Spelling suggestions: "subject:"indium."" "subject:"andium.""
441 |
Transport Properties of Topological Phases in Broken Gap Indium Arsenide/Gallium Antimonide Based Quantum WellsJanuary 2012 (has links)
The quantum Spin Hall Insulator (QSHI) is a two-dimensional variant of a novel class of materials characterized by topological order, whose unique properties have recently triggered much interest and excitement in the condensed matter community. Most notably, the topological properties of these systems hold great promise in mitigating the difficult problem of decoherence in implementations of quantum computers. Although QSHI has been theoretically predicted in a few different materials, prior to the work presented in this thesis, only the HgTe/CdTe semiconductor system has shown direct evidence for the existence of this phase. Ideally insulating in the bulk, QSHI is characterized by one-dimensional channels at the sample perimeter, which have a helical property, with carrier spin tied to the carrier direction of motion, and protected from elastic back-scattering by time-reversal symmetry. In this thesis we present low temperature transport measurements, showing strong evidence for the existence of proposed helical edge channels in InAs/CaSb quantum wells, which thus emerge as an important alternate to HgTe/CdTe quantum wells in studies of two-dimensional topological insulators and superconductors. Surprisingly, edge modes persist in spite of comparable bulk conduction of non-trivial origin and show only weak dependence on magnetic field in mesoscopic devices. We elucidate that the seeming independence of edge on bulk transport comes due to the disparity in Fermi wave-vectors between the bulk and the edge, leading to a total internal reflection of the edge modes. Furthermore, low Schottky barrier of this material system and good interface to superconductors allows us to probe topological properties of helical channels in Andreev reflection measurements, opening a promising route towards the realization of topologically superconducting phases hosting exotic Majorana modes.
|
442 |
Development Of Novel Analytical Methods For Selenium, Gold, Silver And Indium Determination Using Volatile Compound Generation, Atom Trapping And Atomic Absorption SpectrometryArslan, Yasin 01 May 2011 (has links) (PDF)
A novel analytical technique was developed where gaseous hydrogen selenide formed by sodium tetrahydroborate reduction is transported to and trapped on a resistively heated gold-coated W-coil atom trap for in situ preconcentration. The atom trap is held at 165 º / C during the collection stage and is heated up to 675 º / C for revolatilization / analyte species formed are transported to an externally heated quartz T-tube where the atomization takes place and the transient signal is obtained. For gold, a high volume gas liquid separator (HVGLS) was designed to improve the detection limit of Au down to the ng mL-1 levels. In this apparatus, analyte and reductant solutions are collected in a limited volume and volatile analyte species are formed. After separation of the volatile analyte species from liquid phase, the entire analyte vapor is sent to an atomizer. A W-coil trap was used to further decrease the detection limit. The enhancement factor for the characteristic concentration was found to be 10.7 when compared to HG-AAS performance without W-coil trap by using peak height values. Furthermore, the generation of analytically useful volatile form of Au has been studied. The flow injection generation was performed in a dedicated generator consisting of a special mixing apparatus and gas-liquid separator design. The on-line atomization in the quartz tube multiatomizer for atomic absorption (AAS) detection has been employed as the convenient atomization/detection mean. 198Au, 199Au radioactive indicator of high specific activity together with AAS measurements was used to track quantitatively the transfer of analyte in the course of generation and transport to the atomizer. In-situ trapping in GF for AAS was explored as an alternative to the on-line atomization. Transmission electron microscopy measurements proved the presence of Au nanoparticles of diameter of approximately 10 nm and smaller transported from the generator by the flow of carrier Ar. For silver, three types of GLS which are U-shaped, cylindrical and high volume gas liquid separators (HVGLS) were used to compare the sensitivities of these GLSs during Ag determination. The DL (3s) values were found as 29 ng mL-1, 0.4 ng mL-1 and 0.05 ng mL-1 for U-shaped GLS, cylindrical GLS with W-coil trap and HVGLS with W-coil trap, respectively. For indium, two types of GLS which are cylindrical and HVGLS with W-coil trap were used. The LOD and characteristic concentration were found as 148 and 317 ng mL-1 with cylindrical shape GLS. HVGLS with W-coil trap was used to improve sensitivity. In this case, LOD and characteristic concentration were found to be 0.46 and 0.98 ng mL-1, respectively. Moreover, to increase the reactivity between indium and reductant solutions, Ru(acac)3 catalyst was used. In this case, LOD and characteristic concentration were found to be 0.13 and 0.23 ng mL-1, respectively. In the case of using this catalyst, sensitivity was enhanced around 1378 fold with respect to cylindrical GLS.
|
443 |
Etude cristallochimique de quelques composés oxyfluorés, hydroxyfluorés et fluorés des éléments III BGrannec, Jean 10 October 1970 (has links) (PDF)
L'utilisation croissante de l'aluminium dans les applications les plus diverses a suscité un développement important des recherches consacrées à ses composés fluorés qui jouent un rôle essentiel dans l'élaboration du métal. Il n'en est pas de même pour ses homologues de la colonne III B : lorsque nous avons commencé ce travail la chimie des composés fluorés du gallium, de l'indium et du thallium n'avait pratiquement pas été explorée. Cette lacune s'expliquait par la relative rareté des ces éléments, mais également par les difficultés inhérentes à la chimie du fluor...
|
444 |
Fabrication and characterization of a solar cell using an aluminium p-doped layer in the hot-wire chemical vapour deposition processKotsedi, Lebogang January 2010 (has links)
<p>When the amorphous silicon (a-Si) dangling bonds are bonded to hydrogen the concentration of the dangling bond is decreased. The resulting film is called hydrogenated amorphous silicon (a-Si:H). The reduction in the dangling bonds concentration improves the optoelectrical properties of the film. The improved properties of a-Si:H makes it possible to manufacture electronic devices including a solar cell. A solar cell device based on the hydrogenated amorphous silicon (a-Si:H) was fabricated using the Hot-Wire Chemical Vapour Deposition (HWCVD). When an n-i-p solar cell configuration is grown, the norm is that the p-doped layer is deposited from a mixture of silane (SiH4) gas with diborane (B2H6). The boron atoms from diborane bonds to the silicon atoms and because of the number of the valance electrons, the grown film becomes a p-type film. Aluminium is a group 3B element and has the same valence electrons as boron, hence it will also produce a p-type film when it bonds with silicon. In this study the p-doped layer is grown from the co-deposition of a-Si:H from SiH4 with aluminium evaporation resulting in a crystallized, p-doped thin film. When this thin film is used in the n-i-p cell configuration, the device shows photo-voltaic activity. The intrinsic layer and the n-type layers for the solar cell were grown from SiH4 gas and Phosphine (PH3) gas diluted in SiH4 respectively. The individual layers of the solar cell device were characterized for both their optical and electrical properties. This was done using a variety of experimental techniques. The analyzed results from the characterization techniques showed the films to be of device quality standard. The analysed results of the ptype layer grown from aluminium showed the film to be successfully crystallized and doped. A fully functional solar cell was fabricated from these layers and the cell showed photovoltaic activity.<br />
  / </p>
|
445 |
INVESTIGATIONS OF CuInTe2 / CdS & CdTe / CdS HETEROJUNCTION SOLAR CELLSGutta, Venkatesh 01 January 2011 (has links)
Thin film solar cells of Copper Indium Telluride and Cadmium Sulfide junctions were fabricated on plain ITO glass slides and also on those coated with intrinsic Tin Oxide. CdS was deposited through chemical bath deposition and CIT by electrodeposition. Both compounds were subjected to annealing at temperatures between 350°C and 500°C which produced more uniform film thicknesses and larger grain sizes. The CIT/ CdS junction was characterized after performing XRD and spectral absorption of individual compounds.
Studies were also made on CdS / CdTe solar cells with respect to effect of annealing temperatures on open circuit voltages. NP acid etch, the most important process to make the surface of CdTe tellurium rich, was also studied in terms of open circuit voltages. Thermally evaporated CdS of four different thicknesses was deposited on Tin Oxide coated ITO and inferences were drawn as to what thickness of CdS yields better results.
|
446 |
Investigation into scanning tunnelling luminescence microscopyManson-Smith, Sacha Kinsey January 2001 (has links)
No description available.
|
447 |
Electronic structure calculations on nitride semiconductors and their alloysDavid, Dugdale January 2000 (has links)
Calculations of the electronic properties of AIN, GaN, InN and their alloys are presented. Initial calculations are performed using the first principles pseudopotenial method to obtain accurate lattice constants. Further calculations then investigate bonding in the nitrides through population analysis and density of state calculations, the empirical pseudopotential method is also used in this work. Pseudopotentials 'or each of the nitrides are constructed using a functional form that allows strained material and alloys to be studied. The conventional k,p valence band parameters for both zincblende and wurtzite are obtained from the empirical band structure using two different methods. A Monte-Carlo fitting of the k.p band structure to the pseudopotential data (or an effective mass method for the zincblende structure) is used to produce one set. Another set is obtained directly from the momentum matrix elements and energy eigenvalues at the centre of the Brillouin zone. Both methods of calculating k.p parameters produce band structure in excellent agreement with the original empirical band calculations near the centre of the Brillouin zone. The advantage of the direct method is that it produces consistent sets of parameters, and can be used in studies involving a series of alloy compositions. Further empirical pseudopotential method calculations are then performed for alloys of the nitrides. In particular, the variation of the band gap with alloy composition is investigated, and good agreement with theory and experiment is found. The direct method is used to obtain k.p parameters for the alloys, and is contrasted with the fitting approach. The behaviour of the nitrides under strain is also studied. In particular, valence band offsets for nitride heterojunctions are calculated, and a strong forward-backward asymmetry in the band offset is found, in good agreement with other results in the literature.
|
448 |
Molecular beam epitaxy growth of indium nitride and indium gallium nitride materials for photovoltaic applicationsTrybus, Elaissa Lee 12 March 2009 (has links)
The objective of the proposed research is to establish the technology for material growth by molecular beam epitaxy (MBE) and fabrication of indium gallium nitride/gallium nitride (InxGa1-xN/GaN) heterojunction solar cells. InxGa1-xN solar cell have the potential to span 90% of the solar spectrum, however there has been no success with high indium (In) incorporation and only limited success with low In incorporation InxGa1-xN. Therefore, this present work focuses on 15 - 30% In incorporation leading to a bandgap value of 2.3 - 2.8 eV. This work will exploit the revision of the indium nitride (InN) bandgap value of 0.68 eV, which expands the range of the optical emission of nitride-based devices from ultraviolet to near infrared regions, by developing transparent InxGa1-xN solar cells outside the visible spectrum. Photovoltaic devices with a bandgap greater than 2.0 eV are attractive because over half the available power in the solar spectrum is above the photon energy of 2.0 eV. The ability of InxGa1-xN materials to optimally span the solar spectrum offers a tantalizing solution for high-efficiency photovoltaics.
Using the metal modulated epitaxy (MME) technique in a new, ultra-clean refurbished MBE system, an innovative growth regime is established where In and Ga phase separation is diminished by increasing the growth rate for InxGa1-xN. The MME technique modulates the metal shutters with a fixed duty cycle while maintaining a constant nitrogen flux and proves effective for improving crystal quality and p-type doping. We demonstrate the ability to repeatedly grow high hole concentration Mg-doped GaN films using the MME technique. The highest hole concentration obtained is equal to 4.26 e19 cm-3, resistivity of 0.5 Ω-cm, and mobility of 0.28 cm2/V-s. We have achieved hole concentrations significantly higher than recorded in the literature, proving that our growth parameters and the MME technique is feasible, repeatable, and beneficial. The high hole concentration p-GaN is used as the emitter in our InxGa1-xN solar cell devices.
|
449 |
Development of wide-band gap InGaN solar cells for high-efficiency photovoltaicsJani, Omkar Kujadkumar 05 May 2008 (has links)
Main objective of the present work is to develop wide-band gap InGaN solar cells in the 2.4 - 2.9 eV range that can be an integral component of photovoltaic devices to achieve efficiencies greater than 50%. In the present work, various challenges in the novel III-nitride technology are identified and overcome individually to build basic design blocks, and later, optimized comprehensively to develop high-performance InGaN solar cells. Due to the unavailability of a suitable modeling program for InGaN solar cells, PC1D is modified up to a source-code level to incorporate spontaneous and piezoelectric polarization in order to accurately model III-nitride solar cells. On the technological front, InGaN with indium compositions up to 30% (2.5 eV band gap) are developed for photovoltaic applications by controlling defects and phase separation using metal-organic chemical vapor deposition. InGaN with band gap of 2.5 eV is also successfully doped to achieve acceptor carrier concentration of 1e18 cm-3. A robust fabrication scheme for III-nitride solar cells is established to increase reliability and yield; various schemes including interdigitated grid contact and current spreading contacts are developed to yield low-resistance Ohmic contacts for InGaN solar cells. Preliminary solar cells are developed using a standard design to optimize the InGaN material, where the band gap of InGaN is progressively lowered. Subsequent generations of solar cell designs involve an evolutionary approach to enhance the open-circuit voltage and internal quantum efficiency of the solar cell. The suitability of p-type InGaN with band gaps as low as 2.5 eV is established by incorporating in a solar cell and measuring an open-circuit voltage of 2.1 V. Second generation InGaN solar cell design involving a 2.9 eV InGaN p-n junction sandwiched between p- and n-GaN layers yields internal quantum efficiencies as high as 50%; while sixth generation devices utilizing the novel n-GaN strained window-layer enhance the open circuit voltage of a 2.9 eV InGaN solar cell to 2 V. Finally, key aspects to further InGaN solar cell research, including integration of various designs, are recommended to improve the efficiency of InGaN solar cells. These results establish the potential of III-nitrides in ultra-high efficiency photovoltaics.
|
450 |
Etude de mécanismes d'hybridation pour les détecteurs d'imagerie InfrarougeBria, Toufiq 07 December 2012 (has links) (PDF)
L'évolution de la microélectronique suit plusieurs axes notamment la miniaturisation des éléments actifs (réduction de taille des transistors), et l'augmentation de la densité d'interconnexion qui se traduisent par la loi de Gordon Moore qui prédit que la densité d'intégration sur silicium doublerait tous les deux ans. Ces évolutions ont pour conséquence la réduction des prix et du poids des composants. L'hybridation ou flip chip est une technologie qui s'inscrit dans cette évolution, elle consiste en l'assemblage de matériaux hétérogènes. Dans cette étude il s'agit d'un circuit de lecture Silicium et d'un circuit de détection InP ou GaAs assemblés par l'intermédiaire d'une matrice de billes d'indium. La connexion flip chip est basée sur l'utilisation d'une jonction par plots métalliques de faibles dimensions qui permet de diminuer les pertes électriques (faible inductance et faible bruit), une meilleure dissipation thermique, une bonne tenue mécanique. Enfin elle favorise la miniaturisation avec l'augmentation de la compacité et de la densité d'interconnexion.Les travaux de thèse se concentrent sur deux axes principaux. Le premier concerne l'hybridation par brasure avec la technologie des billes d'indium par refusion, et le second concerne l'hybridation par pression à température ambiante (nano-scratch) par l'intermédiaire des nanostructures (Nano-fils d'or, Nano-fils ZnO). Ces travaux ont permis la réalisation d'un détecteur InGaAs avec extension visible de format TV 640*512 pixels au pas de 15 µm. Ces travaux ont également permis la validation mécanique de l'assemblage d'un composant de format double TV 1280*1024 pixels au pas de 10 µm par cette même méthode de reflow. Pour l'axe hybridation à froid, nos travaux ont permis la validation d'une méthode de croissance de nano-fils ZnO par une voix hydrothermique à basse température (<90°C).
|
Page generated in 0.0388 seconds