• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 31
  • 15
  • 5
  • Tagged with
  • 51
  • 35
  • 35
  • 21
  • 20
  • 20
  • 15
  • 10
  • 9
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Acoustic Simulation and Characterization of Capacitive Micromachined Ultrasonic Transducers (CMUT)

Klemm, Markus 10 April 2017 (has links)
Ultrasonic transducers are used in many fields of daily life, e.g. as parking aids or medical devices. To enable their usage also for mass applications small and low- cost transducers with high performance are required. Capacitive, micro-machined ultrasonic transducers (CMUT) offer the potential, for instance, to integrate compact ultrasonic sensor systems into mobile phones or as disposable transducer for diverse medical applications. This work is aimed at providing fundamentals for the future commercialization of CMUTs. It introduces novel methods for the acoustic simulation and characterization of CMUTs, which are still critical steps in the product development process. They allow an easy CMUT cell design for given application requirements. Based on a novel electromechanical model for CMUT elements, the device properties can be determined by impedance measurement already. Finally, an end-of-line test based on the electrical impedance of CMUTs demonstrates their potential for efficient mass production.
42

Impedance measurement in a hydrostatic drive

Müller, Benedikt, Baum, Heiko 25 June 2020 (has links)
Pressure oscillation in hydrostatic drive trains can cause noise and damage to components. They impair function and reliability. The visualization of the oscillation mode helps to clarify the causal relationships in the hydrostatic drive train and is a basis for the development of remedial measures. Analysis of the pressure oscillation situation, however, can only be carried out in the complete system, since line branching and the impedance of the hydrostats have an influence on the resonance frequencies and the oscillation modes. If only the line length between the components is considered in the pressure oscillation analysis, neither the calculated frequencies nor the position of the pressure antinodes where possible remedial measures are to be placed are correct. This paper presents the metrological determination of the impedance of a hydrostat on a functional test bench (“mobile impedance measurement”) and the preparation of the measurement data for the subsequent simulative pressure oscillation analysis of a hydraulic drive train.
43

Energieversorgung autarker Sensorsysteme im industriellen Umfeld durch kinetische Energiewandler mit Schwerpunkt auf dem elektrostatischen Wandlerprinzip

Schaufuß, Jörg 12 November 2013 (has links)
In der vorliegenden Arbeit wird die Entwicklung eines kinetischen Energy Harvesters vorgestellt, der auf Grundlage des elektrostatischen Wandlerprinzips aus Vibrationen elektrische Energie generiert. Für die Umsetzung wurde eine Siliziummikrostruktur entworfen, die für Arbeitsfrequenzen unter 100 Hz ausgelegt ist. Die Zahnstruktur der verwendeten Elektroden ermöglicht Spaltabstände im Submikrometerbereich und folglich große Kapazitätsänderungen, die durch die Elektrodengeometrie zusätzlich mit einer höheren Frequenz als die mechanische Bewegung stattfinden. Vergleichsweise große Leistungsausbeuten und geringe Quellimpedanzen sind dadurch erreichbar. Die geometrischen Parameter der Elektroden wurden unter Berücksichtigung der auftretenden Fertigungstoleranzen und Wechselwirkungen zueinander optimiert. Für die Ausnutzung einer ausreichend großen Inertialmasse wurde ein feinwerktechnisch hergestellter Hebelmechanismus an die Mikrostruktur angekoppelt. Über diesen wird zusätzlich ein neuer Ansatz zur Abstimmung der Eigenfrequenz des Harvesters umgesetzt. Experimentelle Untersuchungen zeigten Ausgangsleistungen im einstelligen Mikrowattbereich bei Anregungen im Zehntel m/s²-Bereich. Durch fortschreitende Optimierungen der Fertigungstechnologie sind noch deutliche Leistungssteigerungen um mindestens zwei Größenordnungen möglich. Weiterhin wird ein Energiemanagementsystem vorgestellt, welches die effiziente Übertragung der Energie auf den Verbraucher ermöglicht. / In this work the development of a kinetic energy harvester using the electrostatic conversion principle is presented. The silicon microstructure is designed to work in frequency ranges below 100Hz. Its toothed electrode structure enables gap distances in the sub micrometer range and consequently high changes of capacitance. Additionally, due to the electrode geometry the frequency of the capacitance changes is higher then the frequency of the mechanical movement. Thus high power outputs and low source impedances can be reached. The electrodes geometric parameters were optimized considering manufacturing tolerances and interactions of the parameters. To reach a sufficient inertial mass, a lever mechanism manufactured by precision engineering was connected to the microstructure. This mechanism also allows the implementation of a new method of frequency tuning. In experimental tests power outputs in the single digit microwatt range under excitations of 0.3 m/s² were reached. In accordance of further optimizations of the manufacturing technology significantly higher outputs, by at least two orders of magnitude, are possible,. Furthermore an energy management system is presented, that allows the efficient transfer of the electrical energy to the consumer.
44

Temperaturbestimmung an IGBTs und Dioden unter hohen Stoßstrombelastungen / Temperature measurement of IGBTs and Diodes under high surge current loads

Simon, Tom 03 June 2015 (has links) (PDF)
Diese Arbeit beschäftigt sich mit drei verschiedenen Temperaturmessmethoden VCE, VGTH sowie über die Messung der thermsichen Impedanz mit 10ms langen Lastimpulsen und vergleicht die Messergebnisse mit zwei Simulatoren. Dabei wird ein Schaltungs- sowie ein Halbleitersimulator verwendet und das bisherige Simulationsmodell angepasst.
45

Conductive Domain Walls in Ferroelectric Bulk Single Crystals / Leitfähige Domänenwände in ferroelektrischen Einkristallen

Schröder, Mathias 13 May 2014 (has links) (PDF)
Ferroic materials play an increasingly important role in novel (nano-)electronic applications. Recently, research on domain walls (DWs) received a big boost by the discovery of DW conductivity in bismuth ferrite (BiFeO3 ) and lead zirconate titanate (Pb(Zrx Ti1−x )O3) ferroic thin films. These achievements open a realistic and unique perspective to reproducibly engineer conductive paths and nanocontacts of sub-nanometer dimensions into wide-bandgap materials. The possibility to control and induce conductive DWs in insulating templates is a key step towards future innovative nanoelectronic devices [1]. This work focuses on the investigation of the charge transport along conductive DWs in ferroelectric single crystals. In the first part, the photo-induced electronic DC and AC charge transport along such DWs in lithium niobate (LNO) single crystals is examined. The DC conductivity of the bulk and DWs is investigated locally using piezoresponse force microscopy (PFM) and conductive AFM (c-AFM). It is shown that super-bandgap illumination (λ ≤ 310 nm) in combination with (partially) charged 180° DWs increases the DC conductivity of the DWs up to three orders of magnitude compared to the bulk. The DW conductivity is proportional to the charge of the DW given by its inclination angle α with respect to the polar axis. The latter can be increased by doping the crystal with magnesium (0 to 7 mol %) or reduced by sample annealing. The AC conductivity is investigated locally utilizing nanoimpedance microscopy (NIM) and macroscopic impedance measurements. Again, super-bandgap illumination increases the AC conductivity of the DWs. Frequency-dependent measurements are performed to determine an equivalent circuit describing the domains and DWs in a model system. The mixed conduction model for hopping transport in LNO is used to analyze the frequency-dependent complex permittivity. Both, the AC and DC results are then used to establish a model describing the transport along the conductive DW through the insulating domain matrix material. In the last part, the knowledge obtained for LNO is applied to study DWs in lithium tantalate (LTO), barium titanate (BTO) and barium calcium titanate (BCT) single crystals. Under super-bandgap illumination, conductive DWs are found in LTO and BCT as well, whereas a domain-specific conductivity is observed in BTO.
46

In-Vitro Biological Tissue State Monitoring based on Impedance Spectroscopy / Untersuchung der Stromanregung zur Überwachung der menschlichen Gesundheit und des biologischen Gewebes

Guermazi, Mahdi 04 May 2017 (has links) (PDF)
The relationship between post-mortem state and changes of biological tissue impedance has been investigated to serve as a basis for developing an in-vitro measurement method for monitoring the freshness of meat. The main challenges thereby are the reproducible measurement of the impedance of biological tissues and the classification method of their type and state. In order to realize reproducible tissue bio-impedance measurements, a suitable sensor taking into account the anisotropy of the biological tissue has been developed. It consists of cylindrical penetrating multi electrodes realizing good contacts between electrodes and the tissue. Experimental measurements have been carried out with different tissues and for a long period of time in order to monitor the state degradation with time. Measured results have been evaluated by means of the modified Fricke-Cole-Cole model. Results are reproducible and correspond to the expected behavior due to aging. An appropriate method for feature extraction and classification has been proposed using model parameters as features as input for classification using neural networks and fuzzy logic. A Multilayer Perceptron neural network (MLP) has been proposed for muscle type computing and the age computing and respectively freshness state of the meat. The designed neural network is able to generalize and to correctly classify new testing data with a high performance index of recognition. It reaches successful results of test equal to 100% for 972 created inputs for each muscle. An investigation of the influence of noise on the classification algorithm shows, that the MLP neural network has the ability to correctly classify the noisy testing inputs especially when the parameter noise is less than 0.6%. The success of classification is 100% for the muscles Longissimus Dorsi (LD) of beef, Semi-Membraneous (SM) of beef and Longissimus Dorsi (LD) of veal and 92.3% for the muscle Rectus Abdominis (RA) of veal. Fuzzy logic provides a successful alternative for easy classification. Using the Gaussian membership functions for the muscle type detection and trapezoidal member function for the classifiers related to the freshness detection, fuzzy logic realized an easy method of classification and generalizes correctly the inputs to the corresponding classes with a high level of recognition equal to 100% for meat type detection and with high accuracy for freshness computing equal to 84.62% for the muscle LD beef, 92.31 % for the muscle RA beef, 100 % for the muscle SM veal and 61.54% for the muscle LD veal. / Auf der Basis von Impedanzspektroskopie wurde ein neuartiges in-vitro-Messverfahren zur Überwachung der Frische von biologischem Gewebe entwickelt. Die wichtigsten Herausforderungen stellen dabei die Reproduzierbarkeit der Impedanzmessung und die Klassifizierung der Gewebeart sowie dessen Zustands dar. Für die Reproduzierbarkeit von Impedanzmessungen an biologischen Geweben, wurde ein zylindrischer Multielektrodensensor realisiert, der die 2D-Anisotropie des Gewebes berücksichtigt und einen guten Kontakt zum Gewebe realisiert. Experimentelle Untersuchungen wurden an verschiedenen Geweben über einen längeren Zeitraum durchgeführt und mittels eines modifizierten Fricke-Cole-Cole-Modells analysiert. Die Ergebnisse sind reproduzierbar und entsprechen dem physikalisch-basierten erwarteten Verhalten. Als Merkmale für die Klassifikation wurden die Modellparameter genutzt.
47

Temperaturbestimmung an IGBTs und Dioden unter hohen Stoßstrombelastungen

Simon, Tom 16 April 2015 (has links)
Diese Arbeit beschäftigt sich mit drei verschiedenen Temperaturmessmethoden VCE, VGTH sowie über die Messung der thermsichen Impedanz mit 10ms langen Lastimpulsen und vergleicht die Messergebnisse mit zwei Simulatoren. Dabei wird ein Schaltungs- sowie ein Halbleitersimulator verwendet und das bisherige Simulationsmodell angepasst.:Aufgabenstellung Inhaltsverzeichnis Nomenklatur Einleitung 1. Grundlagen 1.1. Halbleitermaterialien 1.2. Dioden Grundlagen 1.2.1. pn-Übergang 1.2.2. Temperaturabhängigkeit der Diffusionsspannung des pn-Übergangs 1.2.3. Diodenstrukturen 1.3. IGBT Grundlagen 1.3.1. Funktionsweise und ESB 1.3.2. Statisches Verhalten des IGBTs 1.4. Messtechnische Bestimmung der virtuellen Sperrschichttemperatur 1.4.1. VCE(T)- und VGth(T)-Methode 1.4.2. Temperaturreferenzmessung – Kalibrierkennlinie 1.4.3. Wurzel(t)-Methode 1.5. Simulation der virtuellen Sperrschichttemperatur mittels thermischer Ersatzschaltbilder 1.5.1. Thermische Kenngrößen Rth, Cth 1.5.2. Transiente thermische Impedanz Zth 1.5.3. Ersatzschaltbild – Cauer-Netzwerk 1.6. Simulation der virtuellen Sperrschichttemperatur mittels Halbleitersimulator 1.7. Stoßstromereignisse 2. Vormessungen 2.1. Prüflinge 2.2. Messung der Sperrfähigkeit 2.2.1. Testaufbau – Schaltung 2.2.2. Testergebnisse 2.3. Messung des Ausgangskennlinienfeldes/ Durchlassmessungen 2.3.1. Testaufbau – Schaltung 2.3.2. Testergebnisse 2.4. Messung der Transferkennlinie 2.4.1. Testaufbau – Schaltung 2.4.2. Testergebnisse 2.4.3. Bestimmung des “pinch-off”-Bereiches 2.5. Aufnahme der Kalibrierkennlinien 2.5.1. Testaufbau – Schaltung 2.5.2. Testergebnisse 3. Temperaturbestimmung mittels thermischer Impedanz Zth 3.1. Testaufbau – Schaltung 3.2. Testergebnisse 4. Temperaturbestimmung am Stoßstrommessplatz 4.1. Ermittlung der Halbleitertemperatur nach einem Stoßstromereignis 4.1.1. Anpassung des Stoßstrommessplatzes 4.1.2. Pulsmuster VCE(T)-, VGth(T)-Messung 4.1.3. Testergebnisse 4.2. Ermittlung des Halbleitertemperaturverlaufes während des Stoßstromereignisses 4.2.1. Testaufbau - Schaltung 4.2.2. Pulsmuster VCE(T)-, VGth(T)-Messung 4.2.3. Testergebnisse 5. Simulation der Temperaturverläufe 5.1. Temperatursimulation mittels Halbleitersimulator 5.2. Temperatursimulation mittels Cauer-Netzwerk 5.3. Angepasste Temperatursimulation mittels Cauer-Netzwerk 6. Zusammenfassung und Ausblick Anhang Literaturverzeichnis Selbstständigkeitserklärung Danksagung
48

Conductive Domain Walls in Ferroelectric Bulk Single Crystals

Schröder, Mathias 07 March 2014 (has links)
Ferroic materials play an increasingly important role in novel (nano-)electronic applications. Recently, research on domain walls (DWs) received a big boost by the discovery of DW conductivity in bismuth ferrite (BiFeO3 ) and lead zirconate titanate (Pb(Zrx Ti1−x )O3) ferroic thin films. These achievements open a realistic and unique perspective to reproducibly engineer conductive paths and nanocontacts of sub-nanometer dimensions into wide-bandgap materials. The possibility to control and induce conductive DWs in insulating templates is a key step towards future innovative nanoelectronic devices [1]. This work focuses on the investigation of the charge transport along conductive DWs in ferroelectric single crystals. In the first part, the photo-induced electronic DC and AC charge transport along such DWs in lithium niobate (LNO) single crystals is examined. The DC conductivity of the bulk and DWs is investigated locally using piezoresponse force microscopy (PFM) and conductive AFM (c-AFM). It is shown that super-bandgap illumination (λ ≤ 310 nm) in combination with (partially) charged 180° DWs increases the DC conductivity of the DWs up to three orders of magnitude compared to the bulk. The DW conductivity is proportional to the charge of the DW given by its inclination angle α with respect to the polar axis. The latter can be increased by doping the crystal with magnesium (0 to 7 mol %) or reduced by sample annealing. The AC conductivity is investigated locally utilizing nanoimpedance microscopy (NIM) and macroscopic impedance measurements. Again, super-bandgap illumination increases the AC conductivity of the DWs. Frequency-dependent measurements are performed to determine an equivalent circuit describing the domains and DWs in a model system. The mixed conduction model for hopping transport in LNO is used to analyze the frequency-dependent complex permittivity. Both, the AC and DC results are then used to establish a model describing the transport along the conductive DW through the insulating domain matrix material. In the last part, the knowledge obtained for LNO is applied to study DWs in lithium tantalate (LTO), barium titanate (BTO) and barium calcium titanate (BCT) single crystals. Under super-bandgap illumination, conductive DWs are found in LTO and BCT as well, whereas a domain-specific conductivity is observed in BTO.
49

Analyse einer mit PbS-Nanopartikeln sensibilisierten Injektionssolarzelle mittels elektrochemischer und frequenzmodulierter Verfahren / Characterisation of a PbS Nanoparticle sensitized Injection Solar Cell by means of Electrochemical and Frequency-modulated Methods

Krüger, Susanne 17 January 2012 (has links)
In the latter half of the 20th century the first active environmentalist movements such as Greenpeace and the International Energy Agency were born and initiated a gradual rethinking of environmental awareness. Against all expectations the sole agency under international law for climate protection policy, called the United Nations Framework Convention on Climate Change, was formed 20 years later. Today the awareness of sustained, regenerative and environmental policies permeates throughout all areas of life, science and industry. But energy provision is the most decisive topic, especially since the discussions concerning the phase out of nuclear power where the voices calling for alternative energy sources have become much more vociferous. In addition the depletion of fossil fuels is expected to occur in the not too distant future. All new energy generation methods are required to meet the present and future energy demands, need to be ecological and need to exhibit the same or significantly lower cost expenditure than current energy sources. Unfortunately mankind is confronted with the problem that current commercial alternative energies are more expensive and not yet remotely as efficient as the present energy sources. Although energy provision based on water, wind, sun and geothermal sources have a huge potential because of their continuous presence, unfortunately, they are plagued by inefficient energy conversion caused by the state of technology i.e. the conversion of sun light into electricity loses energy through heat emission, reflection of the sun light, the inability of the material to absorb the entire sun spectrum and the ohmic losses in the transmission of electric current. The sun power is the most exhaustless resource and moreover through photovoltaic action, one of the most direct and cleanest source for use in energy conversion. Presently incoming sun light is not transformed in its entirely, as much degradation occurs during photon absorption and electron transfer processes. A number of other innovative possibilities have also been researched. With respect to cost and efficiency one of the most promising devices is injection solar cells (ISC). By dint of the dye sensitised solar cell (DSSC) Grätzels findings provided the foundations for much research into this type of solar cell where the light absorbing molecule employed in is a dye.[1] The current is obtained through charge separation in the dye, which is initiated through the connection between the dye and a metal oxide on the one hand and a matched redox couple on the other. In a variant of the DSSC the charge separation processes can also occur between a nanoporous metal oxide and nanoparticles giving rise to a quantum dot sensitised solar cell (QDSSC).[2] The use of nanoparticle (NP) properties can be utilized for the harvesting of solar energy, as demonstrated by Kamat and coworkers[3] who were able to exploit these findings subsequently and prepare a number of nanoparticle based solar cells. Nanoparticle research has comprised a wide field of science and nanotechnology for a number of years. As the size of a material approaches dimensions on the nm scale the surface properties contribute proportionally more to the sum of the properties than the volume due to the increase in the surface to volume ratio. These dimensions also constitute a threshold in which quantum physical effects need to be taken into account. Hence the properties of devices or materials in this size regime are inevitably size dependent. The basic principles can be described by two different theories, one of which is based on molecular orbital theory in which the particle is treated as a molecule. For this reason n atomic orbitals with the same symmetry and energy can build up n molecular orbitals through their linear combination based on the LCAO method (Linear Combination of Atomic Orbitals).[4] In the case of solids the orbitals build up energy bands, where the unoccupied states form the quasi continous conduction band (CB) and the occuppied states form the quasi continous valence band (VB). The energy \"forbidden\" area in between these two bands is called the band gap. The band gap is a fixed material property for bulk solids but depends on size in the case of the nanoparticles. In contrast to the LCAO method, simplified solid state theory will be used throughout the present work, the theoretical background of which is provided by the effective mass approximation.[5] When an absorption of a photon occurs, an exciton (electron-hole pair) can be generated. By promoting an electron (e-) from the valence band into the conduction band a hole (h+) may be said to remain in the valence band. By comparison to bulk solids, in a small particle the free charges can sense the potential barrier i.e. the edges of the nanoparticle. Analogous to the particle in a box model this potential barrier interaction results in an increase in the band gap as the particle size decreases. In a solar cell NPs with a particle size which possess a band gap energy in the near infrared (NIR) may be utilised and therefore the NPs will be able to absorb in this spectral region. However NPs also have the ability to absorb higher energy photons due to the continuum present in their band structure, so that almost the entire sun spectral range from the NIR up to UV wavelengths may be absorbed just by using the appropriate NP material and size. Suitable NPs are metal chalcogenides e.g. MX (where M = cadmium, zinc or lead and X = sulfur, selenium or tellurium) because of their bandgap size[6–10] and their relative band positions compared to those of the semiconductor oxide states. Both the TiO2/CdSe[11–14] and TiO2/CdTe[15–18] systems have already been successfully fabricated and many of the anomalies reported.[3] Much interest in the lead chalcogenides has been generated by reports that they may feature the possibility to exhibit multiple exciton generation (MEG) where the absorption of one high energy photon can result in more than one electron-hole pairs.[19–25] Currently electrochemical impedance spectroscopy (EIS) is being used more and more to clarify processes at polarisable surfaces and materials such as nanoparticles. Likewise this method has been rediscovered in photovoltaic research and its use in the characterisation of DSSCs has been discussed in the literature.[26–31] In a number of publications the evaluation of nanoporous and porous structures has been quite extensively explored.[28,29,32–34] Since the mid-20th century Jaffé’s[35] theoretical work concerning the steady- state ac response of solid and liquid systems lead to the formation of the basics of EIS. Further developments in the measurement technology have lead to a broader range of analysis becoming possible. Nevertheless the most challenging part still remains the interpretation of the results and especially to merge the measured data with the theoretical model. EIS quantifies the changes in a small ac current response at electrode electrolyte interfaces i.e. the rate at which the polarized domain will respond, when an ac potential is applied. In this way dielectric properties of materials or composites, such as charge transfers, polarization effects, charge recombination and limitations can be measured as a function of frequency and mechanistic information may be unveiled. Hence EIS allows one to draw a conclusion concerning chemical reactions, surface properties as well as interactions between the electrodes and the electrolyte. Other very useful tools that may be employed for quantifying electron transfer processes and their time domains are intensity modulated photocurrent spectroscopy (IMPS) and intensity modulated photovoltage spectroscopy (IMVS). IMPS permits the generation of time-resolved plots of particular photo-processes in the system, each of which may be specifically addressed through varying the excitation wavelength. For the IMPS technique a sinusoidal wave with a small amplitude is applied, analogous to that of electrochemical impedance spectroscopy, but in this case the modulation is applied to a light source and not to the electrochemical cell as in EIS.[35] The current response is associated with the photogenerated charge carriers which flow through the system and finally discharge into the circuit. The amount of generated and discharged charge carriers is often different due to the presence of recombination and capture processes in surface or trap states. Ultimately the phase shift and magnitude of these currents reveal the kinetics of such processes. The only processes that will be addressed will be those that occur in the same frequency domain or on the same time scale as that of the modulated frequency of the illuminated light. In the literature some explanation of the kinetics of simple systems can be found and basic theories and introductive disquisitions may be found elsewhere.[36–38] Furthermore in solar cell research a multiplicity of studies are available which give an account of IMPS measurements on TiO2 nanoporous structures. Such studies permitted proof for the electron trapping and detrapping mechanism in TiO2 surface states.[39,40] An analysis of TiO2 electrodes combined with a dye sensitization step was established in the work of Peter and Ponomarev.[41–43] Hickey et.al.[44,45] have previously published kinetic studies on CdS nanoparticle (NP) modified electrodes. A theory was presented which allows for the IMPS data to be the interpreted in the case of CdS NP based electrodes. The back transfer, recombination and surface states have been demonstrated to be important as was determined from their inclusion in the theory. Similar attempts to explain the kinetics of CdS quantum dots are described by Bakkers et.al.[46]. In the present work the most important questions concern the behaviour of the photovoltaic assembly. Such assemblies can be equated with an electrode in contact with an electrolyte. Preliminary remarks about such electrodes as components of an electrochemical cell will be introduced in the first part of chapter 2. Thereafter the properties of electrodes in contact with the electrolyte and under illuminated conditions are illustrated. This is followed by a description of the important electrochemical and opto-electrochemical methods which have been employed in these studies. In particular, two separate subsections are dedicated to the methods of EIS and IMPS and the experimental section which are then linked to the theoretical section. The synthesis of all substances used and the preparation of the solar cell substrates are also dealt with in this section as will the equipment used and the instrument settings employed. The optical response of the working photoactive electrode is not only dependent on the substances used but also on their arrangement and linkage. The substrate which was employed in chapter 3 consists of a nanoporous ZnO gel layer upon which an organic linker has been placed in order to connect the oxide layer with the light absorbing component, the PbS NPs. Chapter 3 deals with the linker dependence on the ZnO layer and reports the typical optical characteristics and assembly arrangements of six different linkers on the ZnO layer which is an important intermediate stage in the fabrication of an ISC. The questions concerning how the type of linking affects the photo response and other electrochemical interactions of the complete solar cell substrate will be outlined in chapter 4. Further an examination of the electrochemical and opto-electrochemical behaviours of the samples will be presented similar to that presented in chapter 3. The most interesting substrate resulting from the investigations as described in chapter 3 and 4 will be used for a more in-depth characterisation by EIS in chapter 5. A suitable model and the results of the calculation of the ISC and the intermediate stages will be presented. The potential dependence, the dependence on the illuminated wavelength and also the size dependence of the PbS nanoparticles will be discussed. It will be revealed that ZnO is chemically unstable in contact with some of the linkers. For that reason the same linker study has been repeated with the more stable TiO2 employed as the wide band metal oxide. Comparisons between the different semiconductor metal oxides are made in chapter 6. In addition a number of open questions which previously had remained unanswered due to the instability of the ZnO can now be answered. In chapter 7 another highly porous structure different from that of the ZnO gel structure has been studied to determine its suitability as an ISC substrate. The structure arises from the electrodeposition of a ZnO reactant in the presence of eosin Y dye molecules. In the end the desorption of the dye provides a substrate with a high degree of porosity. Compared to the ZnO gel which was prepared and used for measurements in chapter 3 and 4, the electrodeposited ZnO is of a higher crystallinity and possesses a more preferential orientation. This results in a lower amount of grain boundaries which in turn results in fewer trap processes and subsequently yields a higher effective diffusion of the electron through the layer.[47,48] Optical and (opto-)electrochemical methods have been used for the basic characterisation of the untreated ZnO/Eosin Y and all other materials used in the fabrication of the ISC and a comparison with the ZnO gel used in chapter 3 and 4 will be made. Finally in chapter 8 an alternative metal oxide structure will be discussed. The background to this last chapter is to examine the influence of the ISC where the oxidic layer is present as a highly periodic arrangement, known as a photonic crystal. The TiO2 metal oxide which was also used in chapter 6 has been structured to form an inverse opal. First preparative findings and the first illustration of the (opto-)electrochemical results are presented. Consequently suggestions for improvements will be made. It is envisaged that the information gathered and presented here will help to achieve a deeper understanding of solar cells and help to improve the device efficiency and the interplay of the materials. Elementary understanding paves the way for further developments which can also contribute to providing devices for more efficient energy conversion.:Contents List of Abbreviations vii Legend of Symbols ix 1 Introduction and Motivation 1 2 Theoretical and Experimental Introduction 7 2.1 Basics of the (Opto-)Electrochemistry . . . . . . . . . . . . . . . . 7 2.1.1 Electrode-Electrolyte Interface Non-Illuminated . . . . . . 8 2.1.2 Electrode-Electrolyte Interface Under Illumination . . . . . 10 2.1.3 The Processes in the Injection Solar Cell (ISC) . . . . . . . 12 2.1.4 Cyclic Voltammetry (CV) . . . . . . . . . . . . . . . . . . 15 2.1.5 Chronoamperometry (CA) . . . . . . . . . . . . . . . . . . 16 2.1.6 Incident Photon to Current Conversion Efficiency (IPCE) . 16 2.1.7 Electrochemical Impedance Spectroscopy (EIS) . . . . . . 17 2.1.8 Intensity Modulated Photocurrent Spectroscopy (IMPS) . 21 2.2 Experimental . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.2.1 Synthesis of ZnO Sol-Gel . . . . . . . . . . . . . . . . . . . 23 2.2.2 Synthesis of TiO2 Sol-Gel . . . . . . . . . . . . . . . . . . 24 2.2.3 Preparation of the ZnO/Eosin Y Substrate . . . . . . . . . 24 2.2.4 Syntheses and Preparation of the Inverse Opal . . . . . . . 25 2.2.5 The Syntheses for PbS Nanoparticle . . . . . . . . . . . . . 26 2.2.6 Preparation of the PbS Coated Substrates . . . . . . . . . 30 2.2.7 Preparation of the ISC . . . . . . . . . . . . . . . . . . . . 31 2.2.8 Material Characterisations and Instrument Settings . . . . 33 3 The Linker Attachment on a ITO/ZnO Substrate 37 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.2 The ITO/ZnO Film . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.2.1 The ZnO Layer and the ITO/ZnO Substrate Preparation . 40 3.2.2 The ZnO Structure as a Function of the Sintering Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.3 The Linker on the ITO/ZnO Film . . . . . . . . . . . . . . . . . . 48 3.3.1 The Linker Orientation on the ZnO layer . . . . . . . . . . 48 3.3.2 The Linker Interaction with the ZnO Gel . . . . . . . . . . 52 3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 4 The PbS Sensitized ITO/ZnO/linker Substrate 59 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 4.2 The ITO/ZnO/Linker/PbS Substrate . . . . . . . . . . . . . . . . 61 4.2.1 Spectroscopic Evidence for PbS on the ITO/ZnO/Linker Substrate . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 4.2.2 The Cyclic Voltammetry Study on the Substrates . . . . . 63 4.2.3 The Opto-Electrochemistry on the Substrates . . . . . . . 70 4.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 5 The EIS Study of the ITO/ZnO/MPA/PbS Substrate 75 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 5.2 The Substrate Assembly . . . . . . . . . . . . . . . . . . . . . . . 77 5.3 The Substrate Characteristics . . . . . . . . . . . . . . . . . . . . 78 5.4 The Model for the EIS Analysis . . . . . . . . . . . . . . . . . . . 83 5.5 The Results of EIS Data Fitting . . . . . . . . . . . . . . . . . . . 86 5.5.1 The EIS Results of the FTO/ZnO Substrate . . . . . . . . 86 5.5.2 The EIS Results of the FTO/ZnO/MPA Substrate . . . . 89 5.5.3 The EIS Results of the FTO/ZnO/MPA/PbS Substrate . . 92 5.5.4 The EIS Results for Shorter Illumination Wavelength . . . 96 5.5.5 The Resistance of the Linker . . . . . . . . . . . . . . . . . 111 5.6 General Remarks on the Modelling . . . . . . . . . . . . . . . . . 112 5.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 6 TiO2 based Injection solar Cell 119 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 6.2 The ITO/TiO2 Film . . . . . . . . . . . . . . . . . . . . . . . . . 121 6.3 The Linker and PbS Attachment on the ITO/TiO2 Substrate . . . 123 6.4 The Cyclic Voltammetry Study on the Substrates . . . . . . . . . 125 6.4.1 The Linker Sensitized ITO/TiO2 Film . . . . . . . . . . . 125 6.4.2 The ITO/TiO2/Linker/PbS Substrate . . . . . . . . . . . 126 6.5 The Opto-Electrochemistry on the Substrates . . . . . . . . . . . 127 6.6 Comparison Between ZnO and TiO2 Based ISCs . . . . . . . . . . 129 6.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 7 ZnO-Eosin Y based Injection Solar Cell 135 7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 7.2 The FTO/ZnO-Ey Film . . . . . . . . . . . . . . . . . . . . . . . 137 7.3 The PbS Attachment to the FTO/ZnO-Ey Film . . . . . . . . . . 137 7.4 The Cyclic Voltammetry Study on the Substrates . . . . . . . . . 140 7.5 The Opto-Electrochemistry on the Substrates . . . . . . . . . . . 142 7.5.1 The Linear Sweep Voltammetry (LSV) Study on the Substrates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 7.5.2 The IPCE Measurements on the Substrates . . . . . . . . 144 7.5.3 The Photo Transient Measurements on the Substrates . . . 145 7.6 Comparison between ZnO and ZnO-Ey based ISC . . . . . . . . . 146 7.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 8 Injection Solar Cell meets Photonic Crystal 151 8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 8.2 The Opal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 8.3 The Inverse Opal . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 8.4 The Inverse Opal based ISC . . . . . . . . . . . . . . . . . . . . . 159 8.4.1 The Substrate Characteristics . . . . . . . . . . . . . . . . 159 8.4.2 The Cyclic Voltammetry . . . . . . . . . . . . . . . . . . . 160 8.4.3 The Opto-Electrochemistry . . . . . . . . . . . . . . . . . 161 8.4.4 The EIS Measurements . . . . . . . . . . . . . . . . . . . . 163 8.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 9 Overall Conclusion 167 10 Outlook 173 Bibliography I A Acknowledgement XXV B Erklärung XXVII
50

Aufbau des Schockwellenlabors im Lehr- und Forschungsbergwerk 'Reiche Zeche' der TU Bergakademie Freiberg und die Entwicklung von dynamischen Höchstdrucksynthesemethoden

Schlothauer, Thomas 30 January 2024 (has links)
In dieser Arbeit werden folgende Arbeiten vorgestellt: ● Aufbau eines Schockwellenlabors für unterschiedliche Einsatzzwecke für eine Nettoexplosivmasse von bis zu 20 kg, bezogen auf NSH 711 (C4 nach MIL-Standard), ● Klärung der Ursachen des Probenverlustes bei Schockwellensyntheseexperimenten ab Überschreitung eines gewissen materialabhängigen Grenzdruckes unter Verwendung von in der Literatur vorgegebenen Standardmethoden sowie eine wissenschaftlich fundierte Prob-lembehebung auf der Basis empirischer Theorien, ● Berechnung der Zustandsgrößen Druck (p), Temperatur (T) sowie Zeit (t) unter den ge-wählten Versuchsbedingungen für unterschiedliche Problemstellungen und Materialien mit Kontrollmöglichkeiten sowie ● Gewährleistung des maximal möglichen Phasenumwandlungsgrades für die entsprechende Hochdruckphase. Insgesamt wurden im Verlauf der Entwicklungsarbeiten im Schockwellenlabor 122 Spren-gungen durchgeführt. Die Drücke betragen dabei zwischen 15 GPa und ca. 180 GPa. Es gelangen zahlreiche erfolgreiche Synthesen der Hochdruckphasen gamma-Si3N4 sowie rs-AlN mit Probenmengen von 0,2g bis zu 7,3g Hochdruckphase pro Versuch. Es wurden auf Basis der Rankine-Hugoniot-Zustandsgleichung drei empirische Grundprinzipien der Schockwellensynthese entwickelt, welche es nunmehr gestatten, die Schockwellenversuche reproduzierbar sowie gut kontrollierbar zu gestalten. Dies sind die „Vermeidung von Mach-Effekten“, die „Impedanzkorrektur der Probeneinheit“ sowie die „Kontrolle der adiabatischen Dekompression“. In mehr als 100 Experimenten, welche mit der impedanzkorrigierten Probeneinheit durchgeführt wurden, trat in keinem Fall Probenverlust auf, Gasdichtheit konnte teilweise hergestellt werden. Dies war unabhängig von dem erreichten Druck oberhalb des technisch bedingten Mindestdruckes von 15 GPa innerhalb der Probeneinheit möglich. Es wurden Versuche sowohl mit der Reflektionsmethode als auch mit der Impedanzmethode durchgeführt sowie für besondere Experimente dünne Metallplatten zwischen Flugplatte und Containeroberseite verwendet. In allen genannten Fällen sind die unterschiedlichen Druck- und Temperaturbedingungen in den Proben eindeutig verifizierbar. Weiterhin gelang es im Rahmen dieser Arbeit erstmals, sowohl Calciumcarbonat als auch Kaolinit (sogenannte fluidreiche Phasen) bis in den Druckbereich p> 100 GPa unter unterschiedlichen Temperaturen dynamisch zu belasten, ohne dass die empfindlichen Proben Ent-gasungs- bzw. Zerfallserscheinungen (Calcit) bzw. Aufschmelzungen (Kaolinit) aufwiesen. Besonderes Augenmerk ist dabei auf die Schocktemperatur zu richten, um den Druckaufbau nicht durch eine zu starke Aufheizung der Probe zu reduzieren (sogenanntes Knudson-Problem). Jede zukünftige Erhöhung des Druckes macht gleichzeitig eine Reduzierung der relativen Schocktemperatur erforderlich. Diese experimentellen Erfolge sind lediglich in dem Falle möglich, wenn im Schockwellenlabor folgende Grenzbedingungen eingehalten werden: ● Die Schockgeschwindigkeit Us ist größer als die Schallgeschwindigkeit des betreffenden Stoffes. ● Die erzielten Drücke sind höher als das Hugoniot-Elastic-Limit des betreffenden Stoffes und somit im Bereich des plastischen Verhaltens. ● Die maximale Porosität k des Impedanzpulvers ist kleiner als die Mie-Grüneisen-Grenze des betreffenden Stoffes. ● Die maximalen Drücke sind geringer als der Bulk-Modulus des betreffenden Stoffes und die Schallgeschwindigkeit im dichten Medium ist größer als die Schockgeschwindigkeit (Bereich der so genannten „schwachen Schockwellen“). ● Es wird ein Impedanzpulver-Probe-Verhältnis von >9:1 verwendet. ● Weiterhin stellt für die Schockwellensyntheseexperimente unter Vermeidung der freien adiabatischen Dekompression die Schocktemperatur (die Temperatur im Bereich des konstanten Druckes) die ausschlaggebende Größe dar. Für die Berechnung wurde entschieden, die Software MatLab zu verwenden. Die Berechnungen folgen den Grundlagen der linearen Algebra. Für die Berechnung der Zustandsgleichung wurden im Rahmen dieser Arbeit folgende vereinfachende Annahmen verifiziert: ● Unter den genannten Bedingungen gilt der lineare Zusammenhang zwischen Partikelge-schwindigkeit Up und Schockgeschwindigkeit Us. ● Unter den Bedingungen des Freiberger Schockwellenlabors sind die Unterschiede zwischen der gespiegelten Hugoniot und der release-adiabat-Kurve sehr gering, es kann an deren Stelle die gespiegelte Hugoniot verwendet werden. ● Die maximalen Drücke sind niedriger als der Schmelzpunkt auf der Hugoniot, sämtliche in dieser Arbeit dargestellten Berechnungen betreffen die beteiligten Stoffe im festen Zustand. Die impedanzkorrigierte Probeneinheit ist nicht zum Messen von Zustandsgleichungen geeignet, die Methoden „vollständige Probenrückgewinnung“ sowie „Messung der Zustands-gleichung“ schließen sich gegenseitig aus.:Motivation 1 1 Einführung 5 1.1 Das Hochdruckforschungszentrum (FHP) der Dr. Erich-Krüger-Stiftung 5 1.2 Möglichkeiten zur Erzeugung hoher dynamischer Drücke sowie zur Schockwel-lensynthese 24 1.3 Aufgaben des neuen Schockwellenlabors in Freiberg 31 2 Aufbau und Betrieb des neuen untertägigen Schockwellen- labors der TU Bergakademie Freiberg 35 2.1 Sprengarbeiten unter Bergrecht an einer Hochschule 35 2.2 Rechtliche Situation des Schockwellenlabors an der TU Bergakademie Freiberg 39 2.3 Lage und Dimensionierung des Schockwellenlabors 47 2.4 Ausrüstung des Labors 51 3. Physikalische Grundlagen 58 3.1 Verwendete Sprengstoffe 58 3.2 Detonation des Sprengstoffes und die Rankine-Hugoniot- Zustandsgleichung 60 3.2.1 Die Druck-Partikelgeschwindigkeits-Beziehung 64 3.2.2. Die Beziehung zwischen Druck und Differenz der spezifischen Volumina 66 3.2.3. Die Beziehung zwischen Druck und Differenz der spezifischen Inneren Energien 67 3.3 Plane-Wave-Generator (PWG) mit Flyer-Plate 69 3.3.1. Aktiver PWG 73 3.3.2. Passiver PWG 73 3.4 Beschleunigung der Flugplatte 74 3.5 Kollision der Flugplatte mit dem Probencontainer 77 3.6 Mie-Grüneisen-EoS und die Berechnung der Schocktemperatur 82 3.7 Verdichtung poröser Materialien 89 3.8 Schockwellenreflektionen 94 3.8.1 Reguläre Reflektionen 95 3.8.1.1 Reflektion an einer freien Oberfläche sowie adiabatische Dekompression 95 3.8.1.2 Reflektion an einer Materialgrenze 99 3.8.2 Irreguläre Reflektionen (Mach-Effekte) 102 3.9 Impedanzmethode 103 3.10 Reflektionsmethode beziehungsweise „ramp compression“ 107 3.11 Phasenumwandlungen aus schockwellenphysikalischer Sicht 112 4. Detaillierter Aufbau der Versuchsanordnung sowie Funktion der Einzelbestandteile 115 4.1 Versuchsanordnung 115 4.2 Explosiveinheit mit PWG und Arbeitsladung 116 4.2.1 Plane-Wave-Generator 116 4.2.2 Arbeitsladung 120 4.2.3 Flugplatte 122 4.2.4 Schaumstoffeinlage 123 4.2.5 Distanzring 124 4.2.6 Beschleunigung der Flugplatte 124 4.3. Probeneinheit 127 4.3.1 Probencontainer 129 4.3.2 Cu-Folie 131 4.3.3 Metallpulver und Probe 132 4.3.4 Probenhalter 135 4.3.5 Probenstempel 135 4.3.6 Schraubenboden 136 4.3.7 Stahlronde 136 4.3.8 HARDOX‐Unterlage 137 5. Berechnung der Zustandsgleichungen für die Impedanzmethode mit Hilfe der Software MatLab 139 5.1 Randbedingungen 139 5.2 Tests der Möglichkeit der Verwendung der getroffenen Annahmen 142 5.2.1 Gültigkeit der linearen Up‐Us‐Relation anstelle quadratischer Gleichungen 141 5.2.2 Verwendung der gespiegelten Hugoniot anstelle der adiabatischen Entspannungskurve 144 5.3 Berechnung der Hugoniot-EoS für die Kollision der Flugplatte mit dem Probencontainer 145 5.4 Berechnung der Kenngrößen „Druck“ und „Dichte“ für das Metallpulver mit Hilfe der Rankine‐Hugoniot‐EoS 152 5.5 Überprüfung der mit MatLab berechneten Zustandsgrößen 156 5.6 Berechnung der Kenngröße „Schocktemperatur“ für Kupferpulver im festen Zustand mit Hilfe der Mie‐Grüneisen‐EoS 158 5.7 Erstellen des X‐t‐Diagramms sowie Berechnung der Kenngröße „Schockdauer“ mit Hilfe linearer Gleichungssysteme 162 6. Empirisch methodische Weiterentwicklungen der Synthesemethoden 169 6.1 Vermeidung von Mach-Effekten 169 6.2 Impedanzkorrektur der Probeneinheit 173 6.2.1 Zerstörung des Probencontainers infolge ungünstiger Impedanzverhältnisse 173 6.2.2 Die Impedanzfunktion als zeit- und ortsaufgelöster Bestandteil der Hugoniot‐EoS 175 6.2.3 Konsequenzen der orts‐ und zeitabhängigen Impedanz- funktion für die Materialauswahl der Probeneinheit 180 6.3 Die Rolle der adiabatischen Dekompression unter Einbeziehung zusätzlicher Volumina. 183 7. Anwendungen 197 7.1 Untersuchungen des Microjettings 197 7.2 Reflektionsmethode mit Impedanzkorrigierter Probeneinheit und gekapseltem Reflektor 207 7.2.1 Versuchsaufbau 207 7.2.2 Testergebnisse 209 7.2.3 Berechnung der Druck‐ und Temperaturbedingungen für die Reflektionsmethode mit Hilfe der Software MatLab 211 7.2.3.1 Berechnung des p=f(Up)-Diagramms 211 7.2.3.2 Berechnung der Temperatur sowie der Geschwindigkeiten Up und Us 215 7.3 Halidbasierte Schockwellenbeanspruchung fluidreicher Phasen 222 7.4 Synthese von rs-AlN sowie -Si3N4 222 7.5 Upscaling der impedanzkorrigierten Probeneinheit mit vollständiger Probenrückgewinnung 223 7.5.1 Versuchsaufbau 223 7.5.2 Ergebnisse 225 8. Schlussfolgerungen 229 9. Danksagung 234 Literaturverzeichnis 235

Page generated in 0.024 seconds