• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 490
  • 18
  • 5
  • 3
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 523
  • 330
  • 267
  • 224
  • 120
  • 97
  • 86
  • 79
  • 74
  • 71
  • 69
  • 64
  • 60
  • 56
  • 50
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
361

Modelos de regressão linear heteroscedásticos com erros t-Student: uma abordagem bayesiana objetiva / Heteroscedastics linear regression models with Student t erros: an objective bayesian analysis.

Souza, Aline Campos Reis de 18 February 2016 (has links)
Neste trabalho, apresentamos uma extensão da análise bayesiana objetiva feita em Fonseca et al. (2008), baseada nas distribuições a priori de Jeffreys para o modelo de regressão linear com erros t-Student, para os quais consideramos a suposição de heteoscedasticidade. Mostramos que a distribuição a posteriori dos parâmetros do modelo regressão gerada pela distribuição a priori é própria. Através de um estudo de simulação, avaliamos as propriedades frequentistas dos estimadores bayesianos e comparamos os resultados com outras distribuições a priori encontradas na literatura. Além disso, uma análise de diagnóstico baseada na medida de divergência Kullback-Leiber é desenvolvida com a finalidade de estudar a robustez das estimativas na presença de observações atípicas. Finalmente, um conjunto de dados reais é utilizado para o ajuste do modelo proposto. / In this work , we present an extension of the objective bayesian analysis made in Fonseca et al. (2008), based on Jeffreys priors for linear regression models with Student t errors, for which we consider the heteroscedasticity assumption. We show that the posterior distribution generated by the proposed Jeffreys prior, is proper. Through simulation study , we analyzed the frequentist properties of the bayesian estimators obtained. Then we tested the robustness of the model through disturbances in the response variable by comparing its performance with those obtained under another prior distributions proposed in the literature. Finally, a real data set is used to analyze the performance of the proposed model . We detected possible in uential points through the Kullback -Leibler divergence measure, and used the selection model criterias EAIC, EBIC, DIC and LPML in order to compare the models.
362

Melhoramento do resíduo de Wald em modelos lineares generalizados / Improvement of Wald residual in generalized linear models

Urbano, Mariana Ragassi 18 December 2008 (has links)
A teoria dos modelos lineares generalizados é muito utilizada na estatística, para a modelagem de observações provenientes da distribuição Normal, mas, principalmente, na modelagem de observações cuja distribuição pertença à família exponencial de distribuições. Alguns exemplos são as distribuições binomial, gama, normal inversa, dentre outras. Ajustado um modelo, para vericar a adequação do ajuste, são aplicadas técnicas de diagnósticos e feita uma análise de resíduos. As propriedades dos resíduos para modelos lineares generalizados não são muito conhecidas e resultados assintóticos são o único recurso. Este trabalho teve como objetivo estudar as propriedades assintóticas do resíduo de Wald, e realizar correções para que sua distribuição se aproxime de uma distribuição normal padrão. Uma aplicação das correções para o resíduo de Wald foi feita para cinco conjuntos de dados. Em dois conjuntos, a variável resposta apresentava-se na forma de contagem, e para a modelagem utilizou-se a distribuição de Poisson. Dois outros conjuntos são provenientes de delineamentos experimentais inteiramente casualizados, com variável resposta contínua e para a modelagem utilizou-se a distribuição normal, e para o último conjunto, o interesse era modelar a proporção, e utilizou-se a distribuição binomial. Um estudo de simulação foi conduzido, utilizando-se o método de Monte Carlo, e concluiu-se, que com as correções realizadas no resíduo de Wald, houve uma melhora signicativa em sua distribuição, sendo que a versão melhorada do resíduo tem distribuição que aproxima mais de uma distribuição normal padrão. / The theory of generalized linear models is very used in statistics, not only for modeling data normally distributed, but in the modeling of data whose distribution belongs to the exponential family of distributions. Some examples are binomial, gamma and inverse Gaussian distribution, among others. After tting a model in order to check the adequacy of tting, diagnostic techniques are used. The properties of residuals in generalized linear models are not well known, and asymptotic results are the only recourse. This work aims to study the asymptotic properties of Wald residual, and to obtain corrections to make the distribution of the modied residuals closer to standard normal. An application of the corrections for Wald residuals was done to ve datasets. In two datasets the response variables were counts, and to model, was used the Poisson distribution. Other two datasets are provided from a completely randomized design with a continuous response, and to model, was used the normal distribution, and, in the last dataset the interest was to model the proportion and the binomial distribution was used. A Monte Carlo simulation, was performed showing that the distribution of the corrected Wald residuals, is more close to the standard normal distribution.
363

Um estudo sobre reconhecimento de padrões: um aprendizado supervisionado com classificador bayesiano / A study on pattern recognition: supervised learning with a Bayesian classier

Cerqueira, Pedro Henrique Ramos 17 January 2011 (has links)
A facilidade que temos para reconhecer um rosto, compreender palavras faladas, ler manuscritos, identicar chaves do carro no bolso e decidir se uma maçã está madura pelo seu cheiro, desmentem os processos complexos que estão por trás desses atos de reconhecer estes padrões. Estes reconhecimentos têm sido cruciais para a nossa sobrevivência, e ao longo das últimas dezenas de milhões de anos desenvolvemos sistemas sosticados para a realização dessas tarefas. O reconhecimento de padrões tem por objetivo realizar a classicação de determinado conjunto de dados em determinadas classes ou grupos, considerando os seus padrões e os das classes, permitindo diversas aplicações, como por exemplo: processamento de documentos, leitores de código de barra; identicação de pessoas, leitores óticos ou de impressão digital; automação industrial, processamento de imagens e aplicações agronômicas, análise de marcadores moleculares e classicação de plantas, tornando-se nos últimos anos, uma técnica de grande importância. Para uma melhor classicação é necessário realizar aprendizados, que podem ser elaborados pelo método supervisionado ou não supervisionado, a m de desenvolver os classicadores, tais como o classicador bayesiano e as redes neurais, que permitem a tomada de decisões. Para vericar a qualidade das classicações devem ser utilizadas medições especícas, como o índice kappa ou a probabilidade de erro geral. Deste modo é essencial a utilização de software para a tomada de decisões, entre eles o R e o WEKA, desenvolvido especicamente para resolução de problemas de reconhecimento de padrões. Com o intuito de solucionar os problemas especícos das áreas de automação e agronomia, foi utilizado o método de aprendizado supervisionado, com classicador bayesiano e para vericar a qualidade das classicações foram utilizados o índice de kappa e a probabilidade de erro geral por meio dos software R e WEKA, para as classicações foram utilizados dados de marcadores moleculares, dados de soja e tipos de embalagens de peças de automóvel. / The facility we have to recognize a face, to understand spoken words, reading manuscripts, identifying car keys in our pocket and deciding whether an apple is ripe by its smell, belie the complex processes that are behind the act to recognize these patterns. These recognitions have been crucial to our survival, and over the past tens of millions of years sophisticated systems were developed to accomplish these tasks. The pattern recognition has aimed to carry out the rating of a given set of data in certain classes or groups, considering their standards and those of their classes, allowing several applications, such as: document processing, bar code readers, identication of people, optical and ngerprint drivers, industrial automation, image processing and agronomic applications, molecular markers analysis and plant\'s classication, which became a technique of great importance in recent years. For a better rating is necessary to perform some studies, which can be formulated by supervised and unsupervised methods, in order to develop classiers, such as the Bayesian classier and neural networks, which enable the decision-making. To check the quality of ratings, specic measurements must be used, such as the kappa index or the general error probability. Thus it is essential to use software to make a decision, including the R and WEKA, developed specically to solve pattern recognition problems. In order to solve problems of specic areas, as automation and agronomy, the supervised learning method with Bayesian classier was used, and to verify the ratings quality, the kappa index and the general error probability were used. Software R and WEKA were used, in order to perform ratings for molecular markers data, soybean data and types of packaging for auto parts.
364

Combinação de modelos de campos aleatórios markovianos para classificação contextual de imagens multiespectrais / Combining markov random field models for multispectral image contextual classification

Levada, Alexandre Luis Magalhães 05 May 2010 (has links)
Este projeto de doutorado apresenta uma nova abordagem MAP-MRF para a classificação contextual de imagens multiespectrais utilizando combinação de modelos de Campos Aleatórios Markovianos definidos em sistemas de ordens superiores. A modelagem estatística para o problema de classificação segue o paradigma Bayesiano, com a definição de um modelo Markoviano para os dados observados (Gaussian Markov Random Field multiespectral) e outro modelo para representar o conhecimento a priori (Potts). Nesse cenário, o parâmetro β do modelo de Potts atua como um parâmetro de regularização, tendo papel fundamental no compromisso entre as observações e o conhecimento a priori, de modo que seu correto ajuste é necessário para a obtenção de bons resultados. A introdução de sistemas de vizinhança de ordens superiores requer a definição de novos métodos para a estimação dos parâmetros dos modelos Markovianos. Uma das contribuições desse trabalho é justamente propor novas equações de pseudo-verossimilhança para a estimação desses parâmetros no modelo de Potts em sistemas de segunda e terceira ordens. Apesar da abordagem por máxima pseudo-verossimilhança ser amplamente utilizada e conhecida na literatura de campos aleatórios, pouco se conhece acerca da acurácia dessa estimação. Foram derivadas aproximações para a variância assintótica dos estimadores propostos, caracterizando-os completamente no caso limite, com o intuito de realizar inferências e análises quantitativas sobre os parâmetros dos modelos Markovianos. A partir da definição dos modelos e do conhecimento dos parâmetros, o próximo estágio é a classificação das imagens multiespectrais. A solução para esse problema de inferência Bayesiana é dada pelo critério de estimação MAP, onde a solução ótima é determinada maximizando a probabilidade a posteriori, o que define um problema de otimização. Como não há solução analítica para esse problema no caso de prioris Markovianas, algoritmos iterativos de otimização combinatória foram empregados para aproximar a solução ótima. Nesse trabalho, adotam-se três métodos sub-ótimos: Iterated Conditional Modes, Maximizer of the Posterior Marginals e Game Strategy Approach. Porém, é demonstrado na literatura que tais métodos convergem para máximos locais e não globais, pois são altamente dependentes de sua condição inicial. Isto motivou o desenvolvimento de uma nova abordagem para combinação de classificadores contextuais, que utiliza múltiplas inicializações simultâneas providas por diferentes classificadores estatísticos pontuais. A metodologia proposta define um framework MAP-MRF bastante robusto para solução de problemas inversos, pois permite a utilização e a integração de diferentes condições iniciais em aplicações como classificação, filtragem e restauração de imagens. Como medidas quantitativas de desempenho, são adotados o coeficiente Kappa de Cohen e o coeficiente Tau de Kendall para verificar a concordância entre as saídas dos classificadores e a verdade terrestre (amostras pré-rotuladas). Resultados obtidos mostram que a inclusão de sistemas de vizinhança de ordens superiores é de fato capaz de melhorar significativamente não apenas o desempenho da classificação como também a estimação dos parâmetros dos modelos Markovianos, reduzindo tanto o erro de estimação quanto a variância assintótica. Além disso, a combinação de classificadores contextuais através da utilização de múltiplas inicializações simultâneas melhora significativamente o desempenho da classificação se comparada com a abordagem tradicional com apenas uma inicialização. / This work presents a novel MAP-MRF approach for multispectral image contextual classification by combining higher-order Markov Random Field models. The statistical modeling follows the Bayesian paradigm, with the definition of a multispectral Gaussian Markov Random Field model for the observations and a Potts MRF model to represent the a priori knowledge. In this scenario, the Potts MRF model parameter (β) plays the role of a regularization parameter by controlling the tradeoff between the likelihood and the prior knowledge, in a way that a suitable tunning for this parameter is required for a good performance in contextual classification. The introduction of higher-order MRF models requires the specification of novel parameter estimation methods. One of the contributions of this work is the definition of novel pseudo-likelihood equations for the estimation of these MRF parameters in second and third order neighborhood systems. Despite its widely usage in practical MRF applications, little is known about the accuracy of maximum pseudo-likelihood approach. Approximations for the asymptotic variance of the proposed MPL estimators were derived, completely characterizing their behavior in the limiting case, allowing statistical inference and quantitative analysis. From the statistical modeling and having the model parameters estimated, the next step is the multispectral image classification. The solution for this Bayesian inference problem is given by the MAP criterion, where the optimal solution is obtained by maximizing the a posteriori distribution, defining an optimization problem. As there is no analytical solution for this problem in case of Markovian priors, combinatorial optimization algorithms are required to approximate the optimal solution. In this work, we use three suboptimal methods: Iterated Conditional Modes, Maximizer of the Posterior Marginals and Game Strategy Approach, a variant approach based on non-cooperative game theory. However, it has been shown that these methods converge to local maxima solutions, since they are extremelly dependent on the initial condition. This fact motivated the development of a novel approach for combination of contextual classifiers, by making use of multiple initializations at the same time, where each one of these initial conditions is provided by different pointwise pattern classifiers. The proposed methodology defines a robust MAP-MRF framework for the solution of general inverse problems since it allows the use and integration of several initial conditions in a variety of applications as image classification, denoising and restoration. To evaluate the performance of the classification results, two statistical measures are used to verify the agreement between the classifiers output and the ground truth: Cohens Kappa and Kendalls Tau coefficient. The obtained results show that the use of higher-order neighborhood systems is capable of significantly improve not only the classification performance, but also the MRF parameter estimation by reducing both the estimation error and the asymptotic variance. Additionally, the combination of contextual classifiers through the use of multiple initializations also improves the classificatoin performance, when compared to the traditional single initialization approach.
365

Estimação e diagnóstico na distribuição exponencial por partes em análise de sobrevivência com fração de cura / Estimation and diagnostics for the piecewise exponential distribution in survival analysis with fraction cure

Sibim, Alessandra Cristiane 31 March 2011 (has links)
O principal objetivo deste trabalho é desenvolver procedimentos inferências em uma perspectiva bayesiana para modelos de sobrevivência com (ou sem) fração de cura baseada na distribuição exponencial por partes. A metodologia bayesiana é baseada em métodos de Monte Carlo via Cadeias de Markov (MCMC). Para detectar observações influentes nos modelos considerados foi usado o método bayesiano de análise de influência caso a caso (Cho et al., 2009), baseados na divergência de Kullback-Leibler. Além disso, propomos o modelo destrutivo binomial negativo com fração de cura. O modelo proposto é mais geral que os modelos de sobrevivência com fração de cura, já que permitem estimar a probabilidade do número de causas que não foram eliminadas por um tratamento inicial / The main objective is to develop procedures inferences in a bayesian perspective for survival models with (or without) the cure rate based on piecewise exponential distribution. The methodology is based on bayesian methods for Markov Chain Monte Carlo (MCMC). To detect influential observations in the models considering bayesian case deletion influence diagnostics based on the Kullback-Leibler divergence (Cho et al., 2009). Furthermore, we propose the negative binomial model destructive cure rate. The proposed model is more general than the survival models with cure rate, since the probability to estimate the number of cases which were not eliminated by an initial treatment
366

Um modelo Bayesiano semi-paramétrico para o monitoramento ``on-line\" de qualidade de Taguchi para atributos / A semi-parametric model for Taguchi´s On-Line Quality-Monitoring Procedure for Attributes

Tsunemi, Miriam Harumi 27 April 2009 (has links)
Este modelo contempla o cenário em que a sequência de frações não-conformes no decorrer de um ciclo do processo de produção aumenta gradativamente (situação comum, por exemplo, quando o desgaste de um equipamento é gradual), diferentemente dos modelos de Taguchi, Nayebpour e Woodall e Nandi e Sreehari (1997), que acomodam sequências de frações não-conformes assumindo no máximo três valores, e de Nandi e Sreehari (1999) e Trindade, Ho e Quinino (2007) que contemplam funções de degradação mais simples. O desenvolvimento é baseado nos trabalhos de Ferguson e Antoniak para o cálculo da distribuição a posteriori de uma medida P desconhecida, associada a uma função de distribuição F desconhecida que representa a sequência de frações não-conformes ao longo de um ciclo, supondo, a priori, mistura de Processos Dirichlet. A aplicação consiste na estimação da função de distribuição F e as estimativas de Bayes são analisadas através de alguns casos particulares / In this work, we propose an alternative model for Taguchi´s On-Line Quality-Monitoring Procedure for Attributes under a Bayesian nonparametric framework. This model may be applied to production processes the sequences of defective fractions during a cycle of which increase gradually (for example, when an equipment deteriorates little by little), differently from either Taguchi\'s, Nayebpour and Woodall\'s and Nandi and Sreehari\'s models that allow at most three values for the defective fraction or Nandi and Sreehari\'s and Trindade, Ho and Quinino\'s which take into account simple deterioration functions. The development is based on Ferguson\'s and Antoniak\'s papers to obtain a posteriori distribution for an unknown measure P, associated with an unknown distribution function F that represents the sequence of defective fractions, considering a prior mixture of Dirichlet Processes. The results are applied to the estimation of the distribution function F and the Bayes estimates are analised through some particular cases.
367

Interação genótipo x ambiente via correlações genéticas entre rebanhos e normas de reação utilizando abordagem bayesiana em bovinos de corte / Genotype by environment interaction using genetic correlations between herds and reaction norms under bayesian approach in beef cattle

Ribeiro, Sandra 05 March 2010 (has links)
O presente estudo teve por objetivo estudar os efeitos da interação genótipo x ambiente sobre as características peso à desmama, peso ao sobreano e ganho de peso da desmama ao sobreano em bovinos da raça Nelore. Foram analisados 58.032 registros de peso à desmama ajustados para 205 dias (PD), 46.032 registros de peso ao sobreano ajustados para 550 dias (PS) e 45.844 registros de ganho de peso da desmama ao sobreano ajustados para 345 dias (GP), originários de três rebanhos distintos. Os dados foram submetidos a dois métodos de análises: no primeiro, processaram-se análises unicaracterísticas para os rebanhos individuais e para o conjunto formado pelos três rebanhos, e análises tri-características para os dados de cada rebanho, em que as mesmas características foram consideradas como variáveis distintas. Foi utilizado o programa GIBBS2F90, sob abordagem bayesiana. As estimativas dadas pelas médias dos coeficientes de herdabilidade para PD, PS e GP variaram de 0,09 a 0,24, 0,24 a 0,44 e 0,09 a 0,31, respectivamente. Nesta mesma ordem, as correlações genéticas das mesmas características nos diferentes ambientes variaram de 0,88 a 0,93, 0,85 a 0,98 e 0,75 a 0,97. As correlações entre as DEPs dos touros nos ambientes variaram de 0,97 a 0,99, 0,69 a 0,95 e 0,77 a 0,98 para PD, PS e GP, respectivamente. No segundo método, utilizou-se um modelo de regressão aleatória para descrever alterações nos valores genéticos dos animais em função do gradiente ambiental, formado pelos grupos contemporâneos. As análises foram feitas pelo programa INTERGEN, também sob enfoque bayesiano. As estimativas dos coeficientes de herdabilidade para PD, PS e GP variaram de 0,06 a 0,44, 0,19 a 0,63 e 0,20 a 0,40, respectivamente. As correlações genéticas entre intercepto e inclinação das normas de reação foram de 0,75, para PD, 0,76 para PS e 0,34 para GP. As correlações entre os valores genéticos dos touros nos ambientes variaram de -0,38 a 0,99, 0,79 a 1,00 e 0,68 a 0,99 para PD, PS e GP, respectivamente. Os resultados de ambos os métodos apontaram efeito da interação genótipo x ambiente sobre as características nos rebanhos incluídos neste estudo, especialmente sobre a classificação dos touros. / The objective of the present study was to evaluate the genotype by environment interaction effect on weaning weight, post-weaning weight and post-weaning weight gain in Nellore cattle. It were analyzed 58,032 records of weaning weight adjusted for 205 days (PD), 46,032 records of post-weaning weight adjusted for 550 days (PS) and 45,844 records of post-weaning weight gain adjusted for 345 days (GP), originated from three distinct herds. Those data were analyzed applying two different methods: in the first proceeding, the data set of the three herds separately and the data set composed by all herds in one was submitted to single-trait analysis, while a three-trait analysis considered the same trait as a distinct variables in different herds. The variance components were estimated by GIBBS2F90, under bayesian inference. The estimates given by the means of heritability coefficients for PD, PS and GP ranged from 0.09 to 0.24, 0.24 to 0.44 and 0.09 to 0.31, respectively. In the same sequence, the genetic correlation among the same traits in different environments varied from 0.88 to 0.93, 0.85 to 0.98 and 0.75 to 0.97. The correlation between sire\'s EPDs in the environments ranged from 0.97 to 0.99, 0.69 a 0.95 and 0.77 to 0.98 for PD, PS and GP, respectively. In the second method, a random regression model was performed in order to describe changes in breeding values as a function of the gradient environment, arranged by contemporary groups. The analyses were performed by INTERGEN, also under bayesian inference. The estimates of heritability coefficients for PD, PS and GP ranged 0.06 to 0.44, 0.19 to 0.63 and 0.20 to 0.40, respectively. The genetic correlation between level and slope of reaction norms were 0.75 for PD, 0.76 for PS and 0.34 for GP. The correlation between sire\'s breeding values in the environments ranged from - 0.38 to 0.99, 0.79 to 1.00 and 0.68 to 0.99 for PD, PS and GP, respectively. The results of both methods shown effect of genotype by environment interaction over the traits in herds included in this study, especially over the ranking of sires.
368

Inferência bayesiana na avaliação da segurança de fundações em estacas de deslocamento. / Bayesian inference in the assessment of precast piles foundations safety.

Santos, Marcio de Souza 05 April 2007 (has links)
O tema \"segurança de fundações\" tem merecido especial atenção, tanto na lide acadêmica quanto na prática profissional, em virtude da necessidade de se buscar soluções cada vez mais otimizantes para a dicotomia custo versus segurança, soluções essas que diferem pela forma de tratamento das incertezas envolvidas no projeto e execução das fundações. As provas de carga sobre as fundações têm desempenhado papel central na redução dessas incertezas. Ultimamente, tem-se discutido muito, particularmente no âmbito da revisão da NBR 6122, o papel das provas de carga na redução das incertezas inerentes a qualquer obra de fundações. Se é ponto pacífico que as provas de carga devem reduzir as incertezas, já não há consenso quanto aos níveis dessa redução em função do tipo e da quantidade de provas de carga, nem tampouco como a variabilidade dos resultados das provas de carga efetuadas em dada obra influenciam no fator de segurança. Desta feita, o presente trabalho apresenta uma formulação consistente para combinação das previsões de capacidade de carga de estacas de deslocamento com as informações derivadas da realização de provas de carga estáticas conduzidas até a ruptura ou ensaios de carregamento dinâmico, propiciando a atualização racional dos indicadores de segurança, segundo os conceitos da inferência bayesiana. Os resultados permitem consignar que a inferência bayesiana se apresenta com grande vantagem em relação à inferência clássica, pois permite a incorporação das informações anteriores existentes, muitas vezes de caráter subjetivo, sendo menos dependente de amostragem. Além disso, a inferência bayesiana se mostrou um instrumento legítimo para a incorporação dos resultados de provas de carga, decorrendo em medidas de segurança fundamentadas e com paralelo na prática da engenharia de fundações. / The theme of \"foundations safety\" deserves special attention in theory and practice, due to the need to find optimized solutions, which balance cost and safety, solutions that differ in their method of uncertainty treatment. An important way of coping with these uncertainties is the proof pile load tests. Recently, the importance of proof load tests in the reduction of uncertainty has been widely discussed, mainly in the context of the NBR 6122 update. Despite their importance, there is no universally accepted standard regarding how the type and the number of proof load tests influence the safety factor. This work uses the bayesian inference concepts to present a consistent approach, which matches predictions of precast pile capacity with proof pile load tests results, thus providing a rational updating of safety indicators. The results of this study lead to the conclusion that bayesian inference methods have advantages compared with classical approaches. Since they allow the consideration of previous information, sometimes of a subjective nature, these methods do not require as large a sample as frequency approaches do. Furthermore, these methods have proved to be more robust than classical approaches whilst providing results which are consistent with current practice of foundation engineering.
369

Previsão de vazões afluentes a usinas hidrelétricas aplicada à programação da operação do sistema elétrico brasileiro / Streamflow forecasting applied to the operation planning of the Brazilian electric power system

Diana Ruth Mejia de Lima 17 September 2018 (has links)
Este trabalho aborda o problema de modelagem de séries de vazões afluentes aos aproveitamentos hidrelétricos. A previsão de vazão natural fluvial é realizada semanalmente para 158 usinas hidrelétricas do Sistema Interligado Nacional (SIN), pois trata-se de insumo fundamental para o planejamento e operação do sistema elétrico brasileiro. Diversos modelos são utilizados na determinação destas previsões, entre os quais podem ser citados os modelos físicos, os estatísticos e aqueles que aplicam sistemas inteligentes. Apesar de contínuos aprimoramentos terem sido incorporados ao processo de previsão de vazão, existem alguns aproveitamentos hidrelétricos para os quais os resultados de estimação têm apresentado grandes desvios. Neste contexto, com a motivação de se obter uma resposta acurada, investigam-se os sistemas fuzzy como modelos concorrentes aplicados à previsão de vazões semanais. O objetivo do trabalho é reduzir os erros de estimação para uma usina piloto, incorporando à previsão de vazão os dados de precipitação. Para a construção da série histórica de precipitação média da bacia hidrográfica, fez-se uma exaustiva pesquisa por estações pluviométricas, seguida por tratamento de dados de medição e método de interpolação. Ao final do trabalho, é apresentada uma análise comparativa entre os resultados obtidos com o Modelo Autorregressivo Periódico (PAR) e o sistema de inferência fuzzy. Com base no desempenho observado, superior ao modelo autorregressivo, comprova-se a adequação do modelo proposto para a modelagem do processo hidrológico. / This work addresses the modelling problem of hydropower plants reservoir streamflow series. The natural streamflow forecasting for 157 hydroelectric power plants of the National Interconnected System - NIS is updated on a weekly basis, which is an essential input for the planning and operation of the Brazilian Electric Power System. Several models are used to determine this prediction, such as physicals, statisticals and the ones that use intelligent systems. Despite the improvements to natural streamflow forecasting, substantial deviation has been found for the expected results of some hydropower plants. Highlighted the importance of this variable, fuzzy systems applied to weekly streamflows forecasts will be investigated as alternative models, in order to obtain better results. The purpose of this work is to reduce the estimation errors for a pilot hydropower plant, incorporating precipitation data into the forecast. Therefore, an exhaustive research to acquire data from hydrometeorological stations was conducted. After being treated, a variable selection method was applied to the data, defining the most relevant input variables for the prediction model. At the end, a comparative analysis shows that the fuzzy model presents a better performance than the periodic autoregressive model used by ONS to plan the operation of the electric power system.
370

Um Modelo para Gerenciamento de Perfis de Entidades Através de Inferência em Trilhas

Wagner, André 18 March 2013 (has links)
Submitted by William Justo Figueiro (williamjf) on 2015-08-28T17:26:34Z No. of bitstreams: 1 34e.pdf: 3564229 bytes, checksum: 47f535efb73877017d3fc9b78250f707 (MD5) / Made available in DSpace on 2015-08-28T17:26:34Z (GMT). No. of bitstreams: 1 34e.pdf: 3564229 bytes, checksum: 47f535efb73877017d3fc9b78250f707 (MD5) Previous issue date: 2013 / CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Um dos principais desafios de sistemas ubíquos e sensíveis a contexto é a coleta de informações relevantes sobre entidades, e o uso destas informações para compreender e prever seu comportamento. Isto permite que as aplicações adaptem-se às entidades, evitando assim uma sobrecarga de questionamentos e informações à entidade. Este trabalho apresenta o eProfile, um modelo que permite que aplicações registrem as ações de entidades em trilhas e infiram informações de perfil a partir destas trilhas, utilizando interoperabilidade semântica e assim permitindo que diferentes aplicações compartilhem informações em um perfil unificado. Foi desenvolvido um protótipo para a avaliação do modelo, o qual foi integrado com dois diferentes softwares. Foi verificado que é possível enriquecer a geração de perfis de aplicações através da integração com o modelo. As contribuições deste modelo são o uso de trilhas para extrair perfis, a geração de perfis dinâmicos, o gerenciamento de regras de inferência e modelos de entidades dinâmicos e a interoperabilidade semântica do modelo. / Context-aware and ubiquitous systems have the challenge of implicitly collect relevant information about entities, and use this information to understand and predict their behaviour. This allows the applications to adapt themselves to the entities, thus avoiding to overflow them with inquires and information. The analysis of trails, the context-aware history of actions, can further improve the relevance of information. This dissertation proposes a model that allows applications to register entites’ actions in trails and infer profile information from these trails, using semantic interoperability and thus allowing different applications to share information and infer a unified profile. A prototype was developed for the evaluation of the model, and it was integrated with two different softwares. It was verified that was possible to enrich the profile generation of applications through the integration with the modelo. The contributions of this model are the use of trails for extracting profiles, the generation of dynamic profiles, the capability of managing dynamic inference rules for profile generation and the semantic interoperabilty of the model.

Page generated in 0.0405 seconds