Spelling suggestions: "subject:"intracellular trafficking"" "subject:"intracellular traffickings""
21 |
Sterol Transport Protein ORP6 Regulates Astrocytic Cholesterol Metabolism and Brain Aβ DepositionVijithakumar, Viyashini 07 September 2023 (has links)
The mammalian brain is the most cholesterol-rich organ of the body, requiring in situ de novo cholesterol synthesis to maintain its cholesterol requirement. Defects in brain cholesterol homeostasis are implicated in cognitive deficits related to aging and in neurodegenerative diseases such as Alzheimer's Disease (AD). Oxysterol-binding protein (OSBP) - related proteins are highly conserved cytosolic proteins that coordinate lipid homeostasis by regulating cell signaling, inter-organelle membrane contact sites and non-vesicular transport of cholesterol. Previously, ORP6, a poorly characterized member of this family, was found to be part of complex transcriptional cascade coordinated by SBREP2 and emerged as a novel regulator of intracellular cholesterol trafficking in hepatocytes and macrophages. Yet how ORP6 regulates these pathways and its function in the brain where it is most highly expressed is unknown. Here, we show that ORP6 is highly expressed in the brain, where it exhibits spatial and cell-type specific expression. ORP6 expression is enriched in the hippocampus and caudal-putamen brain regions, specifically within neurons and astrocytes. ORP6 knockdown in astrocytes altered the expression of cholesterol biosynthesis, cholesterol efflux and cholesterol esterification genes, resulting in the accumulation of esterified cholesterol within cytoplasmic lipid droplets and reduced cholesterol efflux highlighting a role for ORP6 in astrocytic cholesterol metabolism. We also present in this thesis, the newly generated second viable ORP family member knockout mouse. ORP6 ablation in mice results in the dysregulation of brain and whole-body lipid homeostasis, increased Aβ deposition in the brain and neuroanatomical alterations. Together, our findings highlight a critical role for cholesterol trafficking proteins in brain cholesterol homeostasis and identify ORP6 as a potential novel target for AD.
|
22 |
Trafic intracellulaire de l’ARN de la télomérase chez Saccharomyces cerevisiæ : relation entre biogénèse de la télomérase et homéostasie des télomèresGallardo, Franck 02 1900 (has links)
Le contrôle de la longueur des télomères est une étape critique régissant le potentiel
réplicatif des cellules eucaryotes. A cause du problème de fin de réplication, les
chromosomes raccourcissent à chaque cycle de division. Ce raccourcissement se produit
dans des séquences particulières appelées télomères. La longueur des télomères est en
relation directe avec les capacités prolifératives des cellules et est responsable de la limite
de division de Hayflick. Cependant, dans certains types cellulaires et dans plus de 90% des
cancers, la longueur des télomères va être maintenue par une enzyme spécialisée appelée
télomérase. Encore aujourd’hui, comprendre la biogénèse de la télomérase et savoir
comment elle est régulée reste un élément clé dans la lutte contre le cancer. Depuis la
découverte de cette enzyme en 1985, de nombreux facteurs impliqués dans sa maturation
ont été identifiés. Cependant, comment ces facteurs sont intégrés dans le temps et dans
l’espace, afin de produire une forme active de la télomérase, est une question restée sans
réponse. Dans ce projet, nous avons utilisé la levure Saccharomyces cerevisiæ comme
modèle d’étude des voies de biogénèse et de trafic intracellulaire de l’ARN de la
télomérase, en condition endogène.
La première étape de mon travail fut d’identifier les facteurs requis pour
l’assemblage et la localisation de la télomérase aux télomères en utilisant des techniques
d’Hybridation In Situ en Fluorescence (FISH). Nous avons pu montrer que la composante
ARN de la télomérase fait la navette entre le noyau et le cytoplasme, en condition
endogène, dans les cellules sauvages. Nos travaux suggèrent que ce trafic sert de contrôle
qualité puisqu’un défaut d’assemblage de la télomérase conduit à son accumulation
cytoplasmique et prévient donc sa localisation aux télomères. De plus, nous avons identifié
les voies d’import/export nucléaire de cet ARN.
Dans une deuxième approche, nous avons réussi à développer une méthode de
détection des particules télomérasiques in vivo en utilisant le système MS2-GFP. Notre
iv
étude montre que contrairement à ce qui a été précédemment décrit, la télomérase n’est pas
associée de façon stable aux télomères au cours du cycle cellulaire. En fin de phase S, au
moment de la réplication des télomères, la télomérase se regroupe en 1 à 3 foci dont
certains colocalisent avec les foci télomériques, suggérant que nous visualisons la
télomérase active aux télomères in vivo. La délétion des gènes impliqués dans l’activation
et le recrutement de la télomérase aux télomères entraine une forte baisse dans
l’accumulation des foci d’ARN au sein de la population cellulaire. Nos résultats montrent
donc pour la première fois la localisation endogène de l’ARN TLC1 in situ et in vivo et
propose une vue intégrée de la biogenèse et du recrutement de la télomérase aux télomères. / Telomere length control is a critical step that governs the replicative potential of
eukaryotic cells. Due to the end replication problem, chromosomes shorten at each round of
division. This attrition occurs in specialized sequences at the extremity of chromosomes
called telomeres. Telomere size is in direct relationship with proliferative potential and
responsible for Hayflick’s division limit. However, in different cell type and in cancers, an
end-specialized enzyme called telomerase maintains telomere length. Reactivation of
telomerase in somatic cells triggers a pre-tumoral phenotype and more than 90% of cancers
highly express this enzyme. Still today, understanding how telomerase is synthesized and
reactivated can be a key step for the understanding of cancer arising and progression. Since
the discovery of this enzyme in 1985, several factors involved in the regulation of this
enzyme have been discovered. However, the spatio-temporal regulation of telomerase
biogenesis and regulation has not been determined. We used the yeast S.cerevisiæ to study
the biogenesis and recruitment of telomerase to telomeres.
The first step in my work was to determine the factors required for the biogenesis
and recruitment of telomerase to telomeres using fluorescence in situ hybridization. We
have shown that the telomerase RNA component shuttles between the nucleus and the
cytoplasm in wild type endogenous conditions. We have shown that this intracellular
trafficking is used as a quality control mechanism that prevents the nuclear localization of
miss assembled telomerase complexes. Moreover, we have identified the import/export
pathways of the telomerase RNA.
In a second step, we developed an in vivo localization system to follow the
telomerase RNA dynamics. We used the MS2-GFP system to track this RNA in vivo. Our
study shows that, contrary to what was previously described, telomerase is not stably
associated to telomeres during the cell cycle but freely diffuses in the nucleus of G1 cells.
In late S phase, at the moment of telomere replication, telomerase clusters in 1 to 3 big foci
vi
that colocalizes with telomeres clusters in vivo, suggesting the visualization of active
telomerase particles replicating telomeres. Disruption of gene coding for telomerase
activators triggers a great reduction of telomerase RNA clusters in a cell population.
Altogether, our results shows for the first time the localization of the endogenous form of
the telomerase RNA and propose an integrated view of telomerase biogenesis and
recruitment to telomeres.
|
23 |
Étude de la toxicité du peptide amyloïde beta Aß42 dans la levure Saccharomyces cerevisiae / Toxicity study of beta amyloid peptide Aß42 in Saccharomyces cerevisiaeVignaud, Hélène 28 November 2013 (has links)
La maladie d’Alzheimer est la maladie neurodégénérative la plus fréquente chez l’Homme et constitue un enjeu économique et de santé publique majeur. Les cerveaux de patients atteints présentent une atrophie corticale associée à deux types de lésions : les dégénérescences neurofibrillaires, constituées de protéines Tau agrégées, et les plaques amyloïdes, composées majoritairement de peptides amyloïde beta Aß agrégés. Les peptides Aß et leur agrégation seraient à l’origine de la pathogenèse. Afin d’éclaircir les mécanismes moléculaires à la base de la toxicité d’Aß, nous avons construit un modèle de toxicité d’Aß dans la levure Saccharomyces cerevisiae. Ce modèle a permis d’établir que la toxicité d’Aß dans la levure est intimement liée à sa sécrétion et au trafic vésiculaire. Ce modèle nous a également permis de réaliser une étude structure-toxicité du peptide et de mettre en évidence des éléments en cis importants pour la toxicité d’Aß. Une nouvelle voie d’agrégation des peptides toxiques en structure riche en feuillet ß anti-parallèle a pu ainsi être mise en évidence. Le modèle de toxicité d’Aß et l’existence de variants très toxiques d’Aß dans la levure nous a permis de réaliser des cribles génétiques afin de rechercher les éléments modulant la toxicité d’Aß in vivo. Le trafic vésiculaire, en particulier l’endocytose via le remodelage du cytosquelette d’actine, un complexe responsable de la formation de vésicules intraluminales appelé ESCRT, forment autant de pistes à étudier pour améliorer notre compréhension de la toxicité d’Aß. / Alzheimer’s disease is the most common neurodegenerative disease. This pathology is caused by aggregation of Aß peptides. The exact mechanism of neuronal cell dysfunction in Alzheimer’s disease is poorly understood and numerous models have been used to decipher the mechanisms leading to cellular death. In order to clarify the molecular mechanisms underlying the toxicity of Aß, we generated a new model to study Aß toxicity in yeast Saccharomyces cerevisiae. In our model, Aß toxicity is closely related to its secretion and its intracellular traffic. Indeed, when Aß is targeted to the secretory pathway, it is able to produce toxic species. Interestingly, we demonstrated also that even if Aß is addressed to the secretory pathway, it is still able to form cytoplasmic aggregates. Moreover, with this model, we generated new highly toxic mutants of Aß by random mutagenesis. In order to correlate structural conformation ‘signature’ to Aß toxicity, we performed a structure-toxicity study of these new variants. In vitro, we demonstrated that a new anti-parallel aggregation pathway is associated with highly toxic mutants of Aß. Then, using our Aß yeast model and also these harmful variants, we performed genetic screens in order to identify candidate genes able to modulate Aß toxicity in vivo. Given these different screens, we found that vesicular trafficking, endocytosis via actin cytoskeleton remodeling, and ESCRT-III (Endosomal Sorting Complex Required for Tansport) open new avenues to improve our understanding of Aß toxicity.
|
24 |
Lipides et trafic : rôles de GBF1, facteur d’échange de la petite protéine G Arf1 / Lipids and Traffic : roles of the large Arf1-GEF GBF1Bouvet, Samuel 20 September 2013 (has links)
La cellule eucaryote compartimentalise ses tâches au sein d’organelles communiquant les unes avec les autres au moyen de vésicules de transport. Le trafic vésiculaire est contrôlé par des petites protéines G de la superfamille Ras, activées par un changement de nucléotide guanidique catalysé par un facteur d’échange (GEF). En particulier, au niveau du cis-Golgi la petite protéine G Arf1 est activée par GBF1, permettant le transport rétrograde des vésicules COPI vers le réticulum endoplasmique. Récemment, GBF1 a été impliqué dans d’autres fonctions, notamment dans le cycle réplicatif de certains virus ou dans le métabolisme des gouttelettes lipidiques.Les gouttelettes lipidiques sont les organelles ubiquitaires du stockage des lipides et ont un rôle majeur dans l’homéostasie des lipides à l’échelle de la cellule. Le trafic intracellulaire des ces organelles dynamiques serait contrôlé par des petites protéines G. Notre équipe à montré dans une précédente étude que GBF1 est localisé sur les gouttelettes lipidiques et est impliqué dans le recrutement de PLIN2 et de la lipase ATGL sur les gouttelettes lipidiques. Cette thèse montre, par des études de biologie cellulaire et de microscopie, que GBF1 possède un domaine de fixation aux phospholipides via une hélice amphipatique. Cette hélice est nécessaire et suffisante pour l’association aux gouttelettes lipidiques in cellulo. La régulation de la localisation de GBF1 repose sur l’interaction avec Rab1B (cascade entre Rab1 et Arf1 dans la voie sécrétoire précoce) ainsi que sur les interactions intramoléculaires entre les différents domaines de GBF1. / The eukaryotic cell physically separates its functions within several membrane-bound organelles, which communicate using vesicles. Vesicular trafficking is under the control of small GTPases that exist as an inactive GDP-bound form and an active GTP-bound form. The switch between GDP and GTP is catalyzed by a guanine nucleotide exchange factor (GEF). On cis-Golgi membranes, Arf1, activated by the large GEF GBF1, recruits the COPI coat. COPI coated vesicles ensure the retrograde transport from the Golgi to the ER. Recently, GBF1 has been implicated in other pathways, such as the life cycle of various viruses and lipid droplet metabolism.Lipid droplets (LD), the major lipid storage organelle, play a major role in lipid homeostasis within the cell. LDs are connected to membrane trafficking and are therefore under the control of GTPases. In previous studies, our team showed that GBF1 localizes around LDs and that it is required for protein loading onto the LD surface. Here, data support the idea that GBF1 localizes to the LD surface. Using cell biology tools and microscopy, we identified, within GBF1, a lipid binding domain. In this domain, a single amphipathic helix is necessary and sufficient for LD targeting in cells. The regulation of GBF1 localization relies on interaction with Rab1 (data support a Rab1-Arf1 cascade between the ER and the Golgi) and on intramolecular interactions between GBF1 domains.
|
25 |
Rôle de l'ubiquitination dans le trafic cellulaire des molécules de présentation antigénique. / Role of the ubiquitination in the intracellular trafficking of antigen presenting moleculesDe Angelis Rigotti, Francesca 12 April 2011 (has links)
L’ubiquitinylation a été largement étudiée comme étant un mécanisme impliqué dans la régulation du trafic intracellulaire de nombreuses protéines membranaires. Mon travail a permis d’identifier MARCH-IX, une ubiquitine ligase exprimées dans les cellules de mammifères, comme un acteur important du trafic intracellulaire des molécules de présentation antigénique CD1a et CMH-I. En condition d'over-expression, MARCH-IX ubiquitinyle spécifiquement CD1a et CMH-I. Par ailleurs, en utilisant la technique d’ARN interférence, nous avons mis en évidence que l’ubiquitination des CMH I dépendante de MARCH IX facilite l’export des CMH I néosynthétisés du TGN vers la membrane plasmique et permet leur accès à des compartiments endosomaux. Notamment l’expression de MARCH-IX est régulée au niveau transcriptionnel pendant la maturation de DCs humaine; son expression est largement diminuée suite à l’activation des DCs plasmacytoïdes (pDCs), alors qu’elle augmente dans des DCs dérivées de monocytes (MoDCs) stimulées par du LPS. Ces résultats laissent envisager que MARCH IX puisse avoir un rôle important dans le contrôle de la présentation antigénique médiée par les CMH I dans les DCs humaines. Enfin, l’adressage intracellulaire des molécules de CD1a dans les MoDCs apparait également comme un processus régulé au cours de la maturation. Si CD1a est localisé à la membrane plasmique et dans des compartiments endosomaux précoce dans des cellules immatures, cette molécule n’apparaît plus qu’à la surface des cellules matures. Nous postulons donc que la régulation de MARCH-IX durant la maturation des MoDCs puisse être directement liée à la modification du trafic intracellulaire de CD1a. / Ubiquitination has been largely studied as regulator of the intracellular trafficking of several membrane proteins, inducing their internalization or their sorting from TGN to endosomes. Interestingly, pathogens adopted this mechanism to evade the immune response. For example, Kaposi’s sarcoma herpesvirus synthesizes two ubiquitin ligases, MIR1 and MIR2, which target the antigen presenting molecule, MHC class I, inducing its internalization. We identified the mammalian ubiquitin ligase MARCH-IX as important factor in the intracellular trafficking of antigen presenting molecules, CD1a and MHC-I. In conditions of MARCH-IX over-expression, CD1a and MHC-I are ubiquitinated and they accumulated in early endosomes. In MARCH-IX silenced cells, the arrival of MHC-I at the plasma membrane appear to be delayed and MHC-I accumulates in the TGN. During dendritic cell maturation, MARCH-IX expression and CD1a intracellular localization showed a correlation, which is compatible with a role of the ubiquitin ligase in the export pathway of CD1a. We concluded that MARCH-IX acts on neo-synthesized molecules, facilitating their sorting from the TGN. In addition to the function analysis of MARCH-IX, we also investigated its ability to conjugate ubiquitin on non-conventional residues. Our results demonstrated that, differently from viral ubiquitin ligases, MARCH-IX could target MHC class I and CD1a only in presence of lysine residues on their cytoplasmic tail, suggesting a stronger restriction in the control of the ubiquitination mechanism on mammals.
|
26 |
Amoebae as Hosts and Vectors for Spread of Campylobacter jejuniOlofsson, Jenny January 2015 (has links)
Campylobacter jejuni is the leading bacterial cause of gastrointestinal diarrheal disease in humans worldwide. This zoonotic pathogen has a complex epidemiology due to its presence in many different host organisms. The overall aim of this thesis was to explore the role of amoebae of the genus Acanthamoeba as an intermediate host and vector for survival and dissemination of C. jejuni. Earlier studies have shown that C. jejuni can enter, survive and replicate within Acanthamoebae spp. In this thesis, I have shown that C. jejuni actively invades Acanthamoeba polyphaga. Once inside, C. jejuni could survive within the amoebae by avoiding localization to degradative lysosomes. We also found that A. polyphaga could protect C. jejuni in acid environments with pH levels far below the range in which the bacterium normally survives. Furthermore, low pH triggered C. jejuni motility and invasion of A. polyphaga. In an applied study I found that A. polyphaga also could increase the survival of C. jejuni in milk and juice both at room temperature and at +4ºC, but not during heating to recommended pasteurization temperatures. In the last study we found that forty environmental C. jejuni isolates with low bacterial concentrations could be successfully enriched using the Acanthamoeba-Campylobacter coculture (ACC) method. Molecular genetic analysis using multilocus sequence typing (MLST) and sequencing of the flaA gene, showed no genetic changes during coculture. The results of this thesis have increased our knowledge on the mechanisms behind C. jejuni invasion and intracellular survival in amoebae of the genus Acanthamoeba. By protecting C. jejuni from acid environments, Acanthamoebae could serve as important reservoirs for C. jejuni e.g. during acid sanitation of chicken stables and possibly as vectors during passage through the stomach of host animals. Furthermore, Acanthamoeba spp. could serve as a vehicle and reservoir introducing and protecting C. jejuni in beverages such as milk and juice. Validation of the ACC method suggests that it is robust and could be used even in outbreak investigations where genetic fingerprints are compared between isolates. In conclusion, Acanthamoeba spp. are good candidates for being natural hosts and vectors of C. jejuni.
|
27 |
Trafic intracellulaire de l’ARN de la télomérase chez Saccharomyces cerevisiæ : relation entre biogénèse de la télomérase et homéostasie des télomèresGallardo, Franck 02 1900 (has links)
Le contrôle de la longueur des télomères est une étape critique régissant le potentiel
réplicatif des cellules eucaryotes. A cause du problème de fin de réplication, les
chromosomes raccourcissent à chaque cycle de division. Ce raccourcissement se produit
dans des séquences particulières appelées télomères. La longueur des télomères est en
relation directe avec les capacités prolifératives des cellules et est responsable de la limite
de division de Hayflick. Cependant, dans certains types cellulaires et dans plus de 90% des
cancers, la longueur des télomères va être maintenue par une enzyme spécialisée appelée
télomérase. Encore aujourd’hui, comprendre la biogénèse de la télomérase et savoir
comment elle est régulée reste un élément clé dans la lutte contre le cancer. Depuis la
découverte de cette enzyme en 1985, de nombreux facteurs impliqués dans sa maturation
ont été identifiés. Cependant, comment ces facteurs sont intégrés dans le temps et dans
l’espace, afin de produire une forme active de la télomérase, est une question restée sans
réponse. Dans ce projet, nous avons utilisé la levure Saccharomyces cerevisiæ comme
modèle d’étude des voies de biogénèse et de trafic intracellulaire de l’ARN de la
télomérase, en condition endogène.
La première étape de mon travail fut d’identifier les facteurs requis pour
l’assemblage et la localisation de la télomérase aux télomères en utilisant des techniques
d’Hybridation In Situ en Fluorescence (FISH). Nous avons pu montrer que la composante
ARN de la télomérase fait la navette entre le noyau et le cytoplasme, en condition
endogène, dans les cellules sauvages. Nos travaux suggèrent que ce trafic sert de contrôle
qualité puisqu’un défaut d’assemblage de la télomérase conduit à son accumulation
cytoplasmique et prévient donc sa localisation aux télomères. De plus, nous avons identifié
les voies d’import/export nucléaire de cet ARN.
Dans une deuxième approche, nous avons réussi à développer une méthode de
détection des particules télomérasiques in vivo en utilisant le système MS2-GFP. Notre
iv
étude montre que contrairement à ce qui a été précédemment décrit, la télomérase n’est pas
associée de façon stable aux télomères au cours du cycle cellulaire. En fin de phase S, au
moment de la réplication des télomères, la télomérase se regroupe en 1 à 3 foci dont
certains colocalisent avec les foci télomériques, suggérant que nous visualisons la
télomérase active aux télomères in vivo. La délétion des gènes impliqués dans l’activation
et le recrutement de la télomérase aux télomères entraine une forte baisse dans
l’accumulation des foci d’ARN au sein de la population cellulaire. Nos résultats montrent
donc pour la première fois la localisation endogène de l’ARN TLC1 in situ et in vivo et
propose une vue intégrée de la biogenèse et du recrutement de la télomérase aux télomères. / Telomere length control is a critical step that governs the replicative potential of
eukaryotic cells. Due to the end replication problem, chromosomes shorten at each round of
division. This attrition occurs in specialized sequences at the extremity of chromosomes
called telomeres. Telomere size is in direct relationship with proliferative potential and
responsible for Hayflick’s division limit. However, in different cell type and in cancers, an
end-specialized enzyme called telomerase maintains telomere length. Reactivation of
telomerase in somatic cells triggers a pre-tumoral phenotype and more than 90% of cancers
highly express this enzyme. Still today, understanding how telomerase is synthesized and
reactivated can be a key step for the understanding of cancer arising and progression. Since
the discovery of this enzyme in 1985, several factors involved in the regulation of this
enzyme have been discovered. However, the spatio-temporal regulation of telomerase
biogenesis and regulation has not been determined. We used the yeast S.cerevisiæ to study
the biogenesis and recruitment of telomerase to telomeres.
The first step in my work was to determine the factors required for the biogenesis
and recruitment of telomerase to telomeres using fluorescence in situ hybridization. We
have shown that the telomerase RNA component shuttles between the nucleus and the
cytoplasm in wild type endogenous conditions. We have shown that this intracellular
trafficking is used as a quality control mechanism that prevents the nuclear localization of
miss assembled telomerase complexes. Moreover, we have identified the import/export
pathways of the telomerase RNA.
In a second step, we developed an in vivo localization system to follow the
telomerase RNA dynamics. We used the MS2-GFP system to track this RNA in vivo. Our
study shows that, contrary to what was previously described, telomerase is not stably
associated to telomeres during the cell cycle but freely diffuses in the nucleus of G1 cells.
In late S phase, at the moment of telomere replication, telomerase clusters in 1 to 3 big foci
vi
that colocalizes with telomeres clusters in vivo, suggesting the visualization of active
telomerase particles replicating telomeres. Disruption of gene coding for telomerase
activators triggers a great reduction of telomerase RNA clusters in a cell population.
Altogether, our results shows for the first time the localization of the endogenous form of
the telomerase RNA and propose an integrated view of telomerase biogenesis and
recruitment to telomeres.
|
28 |
Mechanistic studies on the uptake and intracellular trafficking of DNA complexes in primary cells using lipid-modified cationic polymers as non-viral gene carrierHsu, Charlie Yu Ming Unknown Date
No description available.
|
29 |
Influence de la petite protéine GTPasique Cdc42 sur la voie de sécrétion du canalCFTR dans des cellules épithéliales bronchiques / Influence of the small GTPase Cdc42 on the CFTR secretory pathway in epithelialairway cellsClément, Romain 26 October 2012 (has links)
La mucoviscidose est causée par des mutations du gène CFTR (p.Phe508del étant la plus fréquente). Celui-ci code pour la protéine CFTR qui constitue un canal chlorure exprimé à la face apicale des cellules épithéliales. Au niveau du reticulum endoplasmique (RE), le contrôle de qualité conformationnelle oriente la majorité du CFTR en cours de repliement vers une voie de dégradation. Une fraction limitée du WT-CFTR parvient cependant à se replier correctement et peut ensuite progresservers la surface cellulaire, contrairement au Phe508del-CFTR (qui est néanmoins fonctionnel). Lorsque des formes mutées sont exportées à partir du RE, grâce à des traitements correcteurs, elles sont alors instables à la membrane plasmique. Par ailleurs, il a été montré que l'organisation des microfilaments d'actine participe à l'ancrage du canal au cytosquelette et à sa stabilité. Or, la petite GTPase Cdc42 influence la dynamique de nucléation de l'actine fibrillaire. Au cours de nos travaux, nous avons testé l'implication de Cdc42 et de certains de ses effecteurs dans la régulation de WT-CFTR dans des cellules épithéliales bronchiques. Dans ce cadre, la fonction de la voie Cdc42 a été perturbée par des traitements pharmacologiques et par ARN interférence. Les résultats obtenus, principalement par biotinylation de surface, ont permis de proposer que (1) la protéine Cdc42 participe à ladégradation de formes mal repliées de CFTR dans les étapes précoces et tardives de la voie de sécrétion et (2) la voie Cdc42, par son implication dans l'organisation de l'actine F corticale, affecte l’ancrage du canal chlorure au cytosquelette et régule ainsi son recrutement dans des vésicules d'internalisation. / Cystic Fibrosis is caused by CFTR gene mutations (p.Phe508del being the most frequently encountered). The CFTR protein functions as a chloride channel expressed at the plasma membrane of epithelial cells. Its productive folding in the endoplasmicreticulum (ER) is poorly efficient and unfolded proteins are therefore targeted to degradation. Nevertheless, a limited fraction of WT-CFTR acquires a native conformation and then progesses into the secretory pathway. In the case of Phe508del-CFTR, virtually all channels are degraded at this step except through corrector treatments. Under these conditions the mutant remains unstable at the plasma membrane (although it is functionnaly competent). Furthermore, it has been shown that fibrillar actin organization is involved in CFTR tethering to the cytoskeleton and channel stability. Moreover, the small GTPase Cdc42 promotes F actin nucleation. In the present study, we aimed at testing the involvement of Cdc42, and of some of its effectors, in WT-CFTR regulation in epithelial airway cells. In this context, Cdc42 pathway function was altered through pharmacological treatments or siRNAmediated depletions. Our results, mainly obtained via cell surface biotinylation assays, led us to propose that (1) Cdc42 is involved in misfolded CFTR degradation at early and late steps of the secretory pathway, and (2) Cdc42 pathway, through its F actin organization function, affects CFTR anchoring to the cytoskeleton and thus regulates its endocytosis.
|
30 |
Role of sphingolipids and polyubiquitin chains in intracellular trafficking of the yeast GAP1 permeaseLauwers, Elsa 24 October 2007 (has links)
In the past fifteen years, ubiquitin has emerged as a central regulator of membrane protein trafficking. In this context, covalent attachment of this small protein to lysine residues of cargo proteins, a reversible modification termed ubiquitylation, provides a signal for their targeting to the vacuolar/lysosomal lumen where they are degraded, both in yeast and higher eukaryotes. Ubiquitylation is also used as a means of controlling the function of specific proteins in several trafficking machineries. The role of lipids - and in particular of membrane domains named lipid rafts - in controlling the intracellular trafficking of membrane proteins has also been the subject of intense investigation in recent years.<p>One of the membrane proteins of the yeast Saccharomyces cerevisiae whose intracellular trafficking has been extensively studied is the general amino acid permease Gap1. Yet some aspects of the function of ubiquitin in the nitrogen-dependent control of this protein remain controversial. Moreover, the potential role of lipid rafts in regulating the functional properties and traffic of the Gap1 permease had not been investigated before this thesis work. <p>The first part of our work readdresses the role of Gap1 ubiquitylation, and more precisely of the modification of the permease with polyubiquitin chains linked through the lysine 63 of ubiquitin, in controlling the fate of this protein in the secretory pathway. Our observations indicate that nitrogen-induced ubiquitylation of newly synthesised Gap1 occurs in the trans-Golgi complex. However, contrary to the generally accepted view, this modification is not necessary for the permease to exit this compartment en route to the endosome but only for its subsequent targeting to the vacuolar lumen via the multivesicular body (MVB) pathway. Our results also provide evidence that K63-linked polyubiquitylation is important mostly at the late endosomal level, for proper sorting of Gap1 into the MVB pathway, whether the permease comes from the cell surface by endocytosis or directly from the secretory pathway. <p>In the second part of this work, we present a set of data providing novel insights into the controversial question of the exact nature of lipid rafts in yeast. We first showed that the Gap1 permease is associated with detergent-resistant membranes (DRMs) - the proposed biochemical equivalent of lipid rafts - when it is located at the cell surface. Our data further suggest that this may be true for most if not all yeast plasma membrane proteins. Moreover, we found that Gap1 production must be coupled to de novo synthesis of sphingolipids (SLs), major constituents of rafts, in order for the newly synthesised permease to be correctly folded, active, associated with DRMs, and stable at the cell surface. We propose a model where Gap1 would associate with newly synthesised SLs during its biogenesis and/or secretion, this association shaping the permease into its native conformation and ensuring its incorporation and stabilisation in specific lipid domains at the plasma membrane. Failure of Gap1 to acquire this lipidic microenvironment in turns leads to its ubiquitin-dependent degradation by a quality-control mechanism. This model might be valid for many other plasma membrane proteins and might account for their lateral distribution between distinct membrane domains. <p> / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
|
Page generated in 0.1059 seconds