• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 13
  • 13
  • 9
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Numerical simulation of air injection processes in high pressure light & medium oil reservoirs

Tingas, John January 2000 (has links)
Research, pilot scale and field developments of In-Situ Combustion (ISC) for enhanced oil recovery (EOR) in shallow, low pressure, heavy oil reservoirs intensified between the first and the second oil crisis from 1973 to 1981. A decline of interest in EOR followed the collapse of the oil prices in 1986. Renewed interest on in-situ combustion EOR research in the late 1980’s and beginning of the 1990’s was expanded and focused on high pressure medium and light oil reservoirs. The applicability of air injection in deep high pressure light petroleum reservoirs was established by research work of Greaves et al. in 1987 & 1988, Yannimaras et al. in 1991 and Ramey et a l in 1992. Accelerating rate calorimeter (ARC) tests were used to screen the applicability of various types of light oil reservoirs for in-situ combustion EOR by Yannimaras and Tiffin in 1994. The most successful light oil air injection project in the 1990s in the Medicine Pole Hills Unit, Williston Basin, N. Dakota started in 1987 and was reported by Kumar, Fassihi & Yannimaras, in 1994. Low temperature oxidation of light North Sea petroleum was studied at the University of Bath. A high-pressure combustion tube laboratory system was built at Bath University to evaluate performance of medium and light petroleum in-situ combustion processes. Gravity effects and the impact of horizontal wells in Forced Flow In-Situ Combustion Drainage Assisted by Gravity (FFISCDAG) were studied with three-dimensional combustion experiments. In this study, the university of Bath combustion tube experiments have been simulated and history matched. The tube experiments were up-scaled and field simulation studies were performed. A generic PVT characterization scheme based on 5 hydrocarbon pseudo-components was used, which was validated for light Australian and medium ‘Clair’ oil. A generic chemical reaction characterization scheme was used, which was validated for light Australian and medium ‘Clair’ oil. Advanced PVT and chemical reaction characterizations have been recommended for future work with more powerful hardware platforms. Extensive front track and flame extinction studies were performed to evaluate the performance of currently available non-iso-thermal simulators and to appraise their necessity in air injection processes. Comparative ISC field scale numerical simulation studies of Clair medium oil and light Australian petroleum were based on up-scaled combustion tube experimental results. These studies showed higher than expected hydrocarbon recovery in alternative EOR processes for both pre and post water flood implementation of ISC. Further in this study field scale numerical simulation studies revealed high incremental hydrocarbon recovery was possible by gravity assisted forced flow. The applicability of light oil ISC to gas condensate and sour petroleum reservoirs has been examined in this study with promising results. Light petroleum ISC implemented by a modified water flood including oxidants such as H2O2 and NH4NO3 are expected to widen the applicability of ISC processes in medium and light petroleum reservoirs, especially water flooded North Sea reservoirs.
2

Experimental and analytical study to model temperature profiles and stoichiometry in oxygen-enriched in-situ combustion

Rodriguez, Jose Ramon 30 September 2004 (has links)
A new combustion zone analytical model has been developed in which the combustion front temperature may be calculated. The model describes in the combustion zone, the amount of fuel burned based on reaction kinetics, the fuel concentration and produced gas composition based on combustion stoichiometry, and the amount of heat generated based on a heat balance. Six runs were performed in a 3-inch diameter, 40-inch long steel combustion tube with Jobo crude oil (9-11°API) from the Orinoco Belt in Venezuela. These runs were carried out with air containing three values of oxygen concentration, 21%, 30%, and 40%. The weight percentage of sand, clay, water, and oil in the sand mix was kept constant in all runs at 86.6%, 4.7%, 4.0%, and 4.7% respectively. Injection air rates (3 L/min) as well as the production pressure (300 psig) were kept constant in all runs. The results indicate that the calculated combustion zone temperatures and temperature profiles are in good agreement with the experimental data, for the range of oxygen concentration in the injected air. The use of oxygen-enriched air slightly increased the combustion front temperature from 440°C in a 21 mole % O2 concentration to a maximum of 475°C for air with 40 mole % O2 concentration. Oxygen-enriched air injection also increased the combustion front velocity from 13.4 cm/hr (for 21% oxygen) to 24.7 cm/hr (for 40% oxygen), thus reducing the start of oil production from 3.3 hours (for 21% oxygen) to 1.8 hours (for 40% oxygen). In the field, the use of oxygen-enriched air injection could translate into earlier oil production compared to with not-enriched air injection. The new analytical model for the combustion zone developed in this study will be beneficial to future researchers in understanding the effect of oxygen-enriched in-situ combustion and its implications on the combustion front temperature and combustion front thickness.
3

Experimental Study of In Situ Combustion with Tetralin and Metallic Catalysts

Palmer-Ikuku, Emuobonuvie 16 January 2010 (has links)
Experimental studies showed the feasibility of adding metallic catalysts and tetralin for the upgrade and increased recovery of heavy oil during the in situ combustion process. Further experimental studies also showed the applicability of in situ combustion as a viable method of upgrading and improving recovery of intermediate oils. Three successful experimental runs were performed with heavy oil from Mexico (10.1 degrees API gravity). The first run was the control run without the addition of tetralin or metallic catalysts; the second run used heavy oil premixed with 3 wt% tetralin and 500ppm nickel catalyst; and the third run was with heavy oil premixed with 3 wt% tetralin and 500ppm iron catalyst. For the three runs, the cell production pressure was kept constant at 300 psig. The combustion cell was placed in a vacuum jacket and set to a temperature of 60 degrees C. For the only successful run with the intermediate Texas oil (22.0 degrees API gravity), the production pressure was also kept constant at 300 psig but the vacuum jacket temperature was set to a reservoir temperature of 40oC. During the runs for both oils, samples of produced oils and combustion flue gases were collected at regular intervals for analysis. These analyses included determination of oil viscosity and density, oil recovery, combustion front velocity, and apparent H/C ratio. Experimental results for the intermediate oil run, the oil gravity increased by 6 points showing the upgrading effects of in situ combustion on intermediate oils. Also, the high average combustion temperatures observed during the run indicated that in situ combustion may be applicable to reservoirs of similar characteristics to the intermediate Texas oil reservoir. Heavy oil experimental run results indicated that the use of tetralin and metallic catalysts increase the average combustion front temperature from 484 degrees C to 501 degrees C for the run with nickel catalysts, and from 484 degrees C to 492 degrees C for the run with iron catalysts. These results also show an increase in produced oil recovery from 83% to 90% of oil initially in place for the nickel catalyst run, and 83% to 86% of oil initially in place for the iron catalyst run.
4

Effect of Initial Oil Saturation on In-Situ Combustion Performance of a Canadian Bitumen

Aleksandrov, Denis 16 December 2013 (has links)
In-Situ Combustion (ISC) is a very complex thermal recovery process that is strongly affected by the chemical composition and physical properties of reservoir rock and fluids. Stability of the process depends on the amount of heat continuously generated from the chemical reactions between fuel formed during ISC and injected oxygen. Heat generation depends on the amount of fuel formed, which, in turn, is affected by initial oil saturation (IOS). Thus, in this study, ISC process dynamics were investigated at various saturations on 7.5 °API Peace River bitumen, under 3.4 l/min air injection rate. Through one-dimensional combustion tube experiments higher combustion front temperatures were observed for increased IOS. The degree of bitumen upgrading was determined in terms of viscosity and API gravity changes. Correlations for hydrogen-carbon ratio, air requirement, consumed fuel, and combustion front velocity were obtained. Good burning characteristics of Peace River bitumen resulted in stable self-sustained combustion with 26.01% IOS. However, an experiment with 13.39% IOS failed because of insufficient fuel generation. Furthermore, X-Ray cross-sectional images were taken along the combustion tube after each run to support and enhance the interpretation of experimental results. Particularly, fluctuations in concentrations of produced gas composition were explained with computed tomography (CT) data.
5

Experimental Study of In Situ Combustion with Decalin and Metallic Catalyst

Mateshov, Dauren 2010 December 1900 (has links)
Using a hydrogen donor and a catalyst for upgrading and increasing oil recovery during in situ combustion is a known and proven technique. Based on research conducted on this process, it is clear that widespread practice in industry is the usage of tetralin as a hydrogen donor. The objective of the study is to find a cheaper hydrogen donor with better or the same upgrading performance. Decalin (C10H18) is used in this research as a hydrogen donor. The experiments have been carried out using field oil and water saturations, field porosity and crushed core for porous medium. Four in situ combustion runs were performed with Gulf of Mexico heavy oil, and three of them were successful. The first run was a control run without any additives to create a base for comparison. The next two runs were made with premixed decalin (5 percent by oil weight) and organometallic catalyst (750 ppm). The following conditions were kept constant during all experimental runs: air injection rate at 3.1 L/min and combustion tube outlet pressure at 300 psig. Analysis of the performance of decalin as a hydrogen donor in in-situ combustion included comparison of results with an experiment where tetralin was used. Data from experiments of Palmer (Palmer-Ikuku, 2009) was used for this purpose, where the same oil, catalyst and conditions were used. Results of experiments using decalin showed better quality of produced oil, higher recovery factor, faster combustion front movement and higher temperatures of oxidation. API gravity of oil in a run with decalin is higher by 4 points compared to a base run and increased 5 points compared to original oil. Oil production increased by 7 percent of OOIP in comparison with base run and was 2 percent higher than the experiment with tetralin. The time required for the combustion front to reach bottom flange decreased 1.6 times compared to the base run. The experiments showed that decalin and organometallic catalysts perform successfully in in situ combustion, and decalin is a worthy replacement for tetralin.
6

Etude de la récupération de bruts lourds en réservoir carbonaté fracturé par le procédé de combustion in situ / Study of heavy oil recovery from a fractured carbonate reservoir using in situ combustion

Fadaei, Hossein 04 December 2009 (has links)
Cette thèse présente l'étude du procédé de combustion in situ (CIS) dans un réservoir carbonaté fracturé. Afin de modéliser et de simuler les processus à grande échelle, deux axes principaux sont distinguées, qui correspondent aux petites et grandes échelles. Pour traiter les problèmes à petite échelle, un simulateur commercial de réservoir est utilisé afin d’étudier le processus à l'échelle de la carotte. Tout d'abord, le simulateur est validé pour des procédés simples pour lesquels des solutions analytiques sont disponibles. La validation plus poussée est effectuée en utilisant des résultats expérimentaux publiés dans la littérature. Puis, quelques simulations du système fracturé à l'échelle de la carotte sont effectuées. Le but de ces simulations est d'aborder, la faisabilité du processus CIS dans le système fracturé et de distinguer l'importance relative des divers mécanismes de production pétrolière. Dans l'étape suivante, les tests de tube de combustion et de cellule cinétique sont réalisés, afin de mieux comprendre la physique du processus mais aussi la cinétique de combustion dans un système carbonaté fracturé. Les simulations sont également menées à échelle d'un bloc métrique. Afin d'obtenir la connaissance nécessaire pour le changement d'échelle, des simulations sur plusieurs bloc sont menées et les moyenne des certains paramètres sont estimées. Dans la dernière partie, les conclusions sont présentées et la technique de prise de moyenne est utilisée sur un processus simple (combustion du solide-gaz) afin de donner quelques pistes quant aux enjeux futurs de ce genre de problème. / The aim of the present work is to study the in situ combustion (ISC) process at inter-well scale in a fractured reservoir. Due to the complexity associated with the ISC process, highly heterogeneous nature of the fractured reservoirs and some unsuccessful attempts in the past to put the process into practice, the subject of ISC in fractured systems has been receiving little interest and there are still many essential open questions in this area. It is very challenging to answer the question whether the ISC process could be applied in a heavy oil fractured reservoir or not. And if the answer is positive, what is (are) the dominant oil recovery mechanism(s) and finally, how can we model and simulate this process, at least, at inter-well scale. This work tries to give answers to some of these questions. In this regard, we followed a step by step procedure. In the first step, general literature concerning the combustion process in porous media and particularly that related to the combustion process in an oil reservoir was reviewed. Some other references about the modeling of fracture reservoirs were also reviewed. This led us to distinguish some of the main challenges in this area and define a methodology for the rest of the work. Based on this methodology, the first target was to understand and to characterize the behavior of a combustion front at small (Darcy) scale. The second target was to apply the knowledge of the first part to propose a suitable model for ISC at larger scale. To this end, a commercial thermal reservoir simulator (STARS) was used. The simulator was validated for both simple process for which an analytical solution is available and for a more complex process where the laboratory results are on hand. Then, after the validation part, the numerical tool has been used to widely investigate the conditions where a reaction front can propagate in a fractured core. This allowed us to understand some of the leading mechanisms (oxygen diffusion coefficient for extinction/ propagation of combustion front and matrix permeability for oil production). Some other numerical studies provided us with some understanding about the most important mechanism(s) of oil production. Thereafter, some single block simulations were done to investigate the two-dimensional behavior of the ISC process, based on which the underlying process was found to be diffusion dominated both for heat and mass transfers. These results also helped us to distinguish the characteristic length scale of some important parameters (temperature, coke concentration, combustion front, etc.) which can give useful information about the large scale model. After that, an experimental part has been performed to find propagation conditions of ISC at laboratory scale. This was done by varying both the operational conditions (flowrate, pressure and oxygen concentration) and the characteristics of the fractured system (aperture, surface area, permeability). This permitted us to find that in some suitable conditions there is a possibility to generate a combustion front in a fractured system containing heavy oil. To give an idea about the modeling of the process at larger scale, some fine grid simulations are also performed using a multi-block model. By analyzing the results of this model some guidelines are proposed for the large scale model. At the end, a short discussion about the upscaling of an easy system (solid-gas combustion using an Arrhenius law as a function for the mass sink term in a conductive system) is presented based on an upscaling using the volume averaging method.
7

Etude expérimentale et numérique de la combustion in-situ d’huiles lourdes / Experimental and numerical study of heavy oil in-situ combustion

Lapene, Alexandre 16 March 2010 (has links)
Ce travail de thèse, réalisé en collaboration avec l’IMFT et TOTAL, traite de la modélisation de la combustion in-situ appliquée à une huile lourde Vénézuéliène. Il a été initié suite à une observation simple : même si le procédé est étudié depuis plusieurs décénies, on ne peut pas encore le modéliser correctement. Des résultats expérimentaux, issus d’expérience à l’échelle du laboratoire (tubes à combustions), ne sont pas reproductibles avec des outils numériques commerciaux de types simulateurs réservoirs thermiques. Par conséquent, et face à ce constat, nous avons été contraint d’explorer plusieurs pistes pour améliorer la modélisation du procédé : – La chimie et les méthodes de détermination de mécanismes réactionnels. – La description thermodynamique d’une huile lourde et le calcul d’équilibre triphasique. – Le transport de masse et de chaleur dans un milieu poreux, en situation multiphasique, réactive et miscible. – La conception d’un modèle mathématique et numérique d’un modèle complet. Nous pensons que le problème pluridisciplinaire et fortement complexe peut trouver une réponse si l’ensemble des mécanismes et leurs liens sont traités de façon adéquate. Une campagne expérimentale (expériences de cellules cinétiques), portant sur l’étude des effets de l’eau sur les réactions chimiques de l’huile, a permis de mettre en évidence des effets inattendus et nouveaux. Ces données, complétées par des expériences de types tubes à combustion, fournissent une importante base de données expérimentale. Pour modéliser les expériences de cellules cinétiques, nous avons tout d’abord développer un nouvel outil de simulation directe, reposant sur une description compositionnelle de l’huile où les comportements de toutes les phases sont prédits par les équations d’états. Le calcul d’équilibre est fait grâce à un flash diphasique. Afin de déterminer un mécanisme réactionnel paramétré, nous avons couplé ce dernier outil à un algorithme génétique. Finalement, dans le but de simuler les expériences de tubes à combustion, un nouveau simulateur compositionel, triphasique, thermique et réactif a été développé. Il est spécialement adapté à la simulation de ce genre d’expérience. Le calcul d’équilibre de phase est réalisé grâce à un nouvel outil développé pour l’occasion. Ce dernier repose sur l’hypothèse free water et repose sur une formulation originale et novatrice. / The study of this PhD, realized jointly with IMFT and TOTAL, deals with modeling of in-situ combustion applied to a Venezuelan heavy oil. It has begun with a relatively simple observation: even if the process has been extensively studied since some decades, we cannot correctly model it. Experiment data provided by lab scale experiments (combustion tubes) mismatches numerical results obtained from commercial thermal simulator, especially for wet experiments. The need to better understand the process related to this issue forced us to explore multiple tracks for various scientific fields. Thus, one can cite: • The chemistry and methods of reduction of reactive mechanisms. • The thermodynamic description of the heavy oil and the calculations of three-phase equilibrium. • Heat and mass transport in multiphase, reactive and miscible porous medium. • Mathematical and numerical design of a full model. The problem exceedingly complex can find a complete and consistent answer if one takes into account the whole mechanisms and links between them. We have followed this way in order to determine a robust reactive scheme using both theoretical numerical and experimental developments. A whole set of kinetic cell manipulations was conducted to better understand and discriminate the effects of water on chemistry on a certain type of heavy oils. New interactions and effects on steam on heavy oil combustion have been discovered and studied. These manipulations, supplemented by a set of some combustion tubes provide a large set of experimental data. This will compose our base case that we will try to match later using some new tools devised during this study. To model kinetic experiments, we firstly developed a new simulation tool based on a compositional description and a full equation of state formulation. Equilibrium calculation is made by a two-phase flash. To determine consistent kinetic parameters, we used a genetic algorithm coupled with the new tool. Finally, in order to validate the kinetic model and simulate combustion tube experiment, a new threephase compositional simulator has been developed. It is especially fitted to take into account characteristic of the experimental device. Three-phase equilibrium calculation is computed by a new free-water
8

Estudo do processo de combust?o in-situ usando po?os horizontais como produtores de ?leo (Toe-to-Hell Air Injection)

Ara?jo, Edson de Andrade 17 February 2012 (has links)
Made available in DSpace on 2014-12-17T14:08:49Z (GMT). No. of bitstreams: 1 EdsonAA_DISSERT.pdf: 3674397 bytes, checksum: 68989b5d2aabcb74990cc326c009fbc6 (MD5) Previous issue date: 2012-02-17 / The method "toe-to-heel air injection" (THAITM) is a process of enhanced oil recovery, which is the integration of in-situ combustion with technological advances in drilling horizontal wells. This method uses horizontal wells as producers of oil, keeping vertical injection wells to inject air. This process has not yet been applied in Brazil, making it necessary, evaluation of these new technologies applied to local realities, therefore, this study aimed to perform a parametric study of the combustion process with in-situ oil production in horizontal wells, using a semi synthetic reservoir, with characteristics of the Brazilian Northeast basin. The simulations were performed in a commercial software "STARS" (Steam, Thermal, and Advanced Processes Reservoir Simulator), from CMG (Computer Modelling Group). The following operating parameters were analyzed: air rate, configuration of producer wells and oxygen concentration. A sensitivity study on cumulative oil (Np) was performed with the technique of experimental design, with a mixed model of two and three levels (32x22), a total of 36 runs. Also, it was done a technical economic estimative for each model of fluid. The results showed that injection rate was the most influence parameter on oil recovery, for both studied models, well arrangement depends on fluid model, and oxygen concentration favors recovery oil. The process can be profitable depends on air rate / O m?todo toe-to-heel air injection (THAITM) ? um processo de recupera??o de petr?leo avan?ado, que consiste na integra??o da combust?o in-situ com os avan?os tecnol?gicos na perfura??o de po?os horizontais. Este m?todo utiliza po?os horizontais como produtores de ?leo, mantendo po?os injetores verticais para a inje??o de ar. Este processo ainda n?o foi aplicado no Brasil, tornando necess?rio, avalia??o destas novas tecnologias aplicadas ?s realidades locais, por isso, este trabalho teve como objetivo principal realizar um estudo param?trico do processo de combust?o in-situ com produ??o de ?leo em po?os horizontais, usando um reservat?rio semi sint?tico, com caracter?sticas das encontradas no Nordeste Brasileiro. As simula??es foram realizadas em um programa comercial de processos t?rmicos, denominado STARS (Steam, Thermal, and Advanced Processes Reservoir Simulator), da empresa CMG (Computer Modelling Group). Foram realizadas an?lises dos par?metros operacionais: vaz?es de inje??o, configura??o dos po?os e concentra??o de oxig?nio. O estudo de sensibilidade dos fatores foi realizado com a t?cnica de an?lise de planejamento experimental, com uma combina??o de dois e tr?s n?veis (32x22), totalizando 36 simula??es, 18 para cada modelo, em fun??o da produ??o acumulada de ?leo (Np). Tamb?m foi realizada uma estimativa econ?mica de an?lise de custo para cada modelo de fluido. Os resultados mostraram que a configura??o de po?os e a vaz?o de inje??o foram o par?metro que apresentou maior influ?ncia no ?leo recuperado para os dois modelos de fluidos analisados, respectivamente, que a configura??o de po?os ? influenciada pelo modelo de fluido, e que um aumento da concentra??o de oxig?nio favorece a recupera??o de ?leo, no processo estudado. Tamb?m foi encontrado que o processo pode ser rent?vel dependendo da quantidade de ar injetado no processo
9

Estudo dos par?metros operacionais do processo de combust?o in situ em reservat?rio de petr?leo pesado

Pereira, Heloize dos Santos 06 March 2014 (has links)
Made available in DSpace on 2014-12-17T14:08:56Z (GMT). No. of bitstreams: 1 HeloizeSP_DISSERT.pdf: 5210676 bytes, checksum: 2206731cf8d9981475df85f8e57f31d2 (MD5) Previous issue date: 2014-03-06 / The occurrence of heavy oil reservoirs have increased substantially and, due to the high viscosity characteristic of this type of oil, conventional recovery methods can not be applied. Thermal methods have been studied for the recovery of this type of oil, with a main objective to reduce its viscosity, by increasing the reservoir temperature, favoring the mobility of the oil and allowing an increasing in the productivity rate of the fields. In situ combustion (ISC) is a thermal recovery method in which heat is produced inside the reservoir by the combustion of part of the oil with injected oxygen, contrasting with the injection of fluid that is heated in the surface for subsequent injection, which leads to loss heat during the trajectory to the reservoir. The ISC is a favorable method for recovery of heavy oil, but it is still difficult to be field implemented. This work had as an objective the parametric analysis of ISC process applied to a semi-synthetic reservoir with characteristics of the Brazilian Northeast reservoirs using vertical production and vertical injection wells, as the air flow injection and the wells completions. For the analysis, was used a commercial program for simulation of oil reservoirs using thermal processes, called Steam, Thermal and Advanced Processes Reservoir Simulator (STARS) from Computer Modelling Group (CMG). From the results it was possible to analyze the efficiency of the ISC process in heavy oil reservoirs by increasing the reservoir temperature, providing a large decrease in oil viscosity, increasing its mobility inside the reservoir, as well as the improvement in the quality of this oil and therefore increasing significantly its recovered fraction. Among the analyzed parameters, the flow rate of air injection was the one which had greater influence in ISC, obtaining higher recovery factor the higher is the flow rate of injection, due to the greater amount of oxygen while ensuring the maintenance of the combustion front / A ocorr?ncia de ?leos pesados e ultrapesados v?m aumentando sensivelmente e, devido ? alta viscosidade caracter?stica deste tipo de ?leo, n?o podem ser aplicados os m?todos convencionais de recupera??o. M?todos t?rmicos v?m sendo estudados para recupera??o deste tipo de ?leo, tendo como principal objetivo reduzir a sua viscosidade atrav?s do aumento da temperatura do reservat?rio, favorecendo a mobilidade do ?leo e permitindo um aumento no ?ndice de produtividade dos campos. A Combust?o in situ (CIS) ? um m?todo t?rmico de recupera??o em que o calor ? produzido dentro do reservat?rio pela combust?o de parte do ?leo com oxig?nio injetado, contrastando com a inje??o de fluido aquecido ainda na superf?cie para posterior inje??o, o que acarreta perda de calor durante o trajeto ao reservat?rio. A CIS ? um m?todo prop?cio para recupera??o de ?leo pesado, por?m ainda ? complexo de ser implementado. Este trabalho teve como objetivo a an?lise param?trica do processo CIS aplicado a um reservat?rio semissint?tico com caracter?sticas do Nordeste Brasileiro utilizando po?os verticais de produ??o e inje??o, assim como a vaz?o de inje??o de ar e as completa??es dos po?os. Para an?lise do m?todo foi utilizado um programa comercial de simula??o de reservat?rios de petr?leo usando processos t?rmicos, denominado Steam, Thermal and Advanced Processes Reservoir Simulator (STARS) do Computer Modelling Group (CMG). A partir dos resultados obtidos foi poss?vel comprovar a efici?ncia do processo CIS em reservat?rios de ?leo pesado atrav?s do aumento da temperatura do reservat?rio, promovendo uma grande diminui??o na viscosidade do ?leo, aumentando sua mobilidade no interior do reservat?rio, assim como a melhora na qualidade desse ?leo e aumentando assim, significativamente a sua fra??o recuperada. Dentre os par?metros analisados, a vaz?o de inje??o de ar foi a que apresentou maior influ?ncia no processo CIS, obtendo maior fator de recupera??o quanto maior a vaz?o de inje??o, sendo devido a maior quantidade de oxig?nio garantindo a manuten??o da frente de combust?o
10

Technische und wirtschaftliche Projektstudie zur Verwendung thermischer Verfahren zur Wasserstoffproduktion aus ausgeförderten Erdöllagerstätten

Bauer, Johannes Fabian 30 April 2024 (has links)
Erdöl und Erdgas liegen als flüssige Kohlenwasserstoffe in porösen Sedimentgesteinen im geologischen Untergrund vor. Um diese Kohlenwasserstoffe zu gewinnen, wird der Untergrund durch Tiefbohrungen zur Förderung erschlossen. Anschließend erfolgt die Förderung des Erdöls in drei Phasen: der Primär-, Sekundär- und Tertiärförderung. In der primären Phase wird Erdöl durch den Druck in der Lagerstätte gewonnen, in der sekundären Phase durch künstliche Aufrechterhaltung des Drucks und in der tertiären Phase durch technische Beeinflussung der strömungsmechanischen und thermodynamischen Eigenschaften des Erdöls. Dennoch verbleibt insbesondere bei Schweröllagerstätten ein Anteil von 45 bis 90 % des ursprünglich in der Lagerstätte vorhandenen Erdöls in der Lagerstätte. Aufgrund strömungsmechanischer und thermodynamischer Einschränkungen ist eine Gewinnung dieses Anteils technisch und/oder wirtschaftlich nicht möglich. Meist wird die Lagerstätte nach Abschluss der Förderung verfüllt und die übertägigen Anlagen zurückgebaut. Zugleich steigt weltweit der Bedarf an Energiequellen, insbesondere an solchen, die für die Dekarbonisierung und Umstellung auf umweltschonende Energien benötigt werden. Wasserstoff wird voraussichtlich als chemischer Energieträger der zukünftige Schlüsselrohstoff für die Energiewende sein. Diese Forschungsarbeit untersucht die Weiternutzung bzw. Erschließung ausgeförderter Erdöllagerstätten zur Wasserstoffgewinnungmittels thermischer Verfahren. Diese Verfahren orientieren sich an bereits etablierten Methoden für die übertägige Verfahrenstechnik. Durch das Verfahren wird die Lagerstätte mithilfe der Verbrennung des in dieser vorhandenen Restöls erhitzt und das entstehende Koks durch eine Wasserinjektion in Synthesegas umzuwandeln. Durch die hohen Temperaturen entsteht in der Lagerstätte eine Atmosphäre aus Wasserdampf, die zur Vergasung des Kokses führt. Das Gas wird durch die Wasserfront aus der Lagerstätte in die Produktionsbohrungen verdrängt und kann anschließend an der Oberfläche aufbereitet werden. Im Kontext der Lagerstättenprozesse entsteht nicht nur Wasserstoff, sondern auch weitere Verbrennungsprodukte wie Kohlenstoffmonoxid, Kohlenstoffdioxid, Sauergase und Kohlenwasserstoffgase. Diese werden verfahrenstechnisch aufbereitet und dampfreformiert in den obertägigen Anlagen. Zur Erfüllung der Anforderungen an blauen Wasserstoff ist die Reinjektion von Kohlenstoffdioxid erforderlich. In der Dissertation wird ein numerisches Berechnungsschema eingeführt und ausführlich getestet, um die lagerstättentechnische Simulation der thermischen Wasserstoffgewinnung durchzuführen. Anhand von Modelllagerstätten werden mithilfe dieses Schemas relevante Prozessparameter ermittelt und für die Übertragung auf die konkrete Lagerstättensimulation aufbereitet. Das Verfahren zur Wasserstoffförderung wird an einer antiklinalen Lagerstätte mit geostatistischer Heterogenität simuliert. Die Ergebnisse werden zur weiteren Auswertung bezüglich Integritätsfragen, Übertageanlagen sowie wirtschaftlicher und strategischer Aspekte herangezogen.

Page generated in 0.0927 seconds