Spelling suggestions: "subject:"injective"" "subject:"onjective""
21 |
Pure-injective modules over tubular algebras and string algebrasHarland, Richard James January 2011 (has links)
We show that, for any tubular algebra, the lattice of pp-definable subgroups of the direct sum of all indecomposable pure-injective modules of slope r has m-dimension 2 if r is rational, and undefined breadth if r is irrational- and hence that there are no superdecomposable pure-injectives of rational slope, but there are superdecomposable pure-injectives of irrational slope, if the underlying field is countable.We determine the pure-injective hull of every direct sum string module over a string algebra. If A is a domestic string algebra such that the width of the lattice of pp-formulas has defined breadth, then classify "almost all" of the pure-injective indecomposable A-modules.
|
22 |
Linear algebra over semiringsWilding, David January 2015 (has links)
Motivated by results of linear algebra over fields, rings and tropical semirings, we present a systematic way to understand the behaviour of matrices with entries in an arbitrary semiring. We focus on three closely related problems concerning the row and column spaces of matrices. This allows us to isolate and extract common properties that hold for different reasons over different semirings, yet also lets us identify which features of linear algebra are specific to particular types of semiring. For instance, the row and column spaces of a matrix over a field are isomorphic to each others' duals, as well as to each other, but over a tropical semiring only the first of these properties holds in general (this in itself is a surprising fact). Instead of being isomorphic, the row space and column space of a tropical matrix are anti-isomorphic in a certain order-theoretic and algebraic sense. The first problem is to describe the kernels of the row and column spaces of a given matrix. These equivalence relations generalise the orthogonal complement of a set of vectors, and the nature of their equivalence classes is entirely dependent upon the kind of semiring in question. The second, Hahn-Banach type, problem is to decide which linear functionals on row and column spaces of matrices have a linear extension. If they all do, the underlying semiring is called exact, and in this case the row and column spaces of any matrix are isomorphic to each others' duals. The final problem is to explain the connection between the row space and column space of each matrix. Our notion of a conjugation on a semiring accounts for the different possibilities in a unified manner, as it guarantees the existence of bijections between row and column spaces and lets us focus on the peculiarities of those bijections. Our main original contribution is the systematic approach described above, but along the way we establish several new results about exactness of semirings. We give sufficient conditions for a subsemiring of an exact semiring to inherit exactness, and we apply these conditions to show that exactness transfers to finite group semirings. We also show that every Boolean ring is exact. This result is interesting because it allows us to construct a ring which is exact (also known as FP-injective) but not self-injective. Finally, we consider exactness for residuated lattices, showing that every involutive residuated lattice is exact. We end by showing that the residuated lattice of subsets of a finite monoid is exact if and only if the monoid is a group.
|
23 |
Zero Divisors, Group Von Neumann Algebras and Injective Modules / Zero Divisors and Linear Independence of TranslatesRoman, Ahmed Hemdan 29 June 2015 (has links)
In this thesis we discuss linear dependence of translations which is intimately related to the zero divisor conjecture. We also discuss the square integrable representations of the generalized Wyle-Heisenberg group in 𝑛² dimensions and its relations with Gabor's question from Gabor Analysis in the light of the time-frequency equation. We study the zero divisor conjecture in relation to the reduced 𝐶*-algebras and operator norm 𝐶*-algebras. For certain classes of groups we address the zero divisor conjecture by providing an isomorphism between the the reduced 𝐶*-algebra and the operator norm 𝐶*-algebra. We also provide an isomorphism between the algebra of weak closure and the von Neumann algebra under mild conditions. Finally, we prove some theorems about the injectivity of some spaces as ℂ𝐺 modules for some groups 𝐺. / Master of Science
|
24 |
Compactness in categories and its application in different categoriesThulapersad, Sarah 12 1900 (has links)
In the paper [HSS] Herrlich, Salicrup and Strecker were able to show that Kuratowski / Mrowka's Theorem concerning compactness for topological spaces could be applied to a wider setting. In this dissertation, which is based on the paper [F subscript 1], we interpret Kuratowski / Mrowka's result in the category R-Mod. Chapter One deals mainly with the preliminary definitions and results and we also show that there is a 1-1 correspondence between torsion theories and standard factorisation systems. In Chapter Two we, obtain for every torsion theory T, a theory of T-compactness which is an extension of the definition of compactness found in [HSS]. We then obtain a characterisation of T-compactness under certain conditions on the ring R and torsion theory T. In Chapter Three we examine the class of T-compact R-modules more closely when the ring R is T-hereditary and T-noetherian. We also obtain further characterisation of T-compactness under these additional conditions. In Chapter Four we show that many topological results have analogues in R-Mod. / Mathematical Sciences / M. Sc. (Mathematics)
|
25 |
Contribution à l'algorithmique non numérique dans les ensembles ordonnésPichat, Etienne 17 October 1970 (has links) (PDF)
.
|
26 |
Extension ponctuelles d'algebres hereditaires sauvagesChesne, Christelle 24 November 2003 (has links) (PDF)
Soit H une algebre hereditaire sauvage de dimension finie sur un corps algebriquement clos et X un H-module de dimension finie. Nous etudions la structure d'Auslander-Reiten de l'extension ponctuelle $H[\tau^mX]$ et prouvons en particulier l'existence d'une composante pre-injective pour |m|>>0.
|
27 |
Anneaux de valuation et anneaux à type de module bornéCouchot, Francois 13 November 2008 (has links) (PDF)
Ce mémoire est une présentation des travaux que l'auteur a réalisé en théorie des aneaux et des modules. Plus précisément l'auteur s'est consacré à l'étude des anneaux commutatifs arithmétiques et plus particulièrement aux anneaux de valuation (non nécessairement intègres). Le résultat le plus remaquable est la démonstration du théorème qui dit que tout annean local à type de module borné est un anneau de valuation presque maximal. Sont aussi présentés des résultats sur la localisation des modules injectifs et sur les enveloppes pure-injectives de certains modules.
|
28 |
Compactness in categories and its application in different categoriesThulapersad, Sarah 12 1900 (has links)
In the paper [HSS] Herrlich, Salicrup and Strecker were able to show that Kuratowski / Mrowka's Theorem concerning compactness for topological spaces could be applied to a wider setting. In this dissertation, which is based on the paper [F subscript 1], we interpret Kuratowski / Mrowka's result in the category R-Mod. Chapter One deals mainly with the preliminary definitions and results and we also show that there is a 1-1 correspondence between torsion theories and standard factorisation systems. In Chapter Two we, obtain for every torsion theory T, a theory of T-compactness which is an extension of the definition of compactness found in [HSS]. We then obtain a characterisation of T-compactness under certain conditions on the ring R and torsion theory T. In Chapter Three we examine the class of T-compact R-modules more closely when the ring R is T-hereditary and T-noetherian. We also obtain further characterisation of T-compactness under these additional conditions. In Chapter Four we show that many topological results have analogues in R-Mod. / Mathematical Sciences / M. Sc. (Mathematics)
|
29 |
Cohomologia Local: noções básicas e aplicaçõesCosta, Diego Alves da 03 February 2017 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / The purpose of this dissertation is to introduce the notion of local cohomology as
well as some of its applications. Initially, we performed a brief review on the main
homological tools used in this work, such as: homology of a complex, isomorphism of
complexes, injective resolutions, derived functors, etc. Next, we detail properties of
the injective modules in the context of Noetherian rings. Finally, we present di erent
ways of de ning local cohomology and we show how this notion is used to investigate
the arithmetical rank of an ideal. / O objetivo dessa dissertação é introduzir a noção de cohomologia local bem como algumas de suas aplicações. Inicialmente, realizamos um breve apanhado sobre as principais noções homológicas utilizadas no trabalho, tais como: homologia de um complexo, isomorfismo de complexos, resoluções injetivas, funtores derivados, etc. Em seguida, detalhamos propriedades dos módulos injetivos no contexto dos anéis Noetherianos. Finalmente, apresentamos formas variadas de definir cohomologia local e mostramos como essa noção é utilizada para investigar o posto aritmético de um ideal.
|
30 |
Kompaktní moduly nad nesingulárními okruhy / Compact modules over nonsingular ringsKálnai, Peter January 2020 (has links)
This doctoral thesis provides several new results in which we leverage the inner structure of non-singular rings, in particular of self-injective von Neumann regular rings. First, we describe categorical and set-theoretical conditions under which all products of compact objects remain compact, where the notion of compactness is relativized with respect to a fixed subclass of objects. A special instance when such closure property holds are the classic module categories over rings of our interest. Moreover, we show that a potential counterexample for Köthe's Conjecture might be in the form of a countable local subring of a suitable simple self-injective von Neumann regular ring. 1
|
Page generated in 0.0415 seconds