• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 296
  • 43
  • 43
  • 39
  • 15
  • 8
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 3
  • Tagged with
  • 628
  • 167
  • 100
  • 83
  • 80
  • 73
  • 72
  • 72
  • 65
  • 62
  • 60
  • 55
  • 55
  • 53
  • 49
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
481

Surface Chemistry and Work Function of Irradiated and Nanoscale Thin Films Covered Indium Tin Oxides

Che, Hui 05 1900 (has links)
In this study, we used UV-ozone Ar sputtering, X-ray photoelectron and ultra-violet photoelectron spectroscopies and sputtering based depositions of RuO2 and Se nano-layers on indium tin oxides (ITOs). We elucidated the effect of Ar sputtering on the composition and chemistry of Sn rich ITO surface. We demonstrated that while a combination of UV-ozone radiation and Ar sputtering removes most of the hydrocarbons responsible for degrading the work function of ITO, it also removes significant amount of the segregated SN at the ITO surface that's responsible for its reasonable work function of 4.7eV. We also demonstrated for the first time that sputtering cleaning ITO surface leads to the reduction of the charge state of Sn from Sn4+ to Sn2+ that adds to the degradation of the work function. For the nano-layers coverage of ITO studies, we evaluated both RuO2 and Se. For RuO2 coated ITO, XPS showed the formation of a Ru-Sn-O ternary oxide. The RuO2 nano-layer reduced the oxidation state of Sn in the Sn-rich surface of ITO from +4 to +2. The best work function obtained for this system is 4.98eV, raising the effective work function of ITO by more than 0.5 eV. For the Se coated ITO studies, a systematic study of the dependence of the effective work function on the thickness of Se overage and its chemistry at the Se/ITO interface was undertaken. XPS showed that Se reacts with Sn at the Sn-rich surface of ITO determined the presence of both negative and positive oxidation state of Se at the Se/ITO interface. The Se also reduced the oxidation state of Sn from Sn4+ to Sn2+ in the Sn-rich ITO surface. The highest effective work function obtained for this system is 5.06eV. A combination of RuO2/Se nanoscale coating of optimally cleaned ITO would be a good alternative for device applications that would provide work function tuning in addition to their potential ability to act as interface stabilizers and a barrier to reaction and inter-diffusion at ITO/active layers interfaces responsible for long term stability of devices and especially organic solar cells and organic light emitting diodes.
482

Sinteza i karakterizacija nanočestičnih prahova na bazi cink-ferita / Synthesis and characterisation of nanoparticles based on zinc-ferrites

Milanović Marija 02 July 2010 (has links)
<p>U ovom radu prikazani su rezultati ispitivanja strukturnih i magnetnih osobina čistih cink- ferita, ZnFe<sub>2</sub>O<sub>4</sub> i cink-ferita sa dodatkom indijuma Zn<sub>1-x</sub>In<sub>x</sub>Fe<sub>2</sub>O<sub>4</sub> i itrijuma, ZnY<sub>x</sub>Fe<sub>2-x</sub>O<sub>4</sub>, gde je 0 &le; x &le; 0,6. Prahovi na bazi cink-ferita su sintetisani koristeći nisko temperaturnu metodu sinteze iz tečne faze &ndash; metodu koprecipitacije. Osnovni cilj ove doktorske disertacije je bio da se utvrdi veza između uslova sinteze, uticaja različitih katjona, strukture i osobina čistih cink-feritnih nanočestica, kao i cink-ferita sa dodatkom indijuma i itrijuma. Radi praćenja uticaja veličine čestica dobijenog praha na strukturu i osobine ovih materijala, sintetisani čist cink-ferit je kalcinisan na različitim temperaturama. Posebno je razmatran i uticaj dodatka različitih jona na distribuciju i preraspodelu katjona u spinelnoj strukturi. Pored toga ispitivan je uticaj tako pripremljenih prahova na njihove magnetne osobine. Rentgenostrukturna i TEM analize potvrdili su da ispitivani uzorci spadaju u klasu nanomaterijala spinelne strukture. Analiza Raman i M&ouml;ssbauer spektara je ukazala na moguću raspodelu katjona između tetraedarskih i oktaedarskih mesta, te formiranje delimično inverznog spinela. Ispitivanja magnetnih osobina su pokazala da histerezisne petlje ne pokazuju saturaciju u prisustvu jakog magnetnog polja, &scaron;to je potvrdilo superparamagnetnu i jednodomensku prirodu čestica. Pokazano je da pored uticaja veličine čestica, dodatak različitih katjona (u ovom slučaju itrijum i indijum) ima veliki uticaj na uređenje strukture, a posledično i na magnetno pona&scaron;anje ispitivanih nanočestičnih sistema.</p> / <p> This thesis presents the results of the investigation of the structural and magnetic properties of nanostructured zinc ferrites, ZnFe2O4 and zinc ferrites supstituted with different amount of indium and yttrium, Zn1-xInxFe2O4 and ZnYxFe2-xO4 (0 &le; x &le; 0,6). Powders based on zinc ferrites were synthesised by a low temperature wet-chemical method &ndash; coprecipitation. The main purpose of this thesis was to establish the relationship between the synthesis, dopants, structure and properties of zinc ferrite based materials. Nanoparticles of ZnFe2O4 were calcined at different temperatures in order to elucidate the influence of the particle size on the magnetic properties of the obtained nanoparticles. In addition, we have investigated the effect of dopant addition on cation distribution in spinel structure, in order to modify the magnetic properties and to obtain the magnetic ceramics with improved properties compared to the bulk-counterparts. The results of X-ray and TEM analyses confirmed the nanosized nature and spinel type structure of the investigated samples. Raman and M&ouml;ssbauer spectroscopy studies implied on the possible cation distribution between the tetrahedral and octahedral sites and formation of the partially inversed spinel. The study of the magnetic properties showed that hysteresis loops do not saturate even in the presence of high magnetic fields, which confirmed the superparamagnetic and single domain nature of the samples. These observations imply that, besides the particle size, doping (e.g. yttrium and indium) causes significant structural rearrangements which in turn induce changes in magnetic behavior of the investigated nanoparticulate systems.</p>
483

Röntgenografische Charakterisierung von Indium-Zinn-Oxid-Dünnschichten

Kaune, Gunar 26 September 2005 (has links)
Mittels reaktivem Magnetron-Sputtern hergestellte Indium-Zinn-Oxid-Dünnschichten wurden mit den Methoden der Röntgendiffraktometrie und Röntgenreflektometrie charakterisiert. Es konnte gezeigt werden, dass die Wahl des Arbeitspunktes bei der Schichtabscheidung erheblichen Einfluss auf Kristallitorientierung, Gitterkonstante und Größe der Schichtspannung hat. Zusätzlich wurden mittels des Langford-Verfahrens Korngröße und Mikrospannungen bestimmt. Im Rahmen der röntgenografischen Spannungsmessung zeigten sich nichtlineare Verläufe der Dehnung über sin²Ψ, die mit dem Kornwechselwirkungsmodell nach Vook und Witt erklärt werden.
484

Schottky contacts to In2O3

von Wenckstern, Holger, Splith, Daniel Thomas, Schmidt, Florian, Grundmann, Marius, Bierwagen, Oliver, Speck, James S. January 2014 (has links)
n-type binary compound semiconductors such as InN, InAs, or In2O3 are especial because the branch-point energy or charge neutrality level lies within the conduction band. Their tendency to form a surface electron accumulation layer prevents the formation of rectifying Schottky contacts. Utilizing a reactive sputtering process in an oxygen-containing atmosphere, we demonstrate Schottky barrier diodes on indium oxide thin films with rectifying properties being sufficient for space charge layer spectroscopy. Conventional non-reactive sputtering resulted in ohmic contacts. We compare the rectification of Pt, Pd, and Au Schottky contacts on In2O3 and discuss temperature-dependent current-voltage characteristics of Pt/In2O3 in detail. The results substantiate the picture of oxygen vacancies being the source of electrons accumulating at the surface, however, the position of the charge neutrality level and/or the prediction of Schottky barrier heights from it are questioned.
485

Sputtered Transparent Contact Layers for Bifacial and Tandem Solar Cells

Kiselman, Klara January 2022 (has links)
A key to solar cells with lower environmental impact is higher efficiency and reduced material usages. Bifacial solar cells may have a higher efficiency as light can enter from two directions and tandem solar cells may use a larger part of the incoming solar spectrum, increasing the efficiency. However, both these applications require transparent and conducting contacts. This thesis aimed to investigate how suitable the transparent conductive oxides aluminum doped zinc oxide (AZO) and indium doped tin oxide (ITO) are as contacts in bifacial CIGS cells or CIGS/Silicon tandem cells. The contacts must remain stable when CIGS is deposited on top of it, meaning that they have to endure first 500°C and then 600°C in combination with copper, indium, gallium and selenium vapours. A thin layer of AZO topped with ITO and pure ITO films of different thicknesses were deposited by RF- and DC-sputtering, varying the oxygen flow. Opto-electrical characterization showed that the transparency in the infrared was balanced against high conductivity due to a shift in the plasmon peak's position. No great difference was seen between pure ITO samples and AZO/ITO samples, so only the first where further processed. The ITO films were annealed to 500°C in the CIGS deposition chamber, exposed to selenium vapour. The films' sheet resistances dropped drastically, which was mainly attributed to activation of tin donors. ITO produced with low oxygen flows also appeared more crystalline according to x-ray diffraction measurements. Photon absorption in the ITO was used to estimate the current loss in bifacial and tandem applications and graphs with current loss and sheet resistance can be used to select an ITO deposition process. Commercial ITO was exposed to 100s of the CIGS deposition process but only during selenium and gallium vapour. A layer of gallium selenide could be identified on the surface, but the ITO appeared to remain stable. Sodium fluoride pre deposition treatment lowered the samples absorption for all wavelengths compared to non-treated samples.
486

Synthesis and Plasmonic Properties of Copper-based Nanocrystals / 銅基ナノ結晶の合成とプラズモニック特性

Chen, Lihui 23 September 2016 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第19959号 / 理博第4226号 / 新制||理||1607(附属図書館) / 33055 / 京都大学大学院理学研究科化学専攻 / (主査)教授 寺西 利治, 教授 倉田 博基, 教授 島川 祐一 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DGAM
487

Optical Evaluation and Simulation of Photovoltaic Devices for Thermal Management

Subedi, Indra 29 August 2019 (has links)
No description available.
488

Probing Nanoscale Electrochemical Processes on Single Gold Nanoparticles using Optical Microscopy

Molina, Natalia Y., 0000-0001-9555-2761 January 2022 (has links)
In this work, we use optical techniques to provide insight into how various components within electrochemical cells can impart apparent heterogeneity to single gold nanoparticle electrodes. Optical methods are advantageous in comparison to traditional electrochemical techniques due to their high sensitivity and spatial resolution, allowing us to study the impact of heterogeneity with single nanoparticle and single molecule sensitivity. Throughout the course of this dissertation, two optical techniques are discussed in detail, dark-field microscopy, and single molecule fluorescence imaging. We first began by studying the impact of the substrate using dark-field microscopy to monitor the electrodissolution kinetics of gold nanoparticles on thin films of tin-doped indium oxide (ITO), which is a commonly used supporting electrode for correlated optical and electrochemical studies. We found that ITO from two different suppliers showed marked differences in the gold electrodissolution kinetics, with ITO from one of the suppliers even showing poor sample-to-sample reproducibility across substrates within the same lot number. These results showed that the supporting electrode cannot be ignored when performing single nanoparticle structure-function studies. In the second work, we analyzed the electrodissolution of gold nanoparticles on well-behaved ITO substrates to investigate heterogeneity in their electrodissolution kinetics. The rate constants associated with the electrodissolution of Au NPs were extracted by fitting the intensity-time traces to a first-order kinetic model. We found that a non-negligible population of Au NPs didn’t fit the predictive kinetics model leading us to further probe whether surface effects play a role in the electrodissolution process. Super-localization imaging was used to track the center position of the Au NPs as they electrodissolved revealing three distinct electrodissolution behaviors, and a mechanism for the electrodissolution of Au NPs was proposed. Furthermore, calcite-assisted localization and kinetics (CLocK) microscopy was used to visualize changes in anisotropy and provide information as to how the shape of the Au NP changes as it electrodissolves. Lastly, in our third work, we provide insight as to how heterogeneity from all the different components of a single nanoparticle electrochemical sample impacts the apparent electrode performance. We proposed dark-field microscopy and single molecule fluorescence imaging as tools capable of detangling these effects. Moreover, we established Cresyl Violet as a reporter of single molecule electrochemistry and developed a two-working electrode optical system capable of visualizing single molecule activity. Lastly, we explored the relationships between Au NP size, Cresyl Violet activity and Au NP electrodissolution and found no clear trend between them suggesting the need for more studies to deconvolute these effects and provide meaningful insight into the structure-property relationships. Overall, this dissertation highlights the complexity of single nanoparticle studies and how heterogeneity can be induced from all the components of an electrochemical cell. / Chemistry
489

Materials Engineering and Control for Advancing High-Efficiency CdSe/CdTe Solar Cells

Jamarkattel, Manoj K. 15 June 2023 (has links)
No description available.
490

Structure, Spectroscopy, Stability, and Metal Exchange among M(III) Complexes Bearing alpha-Hydroxy Acids

Warmin, Mary 02 June 2023 (has links)
No description available.

Page generated in 0.0234 seconds