometry
5.3.3 Evaluation of the working potential
5.3.4. Scaling of the sensing area
5.4 Fabrication of the nanoelectronic sensing structure
5.4.1 Nanofabrication and analysis
5.4.2 Evaluation of the proximity effect
5.5 Microcontacting of nanostructured sensing structures
5.6 Electrical characterization of the sensing structure
5.6.1 Characterization in alternating current
5.6.2 Characterization in direct current (DC)
5.7 Scaling effect of nanostructures in static sensing conditions
5.8 Multi-analyte detection on the sensor
5.9 Microfluidic focusing system
5.9.1 1D focusing using FITC-probed deionized water
5.9.2 2D Focusing using fluorescent microparticles
5.10 Microfluidic integration of the two technologies
5.11 Dynamic SiO2 particle detection
5.11.1 Single particle detection
5.11.2 Scatter plot representation
5.11.3 Effect of the sensing area in dynamic particle detection
5.11.4 Dynamic detection of SiO2 particles with different diameters
5.12 Detection of peripheral blood mononuclear cells (PBMCs)
5.12.1 Overview
5.12.2 PBMC classification detected by impedance cytometry
5.12.3 PBMC Long-time detection
5.13 Detection of acute myeloid leukemia by impedance cytometry
5.13.1 Manual analysis of the output response
5.13.2 Learning algorithm for automatic cell classification
5.14 Exploring the detection limit of the device
6. Summary and outlook
Scientific output
References
Acknowledgements / Rasche und zuverlässige biologische Krankheitsdiagnostik repräsentiert eines der Hauptfokusse heutiger akademischer und industrieller Forschung in der Entwicklung neuer Sensor-Prototypen und Verbesserung existierender Technologien. In bezug auf weltweite demographische Änderungen und hohe Distanzen zu Kliniken, besonders in ländlichen Gegenden, werden zusätzliche Anfordungen an neue miniaturisierte Biosensor-Generationen gestellt, wie zum Beispiel ihre Transportfähigkeit, geringe Kosten und Probenpräparation, sowie
einfache Handhabung. Diese Dissertation beschäftigt sich mit der Integration nanoskalierter Strukturen zur Detektion chemischer und biologischer Spezies und mikrofluidischen Kanälen zu deren Transport und zur Manipulation der Ströme. Basierend auf der Verbindung dieser beiden Technologien wurden zwei Sensor-Plattformen entwickelt, die eine markierungsfreie und nicht-optische elektrische Detektion von Molekülen bis zu eukaryotischen menschlichen Zellen erlauben.:Table of Figures
List of Tables
Abbreviations
List of Symbols
1 Introduction
1.1 Motivation
1.2 State of the art
1.3 Scope of this thesis
2 Fundamentals
2.1 Sensors at the nanoscale
2.2 Transistors technology
2.2.1 p-n junction
2.2.3 The MOSFET
2.2.4 The ISFET and BioFET
2.3 Impedance measurements for biodetection
2.3.1 Electrical impedance spectroscopy
2.3.2 Electrical impedance cytometry
2.4 Microfluidics
2.4.1 Definition
2.4.2 Droplet-based microfluidics
2.5 Biomarkers for sensing applications
2.5.1 Peripheral blood mononuclear cells (PBMCs)
2.5.2 Physical parameters
3. Material and methods
3.1 General
3.1.1 Materials and chemicals
3.1.2 Surface cleaning
3.2 Lithography
3.2.1 Electron beam lithography
3.2.2 Laser lithography
3.2.3 UV lithography
3.2.4 Soft lithography
3.3 Thermal deposition of metals
3.4 APTES functionalization
3.4.1 Fluorescent labeling of APTES
3.5 Measurement devices
3.5.1 SiNW FET measurements
3.5.2 Electrical Impedance cytometry measurements
3.6 Bacteria and cell cultivation
3.6.1 PBMC purification and treatment
3.6.2 Bacteria cultivation
4. Compact nanosensors probe microdroplets
4.1 Overview
4.2 Fabrication
4.2.1 SiNW FET fabrication
4.2.2 SiNW FET modification for top-gate sensing
4.3 Electrical characterization
4.4 Flow-focusing droplet generation
4.4.1 Flow-focusing geometry
4.4.2 Flow-focusing droplet characterization
4.4.3 Microfluidic integration
4.5 Deionized water droplet sensing
4.6 Phosphate-buffered saline (PBS) droplet sensing
4.6.1 Influence of the droplet’s ionic concentration
4.6.2 Plateau formation in dependence of the droplet’s settling time
4.6.3 Droplet analysis by their ratio
4.6.4 Dependence on pH value
4.6.5 Long time pH sensing experiment
4.6.6 Dependence on ionic concentration
4.7 Tracking of reaction kinetics in droplets
4.7.1 Principle and setup of the glucose oxidase (GOx) enzymatic test
4.7.2 GOx enzymatic assay
4.8 Stable baseline by conductive carrier phase
5. Impedance-based flow cytometer on a chip
5.1 Overview
5.2 Overview of the fabrication of the sensor device
5.3 COMSOL simulation of sensing area
5.3.1 Prototyping of the sensing geometry
5.3.2 Optimization of the sensing geometry
5.3.3 Evaluation of the working potential
5.3.4. Scaling of the sensing area
5.4 Fabrication of the nanoelectronic sensing structure
5.4.1 Nanofabrication and analysis
5.4.2 Evaluation of the proximity effect
5.5 Microcontacting of nanostructured sensing structures
5.6 Electrical characterization of the sensing structure
5.6.1 Characterization in alternating current
5.6.2 Characterization in direct current (DC)
5.7 Scaling effect of nanostructures in static sensing conditions
5.8 Multi-analyte detection on the sensor
5.9 Microfluidic focusing system
5.9.1 1D focusing using FITC-probed deionized water
5.9.2 2D Focusing using fluorescent microparticles
5.10 Microfluidic integration of the two technologies
5.11 Dynamic SiO2 particle detection
5.11.1 Single particle detection
5.11.2 Scatter plot representation
5.11.3 Effect of the sensing area in dynamic particle detection
5.11.4 Dynamic detection of SiO2 particles with different diameters
5.12 Detection of peripheral blood mononuclear cells (PBMCs)
5.12.1 Overview
5.12.2 PBMC classification detected by impedance cytometry
5.12.3 PBMC Long-time detection
5.13 Detection of acute myeloid leukemia by impedance cytometry
5.13.1 Manual analysis of the output response
5.13.2 Learning algorithm for automatic cell classification
5.14 Exploring the detection limit of the device
6. Summary and outlook
Scientific output
References
Acknowledgements
|
22 |
Design and evaluation of a portable device for the measurement of bio-impedance cardiographyShi, Qinghai, Heinig, Andreas, Kanoun, Olfa 29 March 2011 (has links)
Electrical impedance of biological matter is known as electrical bio-impedance or simply as bio-impedance. Bio-impedance devices are of great value for monitoring the pathological and physiological status of biological tissues in clinical and home environments. The technological progress in instrumentation has significantly contributed to the progress that has been observed during the last past decades in impedance spectroscopy and electrical impedance cardiograph. Although bio-impedance is not a physiological parameter, the method enables tissue characterization and functional monitoring and can contribute to the monitoring of the health status of a person. In this paper an inexpensive portable multi frequency impedance cardiograph device based on impedance spectroscopy technique has been developed. By means of this system the basic thoracic impedance range and the heart-action-caused changes of impedance can be measured and the hemodynamic parameters of the heart function can be determined. This system has small size and low current consumption. The impedance cardiograph signals of the electrodes configuration by Sramek, Penney and Qu in this work was measured; compared and summarized. The differences of the measuring method, the schematic circuit diagram, the measurement results and area of application between impedance cardiograph and impedance spectroscopy were discussed and compared. The performance of this sensor-system was evaluated.
|
23 |
Corrosion Stability of Metallic Materials in Dentistry as Studied with Electrochemical Impedance MeasurementsLiu, Dan, Xie, Xuan, Holze, Rudolf 20 June 2019 (has links)
The corrosion susceptibility of selected metallic materials frequently employed in prosthetic dentistry has been examined with electrochemical methods. Results have been compared with data derived from breakthrough potential measurements performed with these materials before. Mostly agreement and/or close correlation were found, discrepancies are discussed and tentatively assigned to the different experimental conditions.
|
24 |
Impedance Sensors for Fast Multiphase Flow Measurement and ImagingDa Silva, Marco Jose 11 August 2008 (has links)
Multiphase flow denotes the simultaneous flow of two or more physically distinct and immiscible substances and it can be widely found in several engineering applications, for instance, power generation, chemical engineering and crude oil extraction and processing. In many of those applications, multiphase flows determine safety and efficiency aspects of processes and plants where they occur. Therefore, the measurement and imaging of multiphase flows has received much attention in recent years, largely driven by a need of many industry branches to accurately quantify, predict and control the flow of multiphase mixtures. Moreover, multiphase flow measurements also form the basis in which models and simulations can be developed and validated. In this work, the use of electrical impedance techniques for multiphase flow measurement has been investigated. Three different impedance sensor systems to quantify and monitor multiphase flows have been developed, implemented and metrologically evaluated. The first one is a complex permittivity needle probe which can detect the phases of a multiphase flow at its probe tip by simultaneous measurement of the electrical conductivity and permittivity at up to 20 kHz repetition rate. Two-dimensional images of the phase distribution in pipe cross section can be obtained by the newly developed capacitance wire-mesh sensor. The sensor is able to discriminate fluids with different relative permittivity (dielectric constant) values in a multiphase flow and achieves frame frequencies of up to 10 000 frames per second. The third sensor introduced in this thesis is a planar array sensor which can be employed to visualize fluid distributions along the surface of objects and near-wall flows. The planar sensor can be mounted onto the wall of pipes or vessels and thus has a minimal influence on the flow. It can be operated by a conductivity-based as well as permittivity-based electronics at imaging speeds of up to 10 000 frames/s. All three sensor modalities have been employed in different flow applications which are discussed in this thesis. The main contribution of this research work to the field of multiphase flow measurement technology is therefore the development, characterization and application of new sensors based on electrical impedance measurement. All sensors present high-speed capability and two of them allow for imaging phase fraction distributions. The sensors are furthermore very robust and can thus easily be employed in a number of multiphase flow applications in research and industry.
|
25 |
Methods and Results of Power Cycling Tests for Semiconductor Power DevicesHerold, Christian 19 January 2023 (has links)
This work intends to enhance the state of the research in power cycling tests with statements on achievable measurement accuracy, proposed test bench topologies and recommendations on improved test strategies for various types of semiconductor power devices.
Chapters 1 and 2 describe the current state of the power cycling tests in the context of design for reliability comprising applicable standards and lifetime models.
Measurement methods in power cycling tests for the essential physical parameters are explained in chapter 3. The dynamic and static measurement accuracy of voltage, current and temperature are discussed. The feasibly achievable measurement delay tmd of the maximal junction temperature Tjmax, its consequences on accuracy and methods to extrapolate to the time point of the turn-off event are explained. A method to characterize the thermal path of devices to the heatsink via measurements of the thermal impedance Zth is explained.
Test bench topologies starting from standard setups, single to multi leg DC benches are discussed in chapter 4. Three application-closer setups implemented by the author are explained. For tests on thyristors a test concept with truncated sinusoidal current waveforms and online temperature measurement is introduced. An inverter-like topology with actively switching IGBTs is presented. In contrast to standard setups, there the devices under test prove switching capability until reaching the end-of-life criteria. Finally, a high frequency switching topology with low DC-link voltage and switching losses contributing significantly to the overall power losses is presented providing new degrees of freedom for setting test conditions.
The particularities of semiconductor power devices in power cycling tests are thematized in chapter 5. The first part describes standard packages and addressed failure mechanisms in power cycling. For all relevant power electronic devices in silicon and silicon carbide, the devices’ characteristics, methods for power cycling and their consequences for test results are explained.
The work is concluded and suggestions for future work are given in chapter 6.:Abstract 1
Kurzfassung 3
Acknowledgements 5
Nomenclature 10
Abbreviations 10
Symbols 12
1 Introduction 19
2 Applicable Standards and Lifetime Models 25
3 Measurement parameters in power cycling tests 53
4 Test Bench Topologies 121
5 Semiconductor Power Devices in Power Cycling 158
6 Conclusion and Outlook 229
References 235
List of Publications 253
Theses 257 / Diese Arbeit bereichert den Stand der Wissenschaft auf dem Gebiet von Lastwechseltests mit Beiträgen zu verbesserter Messgenauigkeit, vorgeschlagenen Teststandstopologien und verbesserten Teststrategien für verschiedene Arten von leistungselektronischen Bauelementen. Kurzgefasst der Methodik von Lastwechseltests.
Das erste Themengebiet in Kapitel 1 und Kapitel 2 beschreibt den aktuellen Stand zu Lastwechseltests im Kontext von Design für Zuverlässigkeit, welcher in anzuwendenden Standards und publizierten Lebensdauermodellen dokumentiert ist.
Messmethoden für relevante physikalische Parameter in Lastwechseltests sind in Kapitel 3. erläutert. Zunächst werden dynamische und statische Messgenauigkeit für Spannung, Strom und Temperaturen diskutiert. Die tatsächlich erreichbare Messverzögerung tMD der maximalen Sperrschichttemperatur Tjmax und deren Auswirkung auf die Messgenauigkeit der Lastwechselfestigkeit wird dargelegt. Danach werden Methoden zur Rückextrapolation zum Zeitpunkt des Abschaltvorgangs des Laststroms diskutiert. Schließlich wird die Charakterisierung des Wärmepfads vom Bauelement zur Wärmesenke mittels Messung der thermischen Impedanz Zth behandelt.
In Kapitel 4 werden Teststandstopologien beginnend mit standardmäßig genutzten ein- und mehrsträngigen DC-Testständen vorgestellt. Drei vom Autor umgesetzte anwendungsnahe Topologien werden erklärt. Für Tests mit Thyristoren wird ein Testkonzept mit angeschnittenem sinusförmigem Strom und in situ Messung der Sperrschichttemperatur eingeführt. Eine umrichterähnliche Topologie mit aktiv schaltenden IGBTs wird vorgestellt. Zuletzt wird eine Topologie mit hoch frequent schaltenden Prüflingen an niedriger Gleichspannung bei der Schaltverluste signifikant zur Erwärmung der Prüflinge beitragen vorgestellt. Dies ermöglicht neue Freiheitsgrade um Testbedingungen zu wählen.
Die Besonderheiten von leistungselektronischen Bauelementen werden in Kapitel 5 thematisiert. Der erste Teil beschreibt Gehäusetypen und adressierte Fehlermechanismen in Lastwechseltests. Für alle untersuchten Bauelementtypen in Silizium und Siliziumkarbid werden Charakteristiken, empfohlene Methoden für Lastwechseltests und Einflüsse auf Testergebnisse erklärt.
Die Arbeit wird in Kapitel 6 zusammengefasst und Vorschläge zu künftigen Arbeiten werden unterbreitet.:Abstract 1
Kurzfassung 3
Acknowledgements 5
Nomenclature 10
Abbreviations 10
Symbols 12
1 Introduction 19
2 Applicable Standards and Lifetime Models 25
3 Measurement parameters in power cycling tests 53
4 Test Bench Topologies 121
5 Semiconductor Power Devices in Power Cycling 158
6 Conclusion and Outlook 229
References 235
List of Publications 253
Theses 257
|
26 |
Physical Approach to Ferroelectric Impedance Spectroscopy: The Rayleigh ElementSchenk, T., Hoffman, M., Pešić, M., Park, M. H., Richter, C., Schroeder, U., Mikolajick, T. 05 October 2022 (has links)
The Rayleigh law describes the linear dependence of the permittivity of a ferroelectric on the applied ac electric field amplitude due to irreversible motions of domain walls. We show that this gives rise to a new equivalent-circuit element predestined to fit the impedance spectra of ferroelectrics based on an accepted physical model. Such impedance spectroscopy is a powerful tool to obtain a dielectric and resistive representation of the entire sample structure. The superiority of the Rayleigh analysis based on impedance spectroscopy compared to the common single-frequency approach is demonstrated for a ferroelectric Si : HfO₂ thin film
|
27 |
Der Einfluss der hydraulischen Impedanz auf die Prognose und lokale Hämodynamik femoro-infrainguinaler RekonstruktionenHeise, Michael 14 April 2004 (has links)
Durch die intraoperative Anwendung der extrakorporalen Bypassflow-Messung wurde zum ersten Mal die Messung und Berechnung der hydraulischen Impedanz möglich. Von den in der vorgelegten Untersuchung berücksichtigten Variablen des hydraulischen Impedanzkonzeptes zeigte sich, dass die Phasenverschiebung zwischen Druck- und Flusskurven, gemessen als erster Impedanzphasenwinkel, die größte klinische Bedeutung hatte. Mit Hilfe der Phasenverschiebung wurde die Langzeitprognose von femoro-poplitealen und insbesondere cruralen Bypässen eindeutig vorhersagbar. Sämtliche Bypässe zu Ausstromgebieten, die einen hohen Wellenwiderstand von < -40° aufwiesen, waren innerhalb von 16 Monaten nach der Operation verschlossen. Das Verhalten der Impedanzparameter nach Prostaglandinapplikation bestätigte die bisherigen tierexperimentellen Erfahrungen. Durch die induzierte Vasodilatation kam es neben der Senkung des linearen Strömungswiderstandes auch zu einem deutlichen Abfall des pulsatilen Wellenwiderstandes. Es zeigte sich, dass die isolierte Prostaglandinreaktion ein weiterer Prognosefaktor von cruralen Bypässen war. Sämtliche Rekonstruktionen, die zu Anschlussgefässen geführt wurden, welche keine Prostaglandinreaktion mehr zeigten, waren innerhalb von 9 Monaten postoperativ verschlossen. Hierdurch konnte die Genauigkeit der Vorhersagbarkeit von Bypassverschlüssen noch verbessert werden. Es zeigte sich außerdem in der vorgelegten Studie, dass konventionelle Angiographien weder mit der Prognose der peripheren Rekonstruktionen noch mit den intraoperativ gemessenen linearen oder pulsatilen Widerständen korrelierten. Dieses ist um so mehr von Bedeutung, da die Operationsplanung in der Regel anhand der Angiographien erfolgt. In kritischen Fällen, in denen der periphere Abstrom aufgrund einer schwachen Kontrastierung der Anschlussgefässe nicht sicher zu bestimmen ist, sollten aus diesem Grund zusätzliche dynamische Untersuchungen, wie die farbkodierte Duplexsonographie oder Magnetresonanz-Angiographie erfolgen. Der hohe lineare und pulsatile Widerstand ist zusammen mit der Anastomosengeometrie weiterhin dafür verantwortlich, dass es innerhalb der Anastomosen zu ausgeprägten Flussseparationen kommt. Wie mit Hilfe der Particle Image Velocimetry-Untersuchung gezeigt wurde, finden diese sich innerhalb der klassischen End-zu-Seit-Anastomosen im Bereich der Haube und der Fersenregionen. Darüber hinaus kommt es in Abhängigkeit von der Geometrie zu einer Stagnationszone auf dem Boden der Anastomose. Innerhalb dieser Flussablösungszonen fanden sich Scherstressmuster, die deutlich unterhalb des normalen Wandscherstressniveaus lagen. Zwischen dem Zentralstrom und den Separationszonen ließen sich darüber hinaus Übergangszonen mit deutlich höherem Scherstress nachweisen. Diese Befunde unterstützen die sogenannte low-shear Theorie, welche zur Erklärung der subendothelialen Intimahyperplasie herangezogen wird. Die räumliche Korrelation der typischen Prädilektionsstellen der Intimahyperplasie mit den durch PIV nachgewiesenen Flussablösungen zeigte eine sehr hohe Übereinstimmung. Neben den Hauben- und Fersenseparationen entwickelte sich eine Stagnationszone am Boden des Empfängergefässes. Ein weiterer wichtiger Aspekt in diesem Zusammenhang war der erstmals erhobene Befund, dass in der Übergangszone zwischen Zentralstrom und Separationen normale Wandscherbedingungen vorlagen. Hierbei könnte es sich um das erforderliche Stopsignal für die Endothelzellen handeln, die Stimulation der subendothelialen Myozyten einzustellen. / The intraoperative use of the extracorporeal bypass flow method allowed for the first time measurement and calculation of hydraulic impedance. The phase shift between flow and pressure waves, as represented by the first phase angle, showed a strong correlation to graft patency. All grafts presenting with high impedance values of < -40°, were occluded within 16 month after the operation. The reaction of the impedance parameters following application of prostaglandin E1 correlated with the previously known experimental results. The induced vasodilation led to a significant decrease of the first phase angle. The prostaglandin reaction itself also proved to be a valuable prognostic factor. All reconstructions to a vasculature with a negative prostaglandin reaction were occluded within 9 months after the operation. The prostaglandin response therefore provided an enhancement of the prognostic tools associated with graft patency. In addition it was shown, that the conventional angiographies did not correlate with graft prognosis. This is particularly important, since angiographies are used for the preoperative planning of the operation. In critical cases, additional assessment of runoff by means of duplex sonography or magnetic resonance angiography is necessary. The high pulsatile resistance is responsible for flow separation inside distal anastomoses of peripheral bypasses. Using Particle Image Velocimetry it was shown, that significant separation areas were present at the heel, the hood and the floor of the anastomoses. The shear stress inside these areas was significantly lower than normal wall shear stresses. At the transition between separation and mainstream very high shear stresses were present, which could provide the stop signal for the signal cascades, leading to subendothelial hyperplasia, which leads to graft stenoses.
|
28 |
Experimental Investigations of Bassoon Acoustics / Experimentelle Untersuchung der Akustik des FagottsGrothe, Timo 19 August 2014 (has links) (PDF)
The bassoon is a conical woodwind instrument blown with a double-reed mouthpiece. The sound is generated by the periodic oscillation of the mouthpiece which excites the air column. The fundamental frequency of this oscillation is determined to a large extent by the resonances of the air column. These can be varied by opening or closing tone-holes. For any given tone hole setting a fine-tuning in pitch is necessary during playing. Musicians adjust the slit opening of the double-reed by pressing their lips against the opposing reed blades. These so-called embouchure corrections are required to tune the pitch, loudness and sound color of single notes. They may be tedious, especially if successive notes require inverse corrections. However, such corrections are essential: Due to the very high frequency sensitivity of the human ear playing in tune is the paramount requirement when playing music. This implies, that embouchure actions provide an important insight into a subjective quality assessment of reed wind instruments from the viewpoint of the musician: An instrument requiring only small corrections will be comfortable to play.
Theoretical investigations of the whole system of resonator, reed, and musician by use of a physical model nowadays still seem insufficient with respect to the required precision. Therefore the path of well-described artificial mouth measurements has been chosen here. For the separate treatment of the resonator and the double-reed, existing classical models have been used. Modifications to these models are suggested and verified experimentally. The influence of the musician is incorporated by the lip force-dependent initial reed slit height. For this investigation a measurement setup has been built that allows precise adjustment of lip force during playing. With measurements of the artificial mouth parameters blowing pressure, mouthpiece pressure, volume-flow rate and axial lip position on reed, the experiment is fully described for a given resonator setting represented by an input impedance curve. By use of the suggested empirical model the adjustment parameters can be turned into model parameters. A large data set from blowing experiments covering the full tonal and dynamical range on five modern German bassoons of different make is given and interpreted.
The experimental data presented with this work can be a basis for extending the knowledge and understanding of the interaction of instrument, mouthpiece and player. On the one hand, they provide an objective insight into tuning aspects of the studied bassoons. On the other hand the experiments define working points of the coupled system by means of quasi-static model parameters.
These may be useful to validate dynamical physical models in further studies. The experimental data provide an important prerequisite for scientific proposals of optimizations of the bassoon and other reed wind instruments. It can further serve as a fundament for the interdisciplinary communication between musicians, musical instrument makers and scientists.
|
29 |
Impedimetric Sensor System for Edible Oil Quality AssessmentFendri, Ahmed 18 March 2020 (has links)
The repeated usage of frying oil is hazardous due to the degradation caused by chemical reactions, which happen while heating. The total polar compounds and the free fatty acids are the main two chemical parameters affected by frying. These parameters increase significantly with the use of oil for frying and are reported as reasons for causing serious illnesses like heart diseases.
For this purpose, sensor systems for oil quality assessment are necessary. In fact, changes of the composition due to frying leads to variation of its dielectric parameters. This can be measured using a capacitive sensor and the measurement of its impedance change. The main challenge thereby is that the impedance changes are very small and stray capacitances have a big influence on the measurements.
In this context, this work proposes a sensor system with high accuracy able to detect the small changes that occur in the resistance and capacitance under influence of stry capacitances. Theoretical and simulation studies are carried out for different cap acitive sensors as well as meas urement procedures of its cornp lex imp edance.
The sensor should provide a high sensitivity to relative perrnittivity and the electrical conductiv ity, and at the same time a small size and a high reproducibility. Interdigital electrodes sensor with a suitable design fulfils all these requirements.
A deep consideration of stray capacitances is needed to realize an accurate sensor system. For t hese reasons, the design of the measurement circuit is crucial within this work. We propose, a measurernent circuit based on a combinat ion of the method of capacitance to voltage conversion and the phase shift measurement method. By cornbining both rnethods together it is possible to rneasure accurate ly the complex irnpedance of edible oil. Experimental results show that measurement systern is capable to detect small changes of dielectric parameters, which are correlated to the chemical parameters. / Die mehrfach wiederholte Verwendung von Frittieröl ist aufgrund der Qualitätsver schlechterung, die während des Erhitzens auftreten durch chemische Reaktionen verursacht wird, gefährlich für die Gesundheit. Die totale polaren Kompon enten und die freien Fettsäuren sind die zwei wichtigsten chemischen Komponenten, die wesentlich durch das Braten beeinflusst werden. Diese Komponenten erhöhen sich signifikant mit der Wiederverwendung von Bratöl und verursachen u. a. ernste Herzkrankheiten.
Diese Arbeit zielt darauf hin, ein mobiles, kostengünstiges, einfach zu verwenden des Sensorsystem für die Abschätzung der Ölqualität zu entwickeln. Das System charakterisiert die Veränderung der elektrischen Parameter des Öls durch Messung der Änderung seiner komplexen elektrischen Eigenschaft en.
In dieser Arbeit wurde ein Sensorelement mit interdigitalen Elektroden entwickelt, der eine hohe Empfindlichkeit auf die relative Permittivität und die elektrischen Leitfähigkeit des Öls hat und dabei einer hohe Reproduzierbarkeit erzielen kann.
Es wird ein Messverfahren vorgeschlagen, das auf der Wandlung in einer Spannung und einer Phasenverschiebung basiert. Sowohl durch theoretische Überlegungen als auch durch Simulationen konnte belegt werden, dass die Kombination beider Metho den eine akkurate Messung der Komplexem Imped anz hochdielektrischer Materia lien ermöglichen kann. Experiment elle Ergebnisse zeige n, dass das Messsystem in der Lage ist , kleine Änderungen der dielektrischen Parameter zu erfassen, die mit den chemischen Ölparamtern stark korrelieren.
|
30 |
Experimental Investigations of Bassoon AcousticsGrothe, Timo 03 June 2014 (has links)
The bassoon is a conical woodwind instrument blown with a double-reed mouthpiece. The sound is generated by the periodic oscillation of the mouthpiece which excites the air column. The fundamental frequency of this oscillation is determined to a large extent by the resonances of the air column. These can be varied by opening or closing tone-holes. For any given tone hole setting a fine-tuning in pitch is necessary during playing. Musicians adjust the slit opening of the double-reed by pressing their lips against the opposing reed blades. These so-called embouchure corrections are required to tune the pitch, loudness and sound color of single notes. They may be tedious, especially if successive notes require inverse corrections. However, such corrections are essential: Due to the very high frequency sensitivity of the human ear playing in tune is the paramount requirement when playing music. This implies, that embouchure actions provide an important insight into a subjective quality assessment of reed wind instruments from the viewpoint of the musician: An instrument requiring only small corrections will be comfortable to play.
Theoretical investigations of the whole system of resonator, reed, and musician by use of a physical model nowadays still seem insufficient with respect to the required precision. Therefore the path of well-described artificial mouth measurements has been chosen here. For the separate treatment of the resonator and the double-reed, existing classical models have been used. Modifications to these models are suggested and verified experimentally. The influence of the musician is incorporated by the lip force-dependent initial reed slit height. For this investigation a measurement setup has been built that allows precise adjustment of lip force during playing. With measurements of the artificial mouth parameters blowing pressure, mouthpiece pressure, volume-flow rate and axial lip position on reed, the experiment is fully described for a given resonator setting represented by an input impedance curve. By use of the suggested empirical model the adjustment parameters can be turned into model parameters. A large data set from blowing experiments covering the full tonal and dynamical range on five modern German bassoons of different make is given and interpreted.
The experimental data presented with this work can be a basis for extending the knowledge and understanding of the interaction of instrument, mouthpiece and player. On the one hand, they provide an objective insight into tuning aspects of the studied bassoons. On the other hand the experiments define working points of the coupled system by means of quasi-static model parameters.
These may be useful to validate dynamical physical models in further studies. The experimental data provide an important prerequisite for scientific proposals of optimizations of the bassoon and other reed wind instruments. It can further serve as a fundament for the interdisciplinary communication between musicians, musical instrument makers and scientists.:1 Introduction 1
1.1 Motivation 1
1.2 Scientific Approaches to Woodwind Musical Instruments 3
1.3 Organization of the Thesis 6
2 Acoustical Properties of the Bassoon Air Column 7
2.1 Wave propagation in tubes 7
2.1.1 Theory 7
2.1.2 Transmission Line Modeling 8
2.1.3 Implementation 18
2.1.4 Remarks on Modeling Wall Losses in a Conical Waveguide 19
2.2 Input Impedance Measurement 23
2.2.1 Principle 23
2.2.2 Device 23
2.2.3 Calibration and Correction 24
2.3 Comparison of Theory and Experiment 27
2.3.1 Repeatability and Measurement Uncertainty 27
2.3.2 Comparison of numerical and experimental Impedance Curves 32
2.4 Harmonicity Analysis of the Resonator 35
2.4.1 The Role of the Resonator 35
2.4.2 The reed equivalent Volume 35
2.4.3 Harmonicity Map 36
2.5 Summary 38
3 Characterization of the Double Reed Mouthpiece 41
3.1 Physical Model of the Double-Reed 41
3.1.1 Working Principle 41
3.1.2 Structural Mechanical Characteristics 42
3.1.3 Fluid Mechanical Characteristics 44
3.2 Measurement of Reed Parameters 49
3.2.1 Quasi-stationary Measurement 49
3.2.2 Dynamic Measurement 50
3.3 Construction of an Artificial Mouth 52
3.3.1 Requirements Profile 52
3.3.2 Generic Design 53
3.3.3 The artificial Lip 54
3.3.4 Air Supply 55
3.3.5 Sensors and Data Acquisition 57
3.3.6 Experimental setup 59
3.4 Summary 59
4 Modeling Realistic Embouchures with Reed Parameters 61
4.1 Reed Channel Geometry and Flow Characteristics 61
4.1.1 The Double-Reed as a Flow Duct 61
4.1.2 Bernoulli Flow-Model with Pressure Losses 65
4.1.3 Discussion of the Model 68
4.2 Quasi-static Interaction of Flow and Reed-Channel 72
4.2.1 Pressure-driven Deformation of the Duct Intake 72
4.2.2 Reed-Flow Model including Channel Deformation 75
4.2.3 Influence of Model Parameters 76
4.2.4 Experimental Verification 78
4.3 Effect of the Embouchure on the Reed-Flow 81
4.3.1 Adjustment of the Initial Slit Height 81
4.3.2 Quasi-static Flow in the Deformed Reed-Channel 83
4.3.3 Simplified empirical Model including a Lip Force 85
4.4 Summary 93
5 Survey of Performance Characteristics of the Modern German Bassoon
5.1 Experimental Procedure and Data Analysis 95
5.1.1 Description of the Experiment 95
5.1.2 Time Domain Analysis 97
5.1.3 Spectral Analysis – Period Synchronized Sampling 98
5.1.4 Spectral Centroid and Formants 99
5.1.5 Embouchure parameters 100
5.2 Observations on the Bassoon under Operating Conditions 105
5.2.1 Excitation Parameter Ranges 106
5.2.2 Characteristics of the radiated Sound 110
5.2.3 Reed Pressure Waveform Analysis 115
5.2.4 Summarizing Overview 118
5.3 Performance Control with the Embouchure 120
5.3.1 Register-dependent Embouchure Characteristics 120
5.3.2 Intonation Corrections 123
5.3.3 Sound Color Adjustments 127
5.3.4 Relation to the acoustical Properties of the Resonator 129
5.4 Summary 137
6 Conclusion 139
6.1 Summary 139
6.2 Outlook 141
|
Page generated in 0.039 seconds