Spelling suggestions: "subject:"integrodifferential equations"" "subject:"integrodifferential aquations""
21 |
Deux études en gestion de risque: assurance de portefeuille avec contrainte en risque et couverture quadratique dans les modèles a sautsDe Franco, Carmine 29 June 2012 (has links) (PDF)
Dans cette thèse, je me suis interessé a deux aspects de la gestion de portefeuille : la maximisation de l'utilité e d'un portefeuille financier lorsque on impose une contrainte sur l'exposition au risque, et la couverture quadratique en marché incomplet. Part I. Dans la première partie, j' étudie un problème d'assurance de portefeuille du point de vue du manager d'un fond d'investissement, qui veut structurer un produit financier pour les investisseurs du fond avec une garantie sur la valeur du portefeuille a la maturité . Si, a la maturité, la valeur du portefeuille est au dessous d'un seuil x e, l'investisseur sera remboursé a la hauteur de ce seuil par une troisième partie, qui joue le rôle d'assureur du fond (on peut imaginer que le fond appartient à une banque et que donc c'est la banque elle même qui joue le rôle d'assureur). En échange de cette assurance, la troisième partie impose une contrainte sur l'exposition au risque que le manager du fond peut tolérer, mesurée avec une mesure de risque monétaire convexe. Je donne la solution complet e de ce problème de maximisation non convexe en marché complet et je prouve que le choix de la mesure de risque est un point crucial pour avoir existence d'un portefeuille optimal. J'applique donc mes résultats lorsque on utilise la mesure de risque entropique (pour laquelle le portefeuille optimal existe toujours), les mesures de risque spectrales (pour lesquelles le portefeuille optimal peut ne pas exister dans certains cas) et la G-divergence. Mots-cl es : Assurance de portefeuille ; maximisation d'utilité ; mesure de risque convexe ; VaR, CVaR et mesure de risque spectrale ; entropie et G-divergence. Part II. Dans la deuxième partie, je m'intéresse au problème de couverture quadratique en marché incomplet. J'assume que le marché est d écrit par un processus Markovien tridimensionnel avec sauts. La premi ère variable d' état décrit l'actif - financier, échangeable sur le marché, qui sert comme instrument de couverture ; la deuxième variable d' état modélise un actif financier que intervient dans la dynamique de l'instrument de couverture mais qui n'est pas échangeable sur le march é : il peut donc être vu comme un facteur de volatilité de l'instrument de couverture, ou comme un actif financier que l'on ne peut pas acheter (pour de raisons légales par exemple) ; la troisième et dernière variable d' état représente une source externe de risque qui affecte l'option Européenne qu'on veut couvrir, et qui, elle aussi, n'est pas échangeable sur le marché. Pour résoudre le problème j'utilise l'approche de la programmation dynamique, qui me permet d' écrire l' équation de Hamilton-Jacobi- Bellman associé e au problème de couverture quadratique, qui est non locale en non linéaire. Je prouve que la fonction valeur associée au problème de couverture quadratique peut être caractérisée par un système de trois équations integro- différentielles aux dérivées partielles, dont l'une est semilinéaire et ne dépends pas du choix de l'option a couvrir, et les deux autres sont simplement linéaires , et que ce système a une unique solution r régulière dans un espace de Hölder approprié, qui me permet donc de caractériser la stratégie de couverture optimale . Ce résultat est démontré lorsque le processus est non dégénéré (c'est a dire que la composante Brownienne est strictement elliptique) et lorsque le processus est a sauts purs. Je conclus avec une application de mes résultats dans le cadre du marché de l' électricité. Mots-cl es : Couverture quadratique ; modèle a sauts ; programmation dynamique ; équation de Hamilton-Jacobi-Bellman ; équations aux dérivées partielles integro-différentielles.
|
22 |
Pricing CPPI Capital Guarantees: A Lagrangian FrameworkMorley, Christopher Stephen Band January 2011 (has links)
A robust computational framework is presented for the risk-neutral valuation of capital
guarantees written on discretely-reallocated portfolios following the Constant Proportion
Portfolio Insurance (CPPI) strategy. Aiming to address the (arguably more realistic)
cases where analytical results are unavailable, this framework accommodates risky-asset
jumps, volatility surfaces, borrowing restrictions, nonuniform reallocation schedules and
autonomous CPPI floor trajectories. The two-asset state space representation developed
herein facilitates visualising the CPPI strategy, which in turn provides insight into grid
design and interpolation. It is demonstrated that given a deterministic process for the
risk-free rate, the pricing problem can be cast as solving cascading systems of 1D partial
integro-differential equations (PIDEs). This formulation’s stability and monotonicity are
studied. In addition to making more sense financially, the limited borrowing variant of
the CPPI strategy is found to be better suited than the classical (unlimited borrowing)
counterpart for bounded-domain calculations. Consequently, it is demonstrated how the
unlimited borrowing problem can be approximated by imposing an artificial borrowing limit.
For implementation validation, analytical solutions to special cases are derived. Numerical
tests are presented to demonstrate the versatility of this framework.
|
23 |
The Role of First Order Surface Effects in Linear Elastic Fracture MechanicsKIM, CHUN IL Unknown Date
No description available.
|
24 |
Apie vieną, vaikus globojančios populiacijos modelį / On a population model with child carePralgauskaitė, Raminta 02 July 2014 (has links)
Darbe pateiktas populiacijos dinamikos modelis, kuriame atsižvelgiama į amžių, patelių nėštumą, vaikų priežiūrą, ekologinius veiksnius. Skirtingų lyčių poros sudaromos naudojant harmoninio vidurkio funkciją, ir laikoma, kad poros egzistuoja tik dauginimosi periodu. Daugumoje populiacijų jauniklius prižiūri tik motinos, todėl laikoma, kad jaunikliai miršta, jei žūva juos prižiūrinti patelė. Kiekvienas individas turi priešreproduktyvųjį, reproduktyvųjį ir poreproduktyvųjį amžiaus intervalus. Individai, esantys priešreproduktyviajame amžiaus intervale, skirstomi į jauniklius, kuriems reikalinga motinos priežiūra, bei paauglius, kurie jau yra savarankiški individai, tik dar nepasiruošę daugintis. Reproduktyvaus amžiaus individai skirstomi į patinus, neapvaisintas pateles, apvaisintas pateles ir jauniklius prižiūrinčias pateles. Modelį sudaro integrodiferencialinės lygtys dalinėmis išvestinėmis su integralinio tipo sąlygomis. Lygčių skaičius priklauso nuo biologiškai galimo maksimalaus skaičiaus palikuonių, ir jis yra baigtinis. Limituotos populiacijos atveju surandami separabilūs sprendiniai, nelimituotos populiacijos atveju įrodoma egzistavimo ir vienaties teorema. / A deterministic model for a sexual age-structured population with females pregnancy, maternal care of offspring, and an environmental pressure is presented. The model involves pairs that exist for period of mating only and uses mating function of simplified harmonic mean type. All adult males are treated as singles. Each sex has pre-reproductive, reproductive, and post-reproductive age intervals. All adult individuals (of reproductive age) are divided into males, single females, pregnant females, and females taking child care. All individuals of pre-reproductive age are divided into young and juvenile groups. All young individuals are under maternal care while juveniles can live without maternal care. The model consists of integro-differential equations. Separable solutions are studied for the limited nondispersing population. The existence and uniqueness theorem is proved in the case of unlimited population.
|
25 |
Pricing CPPI Capital Guarantees: A Lagrangian FrameworkMorley, Christopher Stephen Band January 2011 (has links)
A robust computational framework is presented for the risk-neutral valuation of capital
guarantees written on discretely-reallocated portfolios following the Constant Proportion
Portfolio Insurance (CPPI) strategy. Aiming to address the (arguably more realistic)
cases where analytical results are unavailable, this framework accommodates risky-asset
jumps, volatility surfaces, borrowing restrictions, nonuniform reallocation schedules and
autonomous CPPI floor trajectories. The two-asset state space representation developed
herein facilitates visualising the CPPI strategy, which in turn provides insight into grid
design and interpolation. It is demonstrated that given a deterministic process for the
risk-free rate, the pricing problem can be cast as solving cascading systems of 1D partial
integro-differential equations (PIDEs). This formulation’s stability and monotonicity are
studied. In addition to making more sense financially, the limited borrowing variant of
the CPPI strategy is found to be better suited than the classical (unlimited borrowing)
counterpart for bounded-domain calculations. Consequently, it is demonstrated how the
unlimited borrowing problem can be approximated by imposing an artificial borrowing limit.
For implementation validation, analytical solutions to special cases are derived. Numerical
tests are presented to demonstrate the versatility of this framework.
|
26 |
Analytical properties of viscosity solutions for integro-differential equations : image visualization and restoration by curvature motions / Propriétés analytiques des solutions de viscosité des équations integro-différentielles : visualisation et restauration d'images par mouvements de courbureCiomaga, Adina 29 April 2011 (has links)
Le manuscrit est constitué de deux parties indépendantes.Propriétés des Solutions de Viscosité des Equations Integro-Différentielles.Nous considérons des équations intégro-différentielles elliptiques et paraboliques non-linéaires (EID), où les termes non-locaux sont associés à des processus de Lévy. Ce travail est motivé par l'étude du Comportement en temps long des solutions de viscosité des EID, dans le cas périodique. Le résultat classique nous dit que la solution u(¢, t ) du problème de Dirichlet pour EID se comporte comme ?t Åv(x)Åo(1) quand t !1, où v est la solution du problème ergodique stationaire qui correspond à une unique constante ergodique ?.En général, l'étude du comportement asymptotique est basé sur deux arguments: la régularité de solutions et le principe de maximumfort.Dans un premier temps, nous étudions le Principe de Maximum Fort pour les solutions de viscosité semicontinues des équations intégro-différentielles non-linéaires. Nous l'utilisons ensuite pour déduire un résultat de comparaison fort entre sous et sur-solutions des équations intégro-différentielles, qui va assurer l'unicité des solutions du problème ergodique à une constante additive près. De plus, pour des équationssuper-quadratiques le principe de maximum fort et en conséquence le comportement en temps grand exige la régularité Lipschitzienne.Dans une deuxième partie, nous établissons de nouvelles estimations Hölderiennes et Lipschitziennes pour les solutions de viscosité d'une large classe d'équations intégro-différentielles non-linéaires, par la méthode classique de Ishii-Lions. Les résultats de régularité aident de plus à la résolution du problème ergodique et sont utilisés pour fournir existence des solutions périodiques des EID.Nos résultats s'appliquent à une nouvelle classe d'équations non-locales que nous appelons équations intégro-différentielles mixtes. Ces équations sont particulièrement intéressantes, car elles sont dégénérées à la fois dans le terme local et non-local, mais leur comportement global est conduit par l'interaction locale - non-locale, par exemple la diffusion fractionnaire peut donner l'ellipticité dans une direction et la diffusion classique dans la direction orthogonale.Visualisation et Restauration d'Images par Mouvements de CourbureLe rôle de la courbure dans la perception visuelle remonte à 1954, et on le doit à Attneave. Des arguments neurologiques expliquent que le cerveau humain ne pourrait pas possiblement utiliser toutes les informations fournies par des états de simulation. Mais en réalité on enregistre des régions où la couleur change brusquement (des contours) et en outre les angles et les extremas de courbure. Pourtant, un calcul direct de courbures sur une image est impossible. Nous montrons comment les courbures peuvent être précisément évaluées, à résolution sous-pixelique par un calcul sur les lignes de niveau après leur lissage indépendant.Pour cela, nous construisons un algorithme que nous appelons Level Lines (Affine) Shortening, simulant une évolution sous-pixelique d'une image par mouvement de courbure moyenne ou affine. Aussi bien dans le cadre analytique que numérique, LLS (respectivement LLAS) extrait toutes les lignes de niveau d'une image, lisse indépendamment et simultanément toutes ces lignes de niveau par Curve Shortening(CS) (respectivement Affine Shortening (AS)) et reconstruit une nouvelle image. Nousmontrons que LL(A)S calcule explicitement une solution de viscosité pour le le Mouvement de Courbure Moyenne (respectivement Mouvement par Courbure Affine), ce qui donne une équivalence avec le mouvement géométrique.Basé sur le raccourcissement de lignes de niveau simultané, nous fournissons un outil de visualisation précis des courbures d'une image, que nous appelons un Microscope de Courbure d'Image. En tant que application, nous donnons quelques exemples explicatifs de visualisation et restauration d'image : du bruit, des artefacts JPEG, de l'aliasing seront atténués par un mouvement de courbure sous-pixelique / The present dissertation has two independent parts.Viscosity solutions theory for nonlinear Integro-Differential EquationsWe consider nonlinear elliptic and parabolic Partial Integro-Differential Equations (PIDES), where the nonlocal terms are associated to jump Lévy processes. The present work is motivated by the study of the Long Time Behavior of Viscosity Solutions for Nonlocal PDEs, in the periodic setting. The typical result states that the solution u(¢, t ) of the initial value problem for parabolic PIDEs behaves like ?t Å v(x) Å o(1) as t ! 1, where v is a solution of the stationary ergodic problem corresponding to the unique ergodic constant ?. In general, the study of the asymptotic behavior relies on two main ingredients: regularity of solutions and the strong maximum principle.We first establish Strong Maximum Principle results for semi-continuous viscosity solutions of fully nonlinear PIDEs. This will be used to derive Strong Comparison results of viscosity sub and super-solutions, which ensure the up to constants uniqueness of solutions of the ergodic problem, and subsequently, the convergence result. Moreover, for super-quadratic equations the strong maximum principle and accordingly the large time behavior require Lipschitz regularity.We then give Lipschitz estimates of viscosity solutions for a large class of nonlocal equations, by the classical Ishii-Lions's method. Regularity results help in addition solving the ergodic problem and are used to provide existence of periodic solutions of PIDEs. In both cases, we deal with a new class of nonlocal equations that we term mixed integrodifferential equations. These equations are particularly interesting, as they are degenerate both in the local and nonlocal term, but their overall behavior is driven by the local-nonlocal interaction, e.g. the fractional diffusion may give the ellipticity in one direction and the classical diffusion in the complementary one.Image Visualization and Restoration by CurvatureMotionsThe role of curvatures in visual perception goes back to 1954 and is due to Attneave. It can be argued on neurological grounds that the human brain could not possible use all the information provided by states of simulation. But actually human brain registers regions where color changes abruptly (contours), and furthermore angles and peaks of curvature. Yet, a direct computation of curvatures on a raw image is impossible. We show how curvatures can be accurately estimated, at subpixel resolution, by a direct computation on level lines after their independent smoothing.To performthis programme, we build an image processing algorithm, termed Level Lines (Affine) Shortening, simulating a sub-pixel evolution of an image by mean curvature motion or by affine curvature motion. Both in the analytical and numerical framework, LL(A)S first extracts all the level lines of an image, then independently and simultaneously smooths all of its level lines by curve shortening (CS) (respectively affine shortening (AS)) and eventually reconstructs, at each time, a new image from the evolved level lines.We justify that the Level Lines Shortening computes explicitly a viscosity solution for the Mean CurvatureMotion and hence is equivalent with the clasical, geometric Curve Shortening.Based on simultaneous level lines shortening, we provide an accurate visualization tool of image curvatures, that we call an Image CurvatureMicroscope. As an application we give some illustrative examples of image visualization and restoration: noise, JPEG artifacts, and aliasing will be shown to be nicely smoothed out by the subpixel curvature motion.
|
27 |
Método de colocação polinomial para equações integro-diferenciais singulares: convergência / A collocation polynomial method for singular integro-differential equations: convergenceMiriam Aparecida Rosa 02 July 2014 (has links)
Esta tese analisa o método de colocação polinomial, para uma classe de equações integro-diferenciais singulares em espaços ponderados de funções contínuas e condições de fronteira não nulas. A convergência do método numérico em espaços com norma uniforme ponderada, é demonstrada, e taxas de convergências são determinadas, usando a suavidade dos dados das funções envolvidas no problema. Exemplos numéricos confirmam as estimativas / This thesis analyses the polynomial collocation method, for a class of singular integro-differential equations in weighted spaces of continuous functions, and non-homogeneous boundary conditions. Convergence of the numerical method, in weighted uniform norm spaces, is demonstrated and convergence rates are determined using the smoothness of the data functions involved in problem. Numerical examples confirm the estimates
|
28 |
Analyse mathématique de modèles de dynamique des populations : équations aux dérivées partielles paraboliques et équations intégro-différentiellesGarnier, Jimmy 18 September 2012 (has links)
Cette thèse porte sur l'analyse mathématique de modèles de réaction-dispersion de la forme [delta]tu=D(u) +f(x,u). L'objectif est de comprendre l'influence du terme de réaction f, de l'opérateur de dispersion D, et de la donnée initiale u0 sur la propagation des solutions de ces équations. Nous nous sommes intéressés principalement à deux types d'équations de réaction-dispersion : les équations de réaction-diffusion où l'opérateur de dispersion différentielle est D=[delta]2z et les équations intégro-différentielles pour lesquelles D est un opérateur de convolution, D(u)=J* u-u. Dans le cadre des équations de réaction-diffusion en milieu homogène, nous proposons une nouvelle approche plus intuitive concernant les notions de fronts progressifs tirés et poussés. Cette nouvelle caractérisation nous a permis de mieux comprendre d'une part les mécanismes de propagation des fronts et d'autre part l'influence de l'effet Allee, correspondant à une diminution de la fertilité à faible densité, lors d'une colonisation. Ces résultats ont des conséquences importantes en génétique des populations. Dans le cadre des équations de réaction-diffusion en milieu hétérogène, nous avons montré sur un exemple précis comment la fragmentation du milieu modifie la vitesse de propagation des solutions. Enfin, dans le cadre des équations intégro-différentielles, nous avons montré que la nature sur- ou sous-exponentielle du noyau de dispersion J modifie totalement la vitesse de propagation. / This thesis deals with the mathematical analysis of reaction-dispersion models of the form [delta]tu=D(u) +f(x,u). We investigate the influence of the reaction term f, the dispersal operator D and the initial datum u0 on the propagation of the solutions of these reaction-dispersion equations. We mainly focus on two types of equations: reaction-diffusion equations (D=[delta]2z and integro-differential equations (D is a convolution operator, D(u)=J* u-u). We first investigate the homogeneous reaction-diffusion equations. We provide a new and intuitive explanation of the notions of pushed and pulled traveling waves. This approach allows us to understand the inside dynamics the traveling fronts and the impact of the Allee effect, that is a low fertility at low density, during a colonisation. Our results also have important consequences in population genetics. In the more general and realistic framework of heterogeneous reaction-diffusion equations, we exhibit examples where the fragmentation of the media modifies the spreading speed of the solution. Finally, we investigate integro-differential equations and prove that emph{fat-tailed} dispersal kernels J, that is kernels which decay slower than any exponentially decaying function at infinity, lead to acceleration of the level sets of the solution u.
|
29 |
System of delay differential equations with application in dengue fever / Sistemas de equações diferenciais com retardo com aplicação na dengueSteindorf, Vanessa 20 August 2019 (has links)
Dengue fever is endemic in tropical and sub-tropical countries, and some of the important features of Dengue fever spread continue posing challenges for mathematical modelling. We propose a model, namely a system of integro-differential equations, to study a multi-serotype infectious disease. The main purpose is to include and analyse the effect of a general time delay on the model describing the length of the cross immunity protection and the effect of Antibody Dependent Enhancement (ADE), both characteristics of Dengue fever. Analysing the system, we could find the equilibriums in the invariant region. A coexistence endemic equilibrium within the region was proved, even for the asymmetric case. The local stability for the disease free equilibrium and for the boundary endemic equilibriums were proved. We have also results about the stability of the solutions of the system, that is completely determined by the Basic Reproduction Number and by the Invasion Reproduction Number, defined mathematically, as a threshold value for stability. The global dynamics is investigated by constructing suitable Lyapunov functions. Bifurcations structure and the solutions of the system were shown through numerical analysis indicating oscillatory dynamics for specific value of the parameter representing the ADE. The analytical results prove the instability of the coexistence endemic equilibrium, showing complex dynamics. Finally, mortality due to the disease is added to the original system. Analysis and discussions are made for this model as perturbation of the original non-linear system. / A Dengue é endêmica em países tropicais e subtropicais e, algumas das importantes características da dengue continua sendo um desafio para a modelagem da propagação da doença. Assim, propomos um modelo, um sistema de equações integro-diferenciais, com o objetivo de estudar uma doença infecciosa identificada por vários sorotipos. O principal objetivo é incluir e analisar o efeito de um tempo geral de retardo no modelo descrevendo o tempo de imunidade cruzada para a doença e o efeito do Antibody Dependent Enhancement (ADE). Analisando o sistema, encontramos os equilíbrios, onde a existência do equilíbrio de coexistência foi provado, mesmo para o caso assimétrico. A estabilidade local para o equilíbrio livre de doença e para os equilíbrios específicos de cada sorotipo foi provada. Também mostramos resultados para a estabilidade das soluções do sistema que é completamente determinada pelo Número Básico de Reprodução e pelo Número Básico de Invasão, definido matematicamente como um valor limiar para a estabilidade. A dinâmica global é investigada construindo funções de Lyapunov. Adicionalmente, bifurcações e as soluções do sistema foram mostrados via análise numérica indicando dinâmica oscilatória para específicos valores do parâmetro que representa o efeito ADE. Resultados analíticos obtidos pela teoria da perturbação provam a instabilidade do equilíbrio endêmico de coexistência e apontam para um complexo comportamento do sistema. Por fim, a mortalidade causada pela doença é adicionada ao sistema original. Análises e discussões são feitas para este modelo como uma perturbação do sistema não linear original.
|
30 |
Exponential Stability and Initial Value Problems for Evolutionary EquationsTrostorff, Sascha 31 May 2018 (has links) (PDF)
The thesis deals with so-called evolutionary equations, a class of abstract linear operator equations, which cover a huge class of partial differential equation with and without memory. We provide a unified Hilbert space framework for the well-posedness of such equations. Moreover, we inspect the exponential stability of those problems and construct spaces of admissible inital values and pre-histories, on which a strongly continuous semigroup could be associated with the given problem. The theoretical results are illustrated by several examples.
|
Page generated in 0.1683 seconds