Spelling suggestions: "subject:"ingeniería dde tejidos"" "subject:"ingeniería dde ejidos""
1 |
Evaluation of Elastographic techniques generated by means of external vibrationArroyo Barboza, Johnny Junior 01 December 2017 (has links)
Breast cancer is one of the greatest problems of national and international public health, whose incidence
among women population shows an increasing trend. Nowadays there are several elastographic
techniques, which seek to characterize the tissue, that is, to analyze the response produced by the application
of a perturbation in the medium, to describe its mechanical properties. Among the modalities
used are ultrasound, nuclear magnetic resonance and optical coherence tomography. On the other hand,
among the types of disturbance used are low frequency mechanical waves, a uniform compression force
or acoustic radiation force.
In this thesis work, ultrasound was used due to its low economical cost in comparison to the other
modalities. In addition, the type of perturbation selected was the external mechanical vibration, as it
ensures the achievement of quantitative results, there is no risk of temperature rise in the analyzed area
and allows the repeatability of the results obtained. Hence, two elastographic techniques were the axes
of the present work: vibro-elastography and normal vibration holography. For the first, a calibrated
phantom and a gelatin-based phantom were used, in order to characterize and validate the technique
over a wide range of excitation frequencies. Posteriorly, 18 patients were analyzed prior biopsy exam,
obtaining elastograms and contrasting them with the respective biopsy results. The results suggest that
the technique is able to identify the presence of benign or malignant cancer, and the elasticity estimated
agree with values reported in the literature. The second technique is proposed in the elastography field
for the first time. Based on holography, its experimental scheme is established, and the mathematical
expression for shear speed estimation is presented. Results from simulation and experiments performed
on homogeneous and heterogeneous phantoms are presented, and the estimates are compared with
previously obtained reference values. The results suggest that the estimates are close to the reference
values for all media tested, and the technique must be studied in depth to revert artifacts formation. / Tesis
|
2 |
Diseño, síntesis y caracterización de sistemas de liberación múltiple de antibióticos con acción selectiva al tejido óseoPlacente, Damián 16 February 2023 (has links)
El desarrollo científico y tecnológico de los últimos años se ha acompañado de un
aumento de la esperanza de vida y un incremento, en consecuencia, de eventos asociados a
desórdenes patológicos. En el tejido óseo, estas afecciones incluyen desde fracturas hasta
osteoporosis, osteomielitis, osteosarcoma y osteoartritis. Esto ha acrecentado el número de
implantes e injertos de hueso realizados en el ámbito de la ortopedia y odontología. Estas
cirugías suponen un riesgo inherente de infección y de desarrollo de afecciones
periimplantarias, con el consecuente aflojamiento del implante y necesidad de procedimientos
de revisión. El desarrollo de microorganismos en la superficie de una prótesis genera un
proceso infeccioso que cursa con inflamación de los tejidos blandos que rodean al implante,
comprometiendo su futuro.
Adicionalmente, en muchos casos son necesarias cirugías de revisión por aflojamiento
aséptico, es decir, aflojamiento del implante debido a procesos no infecciosos. Este evento está
asociado a la falta de integración del implante con el hueso (osteointegración), con
impedimento de fijación de la prótesis al cuerpo.
En virtud de lo mencionado, el objetivo de este trabajo fue el desarrollo de nuevas
estrategias que permitan conjuntamente mejorar la integración hueso-implante y a la vez evitar
la colonización bacteriana de las superficies implantables. Para la implementación de dichas
estrategias se emplearon nanopartículas de hidroxiapatita (nano-HA), las cuales reúnen muchas
características que la convierten en una alternativa ideal para su uso en el desarrollo de
biomateriales destinados al tejido óseo: composición química similar a la fase mineral ósea,
biocompatibilidad, biodegradabilidad y propiedades osteoinductivas.
Para ello, se han abordado diferentes enfoques como el desarrollo de plataformas y/o
formulaciones portadoras de fármacos (plataformas HAI/CIP, HAI/L-ARG/IBU y la
formulación multifármaco LMm/nano-HAI), así como mecanismos alternativos para impedir
la colonización de superficies implantables por parte de microrganismos sin la incorporación
de principios activos (plataformas HAII/MoOx). Los sistemas desarrollados demostraron ser
estrategias válidas y con potencial para su aplicabilidad como biomateriales para el
recubrimiento de superficies implantables y/o relleno de pequeños defectos óseos.
Las plataformas HAI/CIP, HAI/L-ARG/IBU y la formulación multifármaco
LMm/nano-HAI propiciaron la liberación de los fármacos ibuprofeno y ciprofloxacina dentro
de los rangos de concentración terapéuticos, con una cinética controlada dependiente del pH y
en los tiempos adecuados en relación al proceso normal de curación de heridas. Además, la
formulación multifármaco demostró estabilidad de almacenamiento en un marco temporal
apropiado, actividad antibacteriana in vitro frente a Staphylococcus aureus y Pseudomona
aeruginosa y biocompatibilidad in vitro en cultivos primarios de osteoblastos de calvaria de
rata.
Por otra parte, a partir del desarrollo de las plataformas HAII/MoOx hemos confirmado
que las propiedades de fluorescencia autoactivadas pueden inducirse combinando óxidos de
molibdeno (MoOx) con cristales de HA. Los defectos puntuales inducidos en nano-HAII actúan
como aceptores de electrones, propiciándole propiedades redox al material que explicarían la
actividad antibacteriana de las plataformas frente a las cepas bacterianas Staphylococcus
aureus y Pseudomona aeruginosa. Se verificó la biocompatibilidad in vitro de estas
plataformas por interacción de las mismas con cultivos primarios de osteoblastos de calvaria
de rata. / The scientific and technological development of recent years has been accompanied by
an increase in life expectancy and, consequently, an increase in events associated with
pathological disorders. In bone tissue, these conditions range from fractures to osteoporosis,
osteomyelitis, osteosarcoma and osteoarthritis. This has increased the number of implants and
bone grafts performed in the field of orthopedics and dentistry. These surgeries pose an inherent
risk of infection and the development of peri-implant conditions, with the consequent loosening
of the implant and the need for revision procedures. The microorganism’s growth on the surface
of a prosthesis generates an infectious process that causes inflammation of the soft tissues
surrounding the implant, compromising its future.
Additionally, in many cases revision surgeries are necessary due to aseptic loosening,
that is, loosening of the implant due to non-infectious processes. This event is associated with
the lack of integration of the implant with the bone (osseointegration), with a prosthesis fixation
impediment to the body.
By virtue of the above, the objective of this work was the development of new strategies
that jointly allow to improve bone-implant integration and, at the same time, avoid bacterial
colonization of implantable surfaces. For the implementation of these strategies,
hydroxyapatite nanoparticles (nano-HA) were used, which have many characteristics that make
them an ideal alternative to use in the development of biomaterials for bone tissue: chemical
composition similar to the bone mineral phase, biocompatibility, biodegradability and
osteoinductive properties.
To this end, different approaches have been addressed, such as the development of drug-
releasing platforms and/or formulations (HAI/CIP, HAI/L-ARG/IBU platforms, and the
LMm/nano-HAI multidrug formulation), as well as alternative mechanisms to prevent the
colonization of implantable surfaces by microorganisms without the incorporation of active
ingredients (HAII/MoOx platforms). The developed systems proved to be valid strategies with
potential for their applicability as biomaterials for the coating of implantable surfaces and/or
filling of small bone defects.
The HAI/CIP, HAI/L-ARG/IBU platforms and the LMm/nano-HAI multidrug
formulation favored the release of ibuprofen and ciprofloxacin drugs within therapeutic
concentration ranges, with controlled kinetics dependent on pH and time. in relation to the
normal process of wound healing. In addition, the multidrug formulation demonstrated storage
stability in an appropriate time frame, in vitro antibacterial activity against Staphylococcus
aureus and Pseudomonas aeruginosa, and in vitro biocompatibility with primary cultures of
rat calvaria osteoblasts.
On the other hand, from the development of HAII/MoOx platforms we have confirmed
that self-activated fluorescence properties can be induced combining molybdenum oxides
(MoOx) with HA crystals. The point defects induced in nano-HAII act as electron acceptors,
providing redox properties to the material that would explain the antibacterial activity of the
platforms against the bacterial strains Staphylococcus aureus and Pseudomonas aeruginosa.
The in vitro biocompatibility of these platforms was verified through their interaction with
primary cultures of rat calvaria osteoblasts.
|
3 |
Desarrollo y caracterización de materiales biodegradables para regeneración óseaNavarro Toro, Melba 08 July 2005 (has links)
Actualmente, en el área de los biomateriales destinados a la fijación y regeneración ósea, existe un interés creciente en el desarrollo de materiales que sean reabsorbibles y a su vez, capaces de estimular la regeneración del hueso. En el caso de los materiales para fijación ósea, la idea es crear un material que sea capaz de soportar las cargas iniciales y luego se degrade de forma gradual y transfiera las cargas de forma progresiva al nuevo hueso, evitando así una segunda intervención quirúrgica para la extracción del implante. En el caso de los materiales para regeneración ósea, el objetivo final es diseñar materiales que sean reemplazados de forma paulatina por el nuevo tejido.Esta tesis reúne una serie de estudios, realizados con el fin de desarrollar diferentes materiales biodegradables basados en el polímero PLA y el vidrio G5, que es un vidrio de fosfato de calcio dentro del sistema P2O5-CaO-Na2O-TiO2. Se han elaborado materiales compuestos biodegradables no porosos y porosos (andamios tridimensionales), para la fijación y regeneración del tejido óseo respectivamente. Así como también, se han desarrollado estructuras porosas de vitrocerámica, también para aplicaciones en ingeniería de tejidos. Cada uno de los materiales desarrollados ha sido caracterizado inicialmente en función de sus propiedades físico-químicas. Dado que son materiales para implantación y biodegradables, también se ha evaluado tanto la respuesta biológica, como el comportamiento de los mismos a lo largo de diferentes períodos de degradación in vitro, es decir, simulando condiciones fisiológicas. Los resultados obtenidos a partir de los diferentes estudios, indican que se han desarrollado una variedad de materiales biodegradables, con un amplio rango de aplicaciones y un gran potencial en el campo de la regeneración ósea principalmente. Por lo que, los estudios realizados a lo largo de esta tesis doctoral, forman parte de lo que sería un primer acercamiento al desarrollo de nuevos materiales biodegradables, y constituyen el punto de partida para la investigación de nuevos materiales porosos para aplicaciones en ingeniería de tejidos. / Nowadays, research on materials for bone fixation and regeneration has focused increasingly on the development of materials that are reabsorbable and at the same time, capable of stimulating bone tissue regeneration. In the case of materials for bone fixation, the objective is the creation of a material that supports the initial loads and then undergoes a gradual degradation, transferring the loads progressively to the new bone tissue. Avoiding in this way, second surgical procedures for the retrievement of the implant. In the case of the materials for bone regeneration, the objective is to design a material that stimulates bone formation and is gradually replaced by the bone tissue.This thesis put together several studies that have been performed for the development of different biodegradable materials based on PLA and a calcium phosphate glass, coded G5, which is in the system P2O5-CaO-Na2O-TiO2. Non-porous and porous (3D scaffolds) materials for bone fixation and bone tissue regeneration respectively, have been elaborated, as well as porous glass-ceramic structures for bone tissue engineering. Each one of the developed materials has been characterized in terms of its physico-chemical properties, its behaviour along in vitro degradation and its biological response.The results obtained through the different studies, suggest that the variety of biodegradable materials that have been developed, present a wide range of applications and regenerative potential. Thus, the studies performed along this PhD thesis, are the first approach to the development of new biodegradable materials, and represent the starting point for their optimisation and development of new porous structures for tissue engineering applications.
|
4 |
Evaluation of Elastographic techniques generated by means of external vibrationArroyo Barboza, Johnny Junior 01 December 2017 (has links)
Breast cancer is one of the greatest problems of national and international public health, whose incidence
among women population shows an increasing trend. Nowadays there are several elastographic
techniques, which seek to characterize the tissue, that is, to analyze the response produced by the application
of a perturbation in the medium, to describe its mechanical properties. Among the modalities
used are ultrasound, nuclear magnetic resonance and optical coherence tomography. On the other hand,
among the types of disturbance used are low frequency mechanical waves, a uniform compression force
or acoustic radiation force.
In this thesis work, ultrasound was used due to its low economical cost in comparison to the other
modalities. In addition, the type of perturbation selected was the external mechanical vibration, as it
ensures the achievement of quantitative results, there is no risk of temperature rise in the analyzed area
and allows the repeatability of the results obtained. Hence, two elastographic techniques were the axes
of the present work: vibro-elastography and normal vibration holography. For the first, a calibrated
phantom and a gelatin-based phantom were used, in order to characterize and validate the technique
over a wide range of excitation frequencies. Posteriorly, 18 patients were analyzed prior biopsy exam,
obtaining elastograms and contrasting them with the respective biopsy results. The results suggest that
the technique is able to identify the presence of benign or malignant cancer, and the elasticity estimated
agree with values reported in the literature. The second technique is proposed in the elastography field
for the first time. Based on holography, its experimental scheme is established, and the mathematical
expression for shear speed estimation is presented. Results from simulation and experiments performed
on homogeneous and heterogeneous phantoms are presented, and the estimates are compared with
previously obtained reference values. The results suggest that the estimates are close to the reference
values for all media tested, and the technique must be studied in depth to revert artifacts formation. / Tesis
|
5 |
Soft tissue characterization using different quantitative ultrasound modalitiesRomero Gutierrez, Stefano Enrique 24 October 2019 (has links)
Quantitative ultrasound has been used in several modalities for different experiments such as simulated
phantom, physical phantoms, ex vivo and in vivo tissues. The potential of the ultrasound techniques
could be useful to complemented medical diagnosis. In this work, two quantitative ultrasound techniques
are applied on in vivo experiments: crawling waves sonoelastography applied to bicep brachii and a
regularized power law for backscattering and attenuation coefficient for ovary tumor.
A crawling waves sonoelastography (CWS) method was applied using two mini-shakers making parallel
contact (conventional setup) and normal contact with the surface in two phantoms (homogeneous
and inhomogeneous) using the phase derivative algorithm to assess the performance of the normal excitation
with well-know metrics such as error, coefficient of variation, signal-to noise ratio and contrast-to
noise ratio. The results suggest that the normal excitation provides comparable stiffness estimation in
homogeneous and inhomogeneous phantoms. For in vivo test, a bicep barchii from healthy volunteers
were assess in two experiments: relaxed-contracted and with a range weight of load. The application
of normal setup indicated that a measurement of the relative stiffness on bicep brachii can be realized.
The results indicated that a using the incremental weight causes a increase on the stiffness of the bicep
following a linear behavior.
A regularized power law (RPL) method was implemented and testing with simulated phantoms using
a combination of the possible variables of data block size and the regularized parameters of the three
variables of the backscattering and attenuation coefficients. The results showed that is possible provide
accurate and precise backscattering and attenuation coefficient in the same algorithm. Additionally, in
vivo breast experiments was performed and compared with the literature obtaining comparable results.
Finally, a tumor of patients with suspected ovarian cancer were assess. The results suggests that RPL
method and in general provides reasonable depictions of the reflectivity and attenuation of interrogated
media. / Tesis
|
6 |
Biohybrids for Neural Tracts RegenerationRodríguez Doblado, Laura 11 March 2022 (has links)
[ES] Las lesiones del sistema nervioso que implican la interrupción de haces axonales son devastadoras para el individuo. La regeneración autónoma de los tractos axonales dañados o degenerados es poco frecuente, ya que intervienen una gran cantidad de factores que limitan esta recuperación. Hoy en día, la medicina convencional no cuenta con tratamientos efectivos y exitosos para estas lesiones, y el tratamiento de los síntomas suele ser la mejor solución. Para revertirlo y lograr la reconexión funcional de las neuronas, la ingeniería de tejidos actualmente opta por el uso de soportes tridimensionales biocompatibles, células y moléculas bioactivas. Específicamente, una de las estrategias propuestas han sido los conductos nerviosos guiados, no solo para lesiones de nervios periféricos sino también para tractos del sistema nervioso central.
En esta Tesis Doctoral, se propone la combinación de un conducto tubular hueco de ácido hialurónico (HA) relleno con fibras de ácido poli-L-lactida (PLA) en su lumen, y con células de Schwann (SC) pre-cultivadas como células de soporte de la extension axonal para superar los obstáculos que limitan la regeneración de axones in vivo. Se ha demostrado que el conducto de HA y las fibras de PLA mantienen la proliferación de las SC, las cuales forman una estructura cilíndica denominada 'vaina de SC' en la pared interna del lumen del conducto y a su vez crecen de forma direccional en las fibras de PLA. El conjunto unidireccional paralelo formado por las fibras PLA y las SC recapitula las características direccionales de los tractos axonales en el sistema nervioso. Al sembrar un explante de ganglio de la raíz dorsal (DRG) en uno de los extremos del conducto, se ha conseguido el crecimiento de los axones del DRG y se ha estudiado las características de las SC, los axones crecidos y su asociación, comprobando que el biohíbrido es capaz de soportar el crecimiento axonal.
Además, se propone un concepto multimodular para superar las limitaciones típicas de la regeneración axonal a larga distancia, con la combinación de haces de fibras de PLA en el lumen de varios conductos o módulos de HA individuales más cortos que se posicionan uno detrás del otro, diseñando conductos nerviosos guiados con la longitud deseada, junto con SC pre-cultivadas. El conducto multimodular demostró ser eficaz para promover el crecimiento dirigido de axones. Además, se ha desarrollado un constructo compuesto por la estructura formada por las fibras de PLA y las SC, denominado 'cordón neural', tras eliminar el conducto de HA, lo que abre la puerta a la generación de una estructura neural in vitro para su trasplante. / [CA] Les lesions de el sistema nerviós que impliquen la interrupció de feixos axonals són devastadores per a l'individu. La regeneració autònoma dels tractes axonals danyats o degenerats és poc freqüent, ja que intervenen una gran quantitat de factors que limiten aquesta recuperació. Avui dia, la medicina convencional no compta amb tractaments efectius i reeixits per aquestes lesions, i el tractament dels símptomes sol ser la millor solució. Per revertir i aconseguir la reconnexió funcional de les neurones, l'enginyeria de teixits actualment opta per l'ús de suports tridimensionals biocompatibles, cèl·lules i molècules bioactives. Específicament, una de les estratègies proposades han estat els conductes nerviosos guiats, no només per lesions de nervis perifèrics sinó també per tractes de sistema nerviós central.
En aquesta tesi doctoral, es proposa la combinació d'un conducte tubular buit d'àcid hialurònic (HA) farcit amb fibres d'àcid poli-L-lactida (PLA) en el seu lumen, i amb cèl·lules de Schwann (SC) pre-cultivades com a cèl·lules de suport de l'extension axonal per superar els obstacles que limiten la regeneració d'axons in vivo. S'ha demostrat que el conducte d'HA i les fibres de PLA mantenen la proliferació de les SC, les quals formen una estructura cilíndica anomenada 'beina de SC' a la paret interna de l'lumen de l'conducte i al seu torn creixen de manera direccional en les fibres de PLA. El conjunt unidireccional paral·lel format per les fibres PLA i les SC recapitula les característiques direccionals dels tractes axonals en el sistema nerviós. A l'sembrar un explantament de gangli de l'arrel dorsal (DRG) en un dels extrems de l'conducte, s'ha seguit el creixement dels axons de l'DRG i s'ha estudiat les característiques de les SC, els axons crescuts i la seva associació, comprovant que el biohíbrido és capaç de suportar el creixement axonal.
A més, es proposa un concepte multimodular per superar les limitacions típiques de la regeneració axonal a llarga distància, amb la combinació de feixos de fibres de PLA en el lumen de diversos conductes o mòduls de HA individuals més curts que es posicionen un darrere l'l'altre, dissenyant conductes nerviosos guiats amb la longitud desitjada, juntament amb SC pre-cultivades. El conducte multimodular va demostrar ser eficaç per promoure el creixement dirigit d'axons. A més, s'ha desenvolupat un constructe format per l'estructura formada per les fibres de PLA i les SC, denominat 'cordó neural', després d'eliminar el conducte d'HA, el que obre la porta a la generació d'una estructura neural in vitro per al seu trasplantament. / [EN] Injuries to the nervous system that involve the disruption of axonal bundles are devastating to the individual. Autonomous regeneration of damaged or degenerated axonal tracts is infrequent since a large number of factors are involved limiting this recovery. Nowadays, conventional medicine does not have effective and successful treatments for these injuries, and the treatment of symptoms is often the best solution. In order to reverse it and achieve the functional reconnection of neurons, tissue engineering currently opts for the use of biocompatible three-dimensional supports, cells, and bioactive molecules. Specifically, one of the proposed strategies has been nerve guidance conduits, not only for peripheral nerve injuries but also for tracts of the central nervous system.
In this Doctoral Thesis, we propose the combination of hyaluronic acid (HA) single-channel tubular conduit filled with poly-L-lactide acid (PLA) fibres in its lumen, with pre-cultured Schwann cells (SC) as cells supportive of axon extension to overcome the obstacles limiting axon regeneration in vivo. We have proved that HA conduit and PLA fibres sustain the proliferation of SC, which form a cylindrical structure named 'SC sheath' on the inner wall of the lumen of the conduit and in turn grow directionally in the PLA fibres. The parallel unidirectional ensemble formed by PLA fibres and SC recapitulates the directional features of axonal pathways in the nervous system. Planting a dorsal root ganglion (DRG) explant on one of the conduit's ends, we have followed axon outgrowth from the DRG and studied the features of SC, the grown axons and their association, checking that the biohybrid is capable of supporting axonal growth.
Furthermore, we propose a multimodular concept to overcome the typical limitations of long-distance axonal regeneration, with the combination of PLA fibres bundle in the lumen of several shorter individual HA conduits or modules which positioned themselves one behind the other, designing nerve guided conduits with the desired length, together with pre-cultured SC. The multimodular conduit proved effective in promoting directed axon growth. Moreover, we developed a construct consisting of the structure formed by the PLA fibres and the SC, named 'neural cord', after eliminating the HA conduit, that opens the door to the generation of a neural structure in vitro for transplantation. / La presente tesis doctoral se ha realizado con la financiación del Ministerio de Economía y Competitividad a través de los proyectos MAT2015-66666-C3-1-R, DPI2015-72863-EXP, y AEI RTI2018-095872-B-C21-C22/ERDF. Agradezco también la beca FPU15/04975 al Ministerio de Educación Cultura y Deportes. / Rodríguez Doblado, L. (2021). Biohybrids for Neural Tracts Regeneration [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/165196
|
7 |
Self-assembling peptide scaffolds as extracellular matrix analogs and their application in tissue engineering and regenerative biologyGenové Corominas, Elsa 26 October 2007 (has links)
En aquesta Tesi, un nou biomaterial de disseny composat per seqüències peptídiques repetitives i amfifíliques, que per autoensamblatge forma xarxes de nanofibres (i hidrogels), AcN-RADARADARADARADA-CONH2, s´ha utilitzat com a anàleg de la matriu extracel·lular per al manteniment, proliferació i diferenciació cel·lular. Aquest pèptid s'ha funcionalititzat amb motius biològicament actius procedents de proteïnes de la matriu extracel·lular incloent laminina-1 i colàgen IV. El scaffold peptídic autoensamblant RAD16-I i els seus derivats biològicament actius s´han caracteritzat i provat utilitzant diferents sistemes cel·lulars com pot ser les cèl·lules d'aorta humanes (HAEC), hepatocits madurs i la línea progenitora de fetge (Lig-8). La proteòlisi d'aquest pèptid s'ha avaluat utilitzant tripsina com a enzim proteolític, i els fragments resultants s'han analitzat per MALDI-TOF i AFM. Així mateix, la segona generació de biomaterials basats en el RAD16-I s'ha provat tant amb HAEC com amb hepatocits madurs. Amb aquests sistemes hem demostrat que el desenvolupament d'una matriu biomiètica reforça, a la vegada que manté, les funcions específiques de cada teixit. En particular, els resultats obtinguts en diferenciació, proliferació i manteniment de la funció cel·lular utilitzant pèptids sintètics autoensamblants són comparables amb els resultats que s'obtenen utilitzant matrius biològiques (Colàgen I i Matrigel). Això indica que els nostres anàlegs de la matriu extracel·lular poden substituir als materials naturals, i suggereix l'ús d'aquests materials intel·ligents amb capacitat instructiva en aplicacions terapèutiques. Així mateix s'ha provat que l'ús d'aquests pèptids auto-ensamblants és eficient en la construcció d'un nínxol de cèl·lules mare. Hem sigut capaços de controlar la cinètica cel·lular (de simètrica a assimètrica) induint diferenciació funcional, a la vegada que es mantenia una petita proporció de cèl·lules no diferenciades. Aquests resultats indiquen clarament que hem sigue capaços d'obtenir un nínxol on cèl·lules primitives (Lig-8) es diferencien adquirint funcions d'hepatocits madurs. Hem desenvolupat una plataforma de biomaterials que es podrien utilitzar per la funcionalització amb innumerables biomolècules amb capacitat d'induir processos biològics com la diferenciació, proliferació i funció metabòlica. Aquests biomaterials, preveiem que tindran un gran impacte a l'àrea terapèutica i biología regenerativa. / En esta Tesis, un nuevo biomaterial de diseño compuesto por secuencias peptídicas repetitivas y amfifílicas que por autoensamblaje forma redes de nanofibras (e hidrogeles), AcN-RADARADARADARADA-CONH2 (RAD16-I), se ha utilizado como análogo de la matriz extracelular para el mantenimiento, proliferación y diferenciación celular. Este péptido se ha funcionalizado con motivos biológicamente activos procedentes de proteínas de la matriz extracelular incluyendo laminina-1 y colágeno IV. El scaffold peptídico autoensamblante RAD16-I y sus derivados biológicamente activos se han caracterizado y probado utilizando diferentes sistemas celulares como puede ser células endoteliales de aorta humanas (HAEC), hepatocitos maduros y la línea progenitora de hígado Lig-8. La proteólisis de este péptido se ha evaluado utilizando tripsina como enzima proteolítico, y los fragmentos resultantes se han analizado por MALDI-TOF y AFM. Asimismo, la segunda generación de biomateriales basados en el RAD16-I se ha probado tanto con HAEC como hepatocitos maduros. Con estos sistemas hemos demostrado que el desarrollo de una matriz biomimética refuerza a la vez que mantiene las funciones específicas de cada tejido. En particular, los resultados obtenidos en diferenciación, proliferación y mantenimiento de la función celular utilizando los péptidos sintéticos auto-ensamblantes son comparables con los resultados que se obtienen usando matrices biológicas (Colágeno I y Matrigel). Esto indica que nuestros análogos de la matriz extracelular pueden reemplazar a los materiales naturales, y sugiere el uso de estos materiales inteligentes con capacidad instructiva en aplicaciones terapéuticas. Asimismo, se ha probado que el uso de estos péptidos auto-ensamblantes es eficiente en la construcción de un nicho de células madre. Hemos sido capaces de controlar la cinética celular (de simétrica a asimétrica) induciendo diferenciación funcional, a la vez que se mantenía una pequeña proporción de células no diferenciadas. Estos resultados indican claramente que hemos sido capaces de obtener un nicho donde células primitivas (Lig-8) se diferencian adquiriendo funciones de hepatocitos maduros. Hemos desarrollado una plataforma de biomateriales que se podrían utilizar para la funcionalización con innumerables biomoléculas con capacidad de inducir procesos biológicos como la diferenciación, proliferación y función metabólica. Estos biomateriales preveemos que tendrán un gran impacto en el área terapéutica y biología regenerativa. / In this Thesis, a new designed biomaterial made out of short repetitive amphiphilic peptide sequence AcN-RADARADARADARADA-CONH2 (RAD16-I) that self-assembles forming nanofiber networks (hydrogel scaffold) has been used as synthetic extracellular matrix analog for cell maintenance, proliferation and differentiation. This peptide has been functionalized with biological active motifs from extracellular matrix proteins including laminin-1 and collagen IV. The prototypic self-assembling peptide scaffold RAD16-I and its biologically active derivatives have been characterized and tested using several cellular systems such as human aortic endothelial cells (HAEC), mature hepatocytes and a putative liver progenitor cell line, Lig-8. The proteolysis of the peptide RAD16-I has been evaluated using trypsin as a proteolytic enzyme and the resulting fragments have been analyzed by MALDI-TOF and AFM. Moreover the second generation of RAD16-I-based biomaterials have been tested using HAEC and mature hepatocytes. With these systems we have shown that the development of a biomimetic matrix enhances as well as maintain tissue-specific functions. In particular, the results obtained in cell differentiation, proliferation and maintenance of cell function using the synthetic self-assembling peptide matrices, are comparable with the results obtained using natural biological matrices counterparts (Collagen-I and Matrigel). This indicates that our extracellular matrix analogs can replace the use of naturally-derived materials and suggests the use of these smart biomaterials with instructive capacity for cells in therapeutics. Moreover, the use of the self-assembling peptide RAD16-I in the recreation of a stem-cell niche proved to be highly efficient. We were able to control stem-cell kinetics (from symmetric to assymetric) inducing functional differentiation while maintaining a small proportion of undifferentiated cells. This striking results clearly indicate that we were able to obtain a stem-cell niche where primitive cells (Lig-8) undergo differentiation acquiring mature hepatic functions. We have developed a biomaterial platform that can be used for functionalization with innumerable biomolecules, with capacity to induce biological processes like differentiation, control of proliferation, metabolic function, etc. These biomaterials will have a strong impact in therapeutics and regenerative biology.
|
8 |
Design and development of biomimetic surfaces and three-dimensional environments to study cell behaviorMarí Buyé, Núria 11 May 2012 (has links)
La biomimètica o biomimetisme són termes que simbolitzen el concepte “aprendre de la naturalesa”, és a dir, aprendre dels seus sistemes, processos i models, a fi d’utilitzar la natura com a font d’inspiració per solucionar problemes de l’home. El biomimetisme és actualment un concepte recurrent en l’àrea d’enginyeria de teixits i d’ell en sorgeixen idees per obtenir plataformes més elegants i sofisticades que puguin imitar millor les interacciones entre les cèl•lules i el seu ambient. Aquesta tesi pretén desenvolupar models, en dues i en tres dimensions, mitjançant la recreació d’un o més factors característics de l’ambient natural de la cèl•lula i que juguen un paper important en el comportament cel•lular.
Se sap que tant les propietats químiques com les mecàniques de la matriu extracel•lular influeixen sobre les funcions cel•lulars. És per això que es va dissenyar un nou film polimèric que pogués combinar un hidrogel, amb propietats mecàniques variables, amb un monòmer reactiu capaç d’immobilitzar biomolècules. Degut a la complexitat del polímer dissenyat, va ser necessari recórrer a una tècnica de polimerització superficial molt versàtil com és la deposició química iniciada en fase vapor (més coneguda pel seu acrònim en anglès iCVD). Els polímers varen ser àmpliament caracteritzats i es va corroborar que podien ser modificats amb petites biomolècules com ara pèptids senyalitzadors. Les superfícies resultants són bioactives i permeten l’adhesió de cèl•lules endotelials.
Unes altres superfícies biomimètiques, rellevants en l’àmbit de l’enginyeria de teixits d’os, es varen obtenir a partir d’una hidroxiapatita sintetitzada pel mètode de sol-gel submergint-la en diferents medis fisiològics. La dissolució i posterior reprecipitació dels ions proporcionen una capa d’apatita amb una composició similar a la que es troba in vivo. Els experiments evidencien la importància de partir d’un material relativament soluble. És per això que la hidroxiapatita pura no és capaç d’induir la precipitació d’aquesta apatita biomimètica in vitro. Diversos investigadors han relacionat la capacitat de formar apatita amb la bioactivitat del material, entenent bioactivitat com l’habilitat d’aquests materials de promoure la unió amb l’os.
Per a l’enginyeria de teixits, però, és necessari un ambient tridimensional per tal de generar un teixit artificial. S’ha desenvolupat un nou model basat en l’ús d’un gel molt tou per tal d’obtenir un teixit dur com el de l’os. Malgrat que aquests dos conceptes poden semblar contradictoris, les cèl•lules adquireixen l’habilitat d’allargar-se ràpidament i crear una densa xarxa cel•lular dins d’aquest ambient poc restrictiu des d’un punt de vista mecànic. La consegüent contracció del sistema acaba formant un constructe més petit i resistent. Aquest és un sistema biomimètic ja que promou una gran interacció cel•lular i també la condensació de les cèl•lules, esdeveniments que tenen lloc també durant el desenvolupament de l’os i el cartílag. El model es va caracteritzar extensament amb cèl•lules ostoprogenitores MC3T3-E1 que es diferenciaren amb inducció química. A més a més, es va demostrar que l’ambient tridimensional podia promoure l’expressió espontània de marcadors osteogènics. Degut a les interessants propietats del sistema, el mateix model es va utilitzar per induir la diferenciació condrogènica de fibroblastos dermals humans. Aquests tipus cel•lular no ha estat gaire explorat en l’àmbit de l’enginyeria de teixits, malgrat que ofereix un gran potencial en teràpia regenerativa. Aquest treball proporciona proves de la capacitat condrogènica d’aquestes cèl•lules en el sistema tridimensional prèviament desenvolupat. / La biomimètica o biomimetismo son términos que simbolizan el concepto “aprender de la naturaleza”, es decir, aprender de sus sistemas, procesos y modelos, y utilizarlos como fuente de inspiración para solucionar problemas del hombre. El biomimetismo es actualmente un concepto recurrente en el área de ingeniería de tejidos y de este surgen ideas para obtener plataformas más elegantes y sofisticadas que puedan mimetizar mejor las interacciones entre las células y su ambiente. La presente tesis se centra en desarrollar modelos, tanto en dos como en tres dimensiones, mediante la recreación de uno o más factores que caracterizan el ambiente natural de la célula y que tienen su rol importante en el comportamiento celular.
Se conoce que tanto las propiedades químicas como mecánicas de la matriz extracelular influyen en las funciones celulares. Debido a esto, se diseñó un nuevo film polimérico que pudiera combinar un hidrogel, con propiedades mecánicas variables, con un monómero reactivo, capaz de inmovilizar biomoléculas. Debido a la complejidad del polímero diseñado, fue necesario recurrir a una técnica de polimerización superficial muy versátil como es la deposición química iniciada en fase vapor (más conocida por su acrónimo en inglés iCVD). Los polímeros fueron ampliamente caracterizados y se corroboró que podían ser modificados con pequeñas biomoléculas como péptidos señalizadores. Las superficies resultantes son bioactivas y permiten la adhesión de células endoteliales.
Se obtuvieron otro tipo de superficies biomiméticas relevantes en el ámbito de la ingeniería de tejidos de hueso, a partir de una hidroxiapatita sintetizada por el método sol-gel sumergiéndolas en diferentes medios fisiológicos. La disolución y posterior reprecipitación de los iones proporcionan una capa de apatita con una composición similar a la que se encuentra in vivo. Los experimentos evidencian la importancia de partir de un material relativamente soluble. Precisamente debido a esto la hidroxiapatita pura no es capaz de inducir la precipitación de esta apatita biomimética in vitro. Varios investigadores han relacionado la capacidad de formar apatita con la bioactividad del material, entendiendo bioactividad como la habilidad de estos materiales de promover la unión con el hueso.
De todos modos, en ingeniería de tejidos, es necesario un ambiente tridimensional para generar un tejido artificial. Se ha desarrollado un nuevo modelo basado en el uso de un gel blando para obtener tejido duro como el del hueso. Aunque estos conceptos pueden parecer contradictorios, las células adquieren la habilidad de estirarse rápidamente y de formar una densa red celular dentro de este gel tan poco restrictivo desde un punto de vista mecánico. La consiguiente contracción del sistema acaba formando un constructo mucho más pequeño y resistente. Este es un sistema biomimético ya que promueve una gran interacción celular y también la condensación de las células, eventos que también ocurren durante el desarrollo de hueso y cartílago. El modelo se caracterizó extensamente con células osteoprogenitoras MC3T3-E1 que se diferenciaron bajo inducción química. Además, se demostró que el microambiente tridimensional podía promover la expresión espontánea de marcadores osteogénicos. Debido a las interesantes propiedades del sistema, el mismo modelo se usó para inducir la diferenciación condrogénica de fibroblastos dermales humanos. Este tipo celular no ha sido demasiado explorado en ingeniería de tejidos, a pesar de que puede tener un gran potencial en terapia regenerativa. Este trabajo proporciona pruebas de la capacidad condrogénica de estas células en el sistema tridimensional previamente desarrollado. / Biomimetics or biomimicry are terms that imply “learning from nature”, from its systems, processes and models, in order to use nature as inspiration to solve human problems. In tissue engineering, biomimetics is nowadays a recurrent term and a source of ideas to obtain more elegant and sophisticated platforms that could better mimic the interactions between cells and their environment. This thesis is focused on developing models both in two- and three-dimensions by recreation of one or more factors of the cell natural environment that are known to play an important role in cell behavior.
Since both the chemical and mechanical properties of the extracellular matrix are known to effectively influence cell function, an innovative polymeric thin film was designed combining a hydrogel with tunable mechanical properties and a reactive molecule, capable to immobilize biomolecules. Due to the complexity of the polymers, a versatile technique such as initiated chemical vapor deposition (iCVD) was required for the synthesis. Extensive characterization revealed that nanostructured hydrogels were obtained and that small biomolecules, such as signaling peptides, could be attached on the surface. The final surfaces are bioactive and support endothelial cell attachment.
Relevant biomimetic surfaces for bone tissue engineering could also be obtained from a sol-gel synthesized hydroxyapatite after immersion in different physiological media. The dissolution and posterior reprecipitation of the ions rendered a final apatite layer with a composition similar to that found in vivo. The experiments evidenced the importance of starting from a rather soluble material and, thus, pure hydroxyapatite was not able to promote apatite precipitation in vitro. This capacity has been related to the material bioactivity by many researchers in terms of its ability to bond to bone in tissue engineering applications.
However, for tissue engineering a three-dimensional environment is required to build tissue-like constructs. A new model was developed based on the use of a very soft gel to obtain hard tissue. Although the concepts might seem to work in opposite directions, cells gain the ability to rapidly elongate and form a dense cellular network within this unrestrictive environment. Subsequent contraction of the whole system rendered a smaller and stronger final tissue-like construct. This system was considered biomimetic as it promotes high cell-cell interaction and cellular condensation, which are events that occur in bone and cartilage development. This system was extensively characterized with osteoprogenitor MC3T3-E1 cells that could undergo full osteogenic differentiation under chemical induction. More interestingly, the three-dimensional microenvironment was also able to promote by itself spontaneous expression of bone-related markers. Due to the interesting properties of this system, the same model was used to induce chondrogenic differentiation of human dermal fibroblasts. This cell type has been poorly explored for tissue engineering applications, but it might have great potential in future therapeutic platforms. This work provides proof of concept of chondrogenic potential of these cells in this three-dimensional system.
|
9 |
DEVELOPMENT OF CONTROLLED DRUG DELIVERY SYSTEMS OF POLYMERIC NANOMEDICINES ASSOCIATED TO SCAFFOLDS FOR TISSUE REGENERATIONRodríguez Escalona, Gabriela de Jesús 02 May 2016 (has links)
[EN] Nowadays, one of the biggest concerns that permanently keep the attention of main important sectors of human society is health. Modern medical science is compromised with not only providing good adequate treatments but also effective specific solutions for each type of disease or human pathology.
In this direction, innovative approaches like tissue engineering or regenerative medicine, controlled drug delivery systems and nanomedicines emerge to bring alternatives to situations hard to solve with conventional treatment and strategies, including the replacement of damaged or diseases tissues and/or organs.
Specifically, this research is mainly aimed to design a combined system for controlled, stable and localized release of therapeutic agents that are able to exert their effect selectively on the area that warrants treatment.
This construct will have enough versatility to be adapted to almost any kind of treatment, from cancer to tissue regeneration, always that the key requirement of the treatment was the need to provide the treatment of localized, stable and controlled manner.
With the purposes of making easier the understanding as well as the design of the system, I was decided, for the proof of concept, to use drugs and materials with known activity applied on tissue regeneration and for the treatment of chronic wounds.
The system in question consists of three main elements:
1) The first element is the polymer conjugates of therapeutic agents, which contribute to increasing the selectivity of the therapeutic action of the drug, as well as improved stability, bioavailability and biocompatibility thereof. If the drug is hydrophobic, conjugation contributes to increase its solubility in water, and in the case of proteins used as therapeutic agents, the combination helps reduce the body's immune response, increasing the chance of successful of the treatment.
2) The second element are the biodegradable polymeric microparticles, which in this case act like encapsulation agents for polymeric conjugate , thus allowing to have a second control point in the release kinetics of the therapeutic agents . Simultaneously, the microparticles also play a role in modifying the texture of the final construct, ascribing mechanical and physicochemical properties that help to improve some biological properties of the final material, such as the affinity, adhesion and cell proliferation.
3) The third element consists of a nanoporous membrane made of a biodegradable polymer by electrospinning, which constitute the unifier element of the whole system. This membrane provides manageability to the construct and is itself the last point of control in the release kinetics of the therapeutic agent or agents. Besides, it must be biocompatible and stable at ambient conditions, since this probably is going to be exposed to the environment while protecting the wound, in the case of this kind of application.
These three elements, which themselves are complex systems separately, are systematically combined to achieve a synergistic relationship between them so that each one power the qualities of the other two.
The resulting construct was characterized and it demonstrated to have characteristic properties that can be used as a control parameter during manufacture of this new material. Also, preliminary biological studies developed "in vitro" indicated that the proposed system may be a good candidate for deeper studies as alternative treatment for chronic wounds and other pathologies that require localized administration for long periods of time. / [ES] Actualmente, una de las mayores preocupaciones que permanentemente laman la atención de los principales sectores de la sociedad humana es la salud. La ciencia médica moderna está comprometida no solo con suministrar tratamientos adecuados, sino más bien ofrecer soluciones efectivas y específicas para cada tipo de enfermedad o patología humana.
En este sentido, estrategias innovadoras como la ingeniería de tejidos o la medicina regenerativa, los sistemas de liberación controlada de fármacos y las nanomedicinas, surgen como buenas alternativas para abordar situaciones difíciles de resolver aplicando los tratamientos y estrategias terapéuticas convencionales, como es el caso cuando se hace necesario reemplazar tejidos o incluso órganos dañados por algún traumatismo o enfermedad.
Concretamente, el presente trabajo de investigación tiene por objetivo principal diseñar un sistema combinado para la liberación controlada, estable y localizada de agentes terapéuticos que sean capaces de ejercer su efecto de forma selectiva sobre la zona que amerita el tratamiento.
Este constructo tendrá la versatilidad suficiente como para poder adaptarse a casi cualquier tipo de tratamiento, desde el cáncer hasta la regeneración de tejido, siempre que el requisito clave del tratamiento sea la necesidad de suministrar el tratamiento de manera localizada, estable y controlada.
Para efectos de facilitar la compresión y el diseño del sistema se escogió para la prueba de concepto materiales y fármacos asociados a la regeneración de tejidos, como tratamiento para casos de heridas crónicas.
El sistema en cuestión está constituido por tres elementos principales:
1) El primer elemento son los conjugados poliméricos de agentes terapéuticos que contribuirán a aumentar la selectividad de la acción terapéutica del fármaco, así como también a mejora la estabilidad, biodisponibilidad y biocompatibilidad de los mismos. En caso de que el fármaco sea hidrofóbico, la conjugación contribuye a aumentar su solubilidad en agua, y en el caso de usar proteínas como agentes terapéuticos, la conjugación contribuye a disminuir la respuesta inmunológica del cuerpo incrementando las posibilidad de éxito del tratamiento.
2) El segundo elemento son micropartículas poliméricas biodegradables, que en este caso actúan con agentes de encapsulación para los conjugados poliméricos, permitiendo así contar con un segundo punto de control en la cinética de liberación de los agentes terapéuticos. Simultáneamente, las micropartículas también cumplen un papel de modificador de la textura del constructo final, adjudicándole propiedades mecánica y fisicoquímicas que contribuyen a mejorar las propiedades biológicas del material final, como son la afinidad, la adhesión y la proliferación celular.
3) El tercer elemento consiste en una membrana polimérica biodegradable nanoporosa hecha por electrospinning, que constituyen el elemento unificados del sistema, aporta manejabilidad al constructo y es en sí mismo el último punto de control en la cinética de liberación del agente terapéutico. Este último debe ser biocompatible y estable en condiciones ambientales, puesto que probablemente este expuesto al ambiente mientras protege la herida, en el caso concreto de este tipo de aplicación.
Estos tres elementos, que en sí mismos constituyen sistemas complejos por separado, se han combinado sistemáticamente para alcanzar una relación sinérgica entre ellos de manera que cada uno potencia las cualidades de los otros dos.
El constructo resultante se caracterizó demostrando tener propiedades características que se pueden utilizar como parámetro de control durante la fabricación del mismo. Así mismo estudios in vitro del sistema desarrollado señalan que puede ser un buen candidato para el tratamiento de heridas crónicas entre otras patologías que requieran tratamientos localizados. / [CA] Actualment, una de les majors preocupacions que permanentment llepen l'atenció dels principals sectors de la societat humana és la salut. La ciència mèdica moderna està compromesa no solament amb subministrar tractaments adequats, sinó més aviat oferir solucions efectives i específiques per a cada tipus de malaltia o patologia humana.
En aquest sentit, estratègies innovadores com l'enginyeria de teixits o la medicina regenerativa, els sistemes d'alliberament controlat de fàrmacs i les nanomedicines, sorgeixen com a bones alternatives per a abordar situacions difícils de resoldre aplicant els tractaments i estratègies terapèutiques convencionals, com és el cas quan es fa necessari reemplaçar teixits o fins i tot òrgans danyats per algun traumatisme o malaltia.
Concretament, el present treball de recerca té per objectiu principal dissenyar un sistema combinat per a l'alliberament controlat, estable i localitzada d'agents terapèutics que seguen capaços d'exercir el seu efecte de forma selectiva sobre la zona que amirita el tractament.
Aquest constructe tindrà la versatilitat suficient com per a poder adaptar-se a quasi qualsevol tipus de tractament, des del càncer fins a la regeneració de teixit, sempre que el requisit clau del tractament sega la necessitat de subministrar el tractament de manera localitzada, estable i controlada.
Per a efectes de facilitar la compressió i el disseny del sistema es va escollir per a la prova de concepte materials i fàrmacs associats a la regeneració de teixits, com a tractament per a casos de ferides cròniques.
El sistema en qüestió està constituït per tres elements principals:
1) El primer element són els conjugats polimèrics d'agents terapèutics que contribuiran a augmentar la selectivitat de l'acció terapèutica del fàrmac, així com també a millora l'estabilitat, biodisponibilitat i biocompatibilitat dels mateixos. En cas que el fàrmac sega hidrofòbic, la conjugació contribueix a augmentar la seua solubilitat en aigua, i en el cas d'usar proteïnes com a agents terapèutics, la conjugació contribueix a disminuir la resposta immunològica del cos incrementant les possibilitat d'èxit del tractament.
2) El segon element són microparticles polimèriques biodegradables, que en aquest cas actuen amb agents d'encapsulació per als conjugats polimèrics, permetent així comptar amb un segon punt de control en la cinètica d'alliberament de l'agent terapèutics. Simultàniament, les microparticles també compleixen un paper de texturitzant del constructe final, adjudicant-li propietats mecànica i fisicoquímiques que contribueixen a millorar la propietats biològiques del material final, com són l'afinitat, l'adhesió i la proliferació cel·lular.
3) El tercer element consisteix en una membrana polimèrica biodegradable nanoporosa feta per electrospinning, que constitueixen el element unificats del sistema, aporta manejabilitat al constructe i és en si mateix el ultimi punt de control en la cinètica d'alliberament de l'agent terapèutic. Aquest últim ha de ser biocompatible i estable en condicions ambientals, ja que probablement aquest exposat a l'ambient mentre protegeix la ferida, en el cas concret d'aquest tipus d'aplicació.
Aquests tres elements que en si mateixos constitueixen sistemes complexos per separat, s'han combinat sistemàticament per a aconseguir una relació sinergètica entre ells de manera que cadascun potencia les qualitats dels altres dos.
El constructe resultant es va caracteritzar demostrant tenir propietats característiques que es poden utilitzar com a paràmetre de control durant la fabricació del mateix. Així mateix estudis in vitro del sistema desenvolupat assenyalen que pot ser un bon candidat per al tractament de ferides cròniques entre altres patologies que requeriren tractaments localitzats. / Rodríguez Escalona, GDJ. (2016). DEVELOPMENT OF CONTROLLED DRUG DELIVERY SYSTEMS OF POLYMERIC NANOMEDICINES ASSOCIATED TO SCAFFOLDS FOR TISSUE REGENERATION [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/63231
|
Page generated in 0.0551 seconds