Spelling suggestions: "subject:"indium."" "subject:"andium.""
321 |
Diagnostics optiques capables de localiser la formation de NO dans les moteurs Diesel : Fluorescence par plan laser sur deux raies atomiques; Chimiluminescence de l'oxyde de boreMaligne, David 04 May 2007 (has links) (PDF)
La réduction à la source des émissions d'oxyde d'azote est un objectif important pour les constructeurs de moteurs d'automobiles. Dans ces moteurs la principale voie de formation de NO (mécanisme de Zeldovich) est gouvernée par la réaction initiatrice N2+O->NO+N dont le taux croît fortement avec la température. La formation de NO est donc générée par la présence conjointe d'oxygène atomique et d'une température élevée dont le diagnostic requiert des images instantanées. Deux techniques optiques capables d'être appliquées dans un moteur ont été étudiées au laboratoire.<br />Une thermométrie basée sur la fluorescence de deux raies atomiques successivement excitées a été développée en mode d'imagerie. L'étude a été menée sur des flammes laminaires méthane-air ensemencées en indium. Après étalonnage dans une flamme de référence, les températures obtenues dans une flamme de diffusion sont en accord satisfaisant avec celles d'un thermocouple et elles sont encore accessibles dans les zones polluées par les suies.<br />La lumière verte émise quand une flamme est ensemencée avec un sel de bore vient de la relaxation radiative du dioxyde de bore qui est chimiquement créé sur son état excité par la réaction BO+O->BO2*. Comme le taux de cette réaction croît lui aussi fortement avec la température, la chimiluminescence de BO2* réalise une simulation expérimentale in situ de la vitesse de formation de NO. Les études spectroscopiques montrent un bon accord avec les prévisions du code ChemKin sauf dans les flammes riches. Dans les flammes de diffusion les images de chimiluminescence et les modèles montrent que le seuil de production du NO thermique se situe vers 1800K.
|
322 |
Röntgenografische Charakterisierung von Indium-Zinn-Oxid-DünnschichtenKaune, Gunar 07 January 2006 (has links) (PDF)
Mittels reaktivem Magnetron-Sputtern hergestellte Indium-Zinn-Oxid-Dünnschichten
wurden mit den Methoden der Röntgendiffraktometrie und Röntgenreflektometrie charakterisiert.
Es konnte gezeigt werden, dass die Wahl des Arbeitspunktes bei der Schichtabscheidung
erheblichen Einfluss auf Kristallitorientierung, Gitterkonstante und Größe der Schichtspannung hat.
Zusätzlich wurden mittels des Langford-Verfahrens Korngröße und Mikrospannungen bestimmt.
Im Rahmen der röntgenografischen Spannungsmessung zeigten sich nichtlineare Verläufe der
Dehnung über sin²Ψ, die mit dem Kornwechselwirkungsmodell nach Vook und Witt
erklärt werden.
|
323 |
Effect of composition, morphology and semiconducting properties on the efficiency of CuIn₁₋x̳Gax̳Se₂₋y̳Sy̳ thin-film solar cells prepared by rapid thermal processingKulkarni, Sachin Shashidhar. January 2008 (has links)
Thesis (Ph.D.)--University of Central Florida, 2008. / Adviser: Neelkanth G. Dhere. On t.p. "x" and "y" are subscripts. Includes bibliographical references (p. 130-142).
|
324 |
Development of wide-band gap InGaN solar cells for high-efficiency photovoltaicsJani, Omkar Kujadkumar. January 2008 (has links)
Thesis (Ph.D)--Electrical and Computer Engineering, Georgia Institute of Technology, 2008. / Committee Chair: Honsberg, Christiana; Committee Co-Chair: Ferguson, Ian; Committee Member: Citrin, David; Committee Member: Klein, Benjamin; Committee Member: Rohatgi, Ajeet; Committee Member: Snyder, Robert. Part of the SMARTech Electronic Thesis and Dissertation Collection.
|
325 |
Atomic layer deposition of zinc tin oxide buffer layers for Cu(In,Ga)Se2 solar cellsLindahl, Johan January 2015 (has links)
The aim of this thesis is to provide an in-depth investigation of zinc tin oxide, Zn1-xSnxOy or ZTO, grown by atomic layer deposition (ALD) as a buffer layer in Cu(In,Ga)Se2 (CIGS) solar cells. The thesis analyzes how changes in the ALD process influence the material properties of ZTO, and how these in turn affect the performance of CIGS solar cells. It is shown that ZTO grows uniformly and conformably on CIGS and that the interface between ZTO and CIGS is sharp with little or no interdiffusion between the layers. The band gap and conduction band energy level of ZTO are dependent both on the [Sn]/([Zn]+[Sn]) composition and on the deposition temperature. The influence by changes in composition is non-trivial, and the highest band gap and conduction band energy level are obtained at a [Sn]/([Zn]+[Sn]) composition of 0.2 at 120 °C. An increase in optical band gap is observed at decreasing deposition temperatures and is associated with quantum confinement effects caused by a decrease in crystallite size. The ability to change the conduction band energy level of ZTO enables the formation of suitable conduction band offsets between ZTO and CIGS with varying Ga-content. It is found that 15 nm thin ZTO buffer layers are sufficient to fabricate CIGS solar cells with conversion efficiencies up to 18.2 %. The JSC is in general 2 mA/cm2 higher, and the VOC 30 mV lower, for cells with the ZTO buffer layer as compared to cells with the traditional CdS buffer layer. In the end comparable efficiencies are obtained for the two different buffer layers. The gain in JSC for the ZTO buffer layer is associated with lower parasitic absorption in the UV-blue region of the solar spectrum and it is shown that the JSC can be increased further by making changes to the other layers in the traditional CdS/i-ZnO/ZnO:Al window layer structure. The ZTO is highly resistive, and it is found that the shunt preventing i-ZnO layer can be omitted, which further increases the JSC. Moreover, an additional increase in JSC is obtained by replacing the sputtered ZnO:Al front contact with In2O3 deposited by ALD. The large gain in JSC for the ZTO/In2O3 window layer stack compensates for the lower VOC related to the ZTO buffer layer, and it is demonstrated that the ZTO/In2O3 window layer structure yields 0.6 % (absolute) higher conversion efficiency than the CdS/i-ZnO/ZnO:Al window layer structure.
|
326 |
MBE growth of AlInN and Bi2Se3 thin films and hetero-structuresWang, Ziyan, 王子砚 January 2011 (has links)
Molecular Beam Epitaxy is an advanced method for the synthesis of single-crystal thin-film structures. However, the growth behavior varies case by case due to the complicated kinetic process. In this thesis, the epitaxial growth processes of AlxIn1-xN alloy and Bi2Se3 thin-films are studied.
Heteroepitaxial growth of AlxIn1-xN alloy on GaN(0001) substrate is carried out in the Nitrogen-rich flux conditions. A series of transient growth stages are identified from the initiation of the deposition. A significant effect of source beam-flux on the incorporation rate of Indium atoms is observed and measured. A correlation between the incorporation rate and the growth conditions (flux ratio and growth temperature) is revealed by the dependence of the growth-rate of the film on beam fluxes. A mathematic model is then suggested to explain the effect, through which the measured results indicating a surface diffusing and trapping process is indicated. Unexpected behavior of the lattice-parameter evolution of the growth front during deposition is also observed, indicating a complex strain-relaxation process of the epilayers.
For three-dimensional (3D) topological insulator of Bi2Se3, growths are attempted on various substrate surfaces, including clean Si(111)-(7x7), Hydrogen terminated Si(111), Bismuth induced Si(111) reconstructed surfaces, GaN(0001), and some selenide “psudo-substrates”. The specific formation process of this quintuple-layered material in MBE is investigated, from which the Van der Waals epitaxy growth characteristics inherent to deposition of Bi2Se3 is determined, and the mechanism of the “two-step growth” technique for this material is further clarified. Among the various substrates, those that are inert to chemical reaction with Bi/Se are important for the growth. The epilayers’ lattice-misfit with the substrate is also a crucial factor to the structural quality of the Bi2Se3 epifilms, such as the defects density and the single-crystalline domain size. The effect of a vicinal substrate on suppressing the twin-defects in film is also addressed. Using a suitable substrate and adapting an optimal condition, ultra-thin films of Bi2Se3 with a superior structural quality have been achieved. Multilayered Bi2Se3 structures with ZnSe and In2Se3 spacers are attempted. Finally the high-quality superlattices of Bi2Se3/In2Se3 are successfully synthesized. The hetero-interfaces in the superlattice structure of Bi2Se3/In2Se3 are sharp, and the individual layers are uniform with thicknesses being strictly controlled.
The behaviors of strain evolution during the hetero-growth process are finally investigated. An exponential relaxation of misfit strain is observed. And the correlation between the residual strain and the starting surface in the initial growth stage is also identified. / published_or_final_version / Physics / Doctoral / Doctor of Philosophy
|
327 |
Characterisation and stability of MESFETs fabricated on amorphous indium-gallium-zinc-oxide.Whiteside, Matthew David January 2014 (has links)
Indium-Gallium-Zinc-Oxide (a-IGZO) is an amorphous oxide semiconductor that has been attracting increasing attention for use in flat panel display and optoelectronic applications. This is largely due to IGZO’s high mobility at low processing temperatures. In this thesis, IGZO films were successfully grown on polyethylene naphthalate (PEN) substrates by RF magnetron sputtering at room temperature. These films were flexible, transparent and had a good Hall mobility (5-12 cm2/Vs). High quality metal oxide Schottky contacts were fabricated on these as-grown IGZO/PEN films with on-off rectification ratios of up to 108. These were then used as the gate contacts in transparent metal semiconductor field effect transistors (MESFETs). The performance and device stability of these IGZO/PEN MESFETs were investigated via a series of stress tests in both dark conditions and under illumination at different wavelengths in the visible spectrum. During constant voltage stress testing under illumination, the threshold voltage shifted by -0.54 V and 0.38 V for negative and positive gate biasing, respectively. These shifts proved reversible when devices were left in dark conditions for extended periods of time. The effect of persistent photoconductivity after exposure to different illumination sources was examined, with three potential passivation coatings to reduce this unwanted effect explored. Transparent IGZO/PEN MESFETs with an absolute transmission of up to 75% were achieved with the use of ITO ohmic contacts. These devices survived mechanical bending down to a radius of 7 mm with negligible variation in on-current and threshold voltage. This allows for the possibility of incorporating their use in future applications such as flexible transparent electronics.
|
328 |
Nanoscale Characterization of the Electrical Properties of Oxide Electrodes at the Organic Semiconductor-Oxide Electrode Interface in Organic Solar CellsMacDonald, Gordon Alex January 2015 (has links)
This dissertation focuses on characterizing the nanoscale and surface averaged electrical properties of transparent conducting oxide (TCO) electrodes such as indium tin oxide (ITO) and transparent metal-oxide (MO) electron selective interlayers (ESLs), such as zinc oxide (ZnO), the ability of these materials to rapidly extract photogenerated charges from organic semiconductors (OSCs) used in organic photovoltaic (OPV) cells, and evaluating their impact on the power conversion efficiency (PCE) of OPV devices. In Chapter 1, we will introduce the fundamental principles regarding the need for low cost power generation, the benefits of OPV technologies, as well as the key principles that govern the operation of OPV devices and the key innovations that have advanced this technology. In Chapter 2 of this dissertation, we demonstrate an innovative application of conductive probe atomic force microscopy (CAFM) to map the nanoscale electrical heterogeneity at the interface between an electrode, such as ITO, and an OSC such as the p-type OSC copper phthalocyanine (CuPc).(MacDonald et al. (2012) ACS Nano, 6, p. 9623) In this work we collected arrays of J-V curves, using a CAFM probe as the top contact of CuPc/ITO systems, to map the local J-V responses. By comparing J-V responses to known models for charge transport, we were able to determine if the local rate-limiting step for charge transport is through the OSC (ohmic) or the CuPc/ITO interface (nonohmic). These results strongly correlate with device PCE, as demonstrated through the controlled addition of insulating alkylphosphonic acid self-assembled monolayers (SAMs) at the ITO/CuPc interface. Subsequent chapters focus on the electrical property characterization of RF-magnetron sputtered ZnO (sp-ZnO) ESL films on ITO substrates. We have shown that the energetic alignment of ESLs and the organic semiconducting (OSC) active materials plays a critical role in determining the PCE of OPV devices and the appearance of, or lack thereof, UV light soaking sensitivity. For ZnO and fullerene interfaces, we have shown that either minimizing the oxygen partial pressure during ZnO deposition or exposure of ZnO to UV light minimizes the energetic offset at this interface and maximizes device PCE. We have used a combination of device testing, device modeling, and impedance spectroscopy to fully characterize the effects that energetic alignment has on the charge carrier transport and charge carrier distribution within the OPV device. This work can be found in Chapter 3 of this dissertation and is in preparation for publication. We have also shown that the local properties of sp-ZnO films varies as a function of the underlying ITO crystal face. We show that the local ITO crystal face determines the local nucleation and growth of the sp-ZnO films. We demonstrate that this effects the morphology, the chemical resistance to etching as well as the surface electrical properties of the sp-ZnO films. This is likely due to differences in the surface mobility of sputtered Zn and O atoms on these crystal faces during film nucleation. This affects the nanoscale distribution of electrical and chemical properties. As a result we demonstrate that the PCE, and UV sensitivity of the J-V response of OPVs using sp-ZnO ESLs are strongly impacted by the distribution of ITO crystal faces at the surface of the substrate. This work can be found in Chapter 4 of this dissertation and is in preparation for publication. These studies have contributed to a detailed understanding of the role that electrical heterogeneity, insulating barriers and energetic alignment at the MO/OSC interface play in OPV PCE.
|
329 |
Near Surface Composition and Reactivity of Indium Tin Oxide: An Evaluation Towards Surface Chemical Concepts and Relevance in Titanyl Phthalocyanine Photovoltaic DevicesBrumbach, Michael T. January 2007 (has links)
Photovoltaics manufactured using organic materials as a substitute for inorganic materials may provide for cheaper production of solar cells if their efficiencies can be made comparable to existing technologies. Photovoltaic devices are comprised of layered structures where the electrical, chemical, and physical properties at the multiple interfaces play a significant role in the operation of the completed device. This thesis attempts to establish a relationship between interfacial properties and overall device performance by investigation of both the organic/organic heterojunction interface, as well as the interface between the inorganic substrate and the first organic layer with useful insights towards enhancing the efficiency of organic solar cells.It has been proposed that residual chemical species may act as barriers to charge transfer at the interface between the transparent conductor (TCO) and the first organic layer, possibly causing a large contact resistance and leading to reduced device performance. Previous work has investigated the surface of the TCO but no baseline characterization of carbon-free surfaces has previously been given. In this work clean surfaces are investigated to develop a fundamental understanding of the intrinsic spectra such that further analyses of contaminated surfaces can be presented systematically and reproducibly to develop a chemical model of the TCO surface.The energy level offset at the organic/organic heterojunction has been proposed to relate to the maximum potential achievable for a solar cell under illumination, however, few experimental observations have been made where both the interface characterization and device performance are presented. Photovoltaic properties are examined in this work with titanyl phthalocyanine used as a novel donor material for enhancement of spectral absorption and optimization of the open-circuit potential. Characterization of the interface between TiOPc and C60 coupled with characterization of the interface between copper phthalocyanine and C60 shows that the higher ionization potential of TiOPc does correlate to greater open circuit potentials.Examination of photovoltaic behavior using equivalent circuit modeling relates the importance of series resistance and recombination to the homogeneity of the solar cell structure.
|
330 |
Indium complexes and their role in the ring-opening polymerization of lactideDouglas, Amy Frances 05 1900 (has links)
The synthesis and characterization of a series of chiral indium complexes bearing a tridentate NNO ligand are reported. The ligand 2-[[[(dimethylamino)cyclohexyl]amino]methyl]- 4,6-bis(tert-butyl) phenol (H₂NNO) was synthesized via a previously published procedure and bound to indium by both a protonolysis and salt metathesis route. A dimethylated indium complex (NNO)InMe₂ (1) was isolated by reaction of InMe₃ with H₂NNO. A one-pot saltmetathesis route was used to produce a unique mixed-bridge dinuclear indium complex [(NNO)InCl] ₂(μ-OEt)(μ-Cl) (3) from a mixture of indium trichloride, potassium ethoxide and the monopotassiated salt of the ligand, KH(NNO). Direct reaction of KH(NNO) and indium trichloride resulted in the formation of (NNO)InCl₂ (4) which was carried forward to 3 by reaction with sodium ethoxide.
The complex 3 is active for the ROP of β-butyrolactone ε-caprolactone and lactide and is the first reported indium-based catalyst for lactide or β-butyrolactone ROP. Kinetic studies of 3 for ROP of LA revealed that catalyst was well-behaved, and that the rate was first order with
regard to lactide and catalyst. The enthalpy and entropy of activation for the ROP were experimentally determined. Polymer produced by ROP by 3 has narrow molecular weight distribution and a good correlation is seen between the observed moleular weight and monomer loading. A mechanism was proposed for 3 acting as a catalyst for the ROP of lactide; however further experiments are required to confirm this mechanism. Polymer samples isolated from the
ROP of rac-lactide by rac-3 show isotactic enrichment. It is postulated that the chiral catalyst 3 is exerting stereocontrol via an enantiomorphic site control mechanism.
|
Page generated in 0.05 seconds