• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • 1
  • 1
  • Tagged with
  • 8
  • 8
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Inverse problems of the Darboux theory of integrability for planar polynomial differential systems

Pantazi, Chara 16 July 2004 (has links)
No description available.
2

Família de aplicações bilhares geradas pelo fluxo de curvatura / Family of billiards maps generated by curvature flow

Damasceno, Josué Geraldo, 1975- 12 July 2011 (has links)
Orientadores: Mário Jorge Dias Carneiro, Marco Antonio Teixeira / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matemática, Estatística e Computação Científica / Made available in DSpace on 2018-08-19T10:54:43Z (GMT). No. of bitstreams: 1 Damasceno_JosueGeraldo_D.pdf: 1045427 bytes, checksum: 2cb1e5f51924e8667d69ad7267aeaa4e (MD5) Previous issue date: 2011 / Resumo: Descrevemos algumas propriedades dinâmicas de uma família de aplicações bilhares sobre curvas convexas (ovais) as quais são deformadas pelo fluxo de curvatura. Quando a mesa se deforma, a razão entre as curvaturas mínima e máxima converge a 1 e por um resultado clássico de Gage e Hamilton, depois de uma normalização, as curvas tendem a um círculo. Como conseqüência, a região de Lazutkin, isto é, a região que contém cáusticas convexas, cresce gradualmente. Descreveremos algumas bifurcações dinâmicas nesse processo, em particular, descreveremos o que acontece com a família de órbitas de período dois e as órbitas "zig-zag" / Abstract: We describe some dynamical properties of one parameter families of billiards on convex curves (ovals) which are deformed by the curvature flow. As the billiard table deforms, the ratio between minimal and maximal curvature converges to 1 and by a classical result of Gage and Hamilton [GH], after a normalization, the curves tend to a circle. As a consequence, the Lazutkin region, i.e. the region that contains convex caustics, gradually increases. We describe some dynamical bifurcations in this process, in particular, we describe what happens with the family of period two orbits and the "zig-zag"orbits / Doutorado / Matematica / Doutor em Matemática
3

A qualitative approach to the existence of random periodic solutions

Uda, Kenneth O. January 2015 (has links)
In this thesis, we study the existence of random periodic solutions of random dynamical systems (RDS) by geometric and topological approach. We employed an extension of ergodic theory to random setting to prove that a random invariant set with some kind of dissipative structure, can be expressed as union of random periodic curves. We extensively characterize the dissipative structure by random invariant measures and Lyapunov exponents. For stochastic flows induced by stochastic differential equations (SDEs), we studied the dissipative structure by two point motion of the SDE and prove the existence exponential stable random periodic solutions.
4

Existência e estabilidade de órbitas periódicas da Equação de Van der Pol-Mathieu / Existence and stability of periodic orbits of van der Pol-Mathieu equation

Pereira, Franciele Alves da Silveira Gonzaga 28 February 2012 (has links)
In this work some existence and stability results of periodic orbits of van der Pol-Mathieu Equation are studied. By using the Averaging Theorem we are able to prove, under mild conditions, the existence of two asymptotically stable periodic orbits of this equation. Moreover, the existence of invariant quadrics can be settled in plane phase of this equation. / Neste trabalho alguns resultados sobre existência e estabilidade de soluções periódicas da equação de van der Pol-Mathieu são estudados. Por meio do Teorema da Média é provado, sob condições adequadas, que esta equação possui duas órbitas periódicas assintóticamente estáveis. Além disso é obtida a existência de cônicas invariantes no plano de fase desta equação. / Mestre em Matemática
5

Equações de Pfaff e a não existência de soluções algébricas

Gagliardi, Edson Martins 04 October 2012 (has links)
Submitted by Renata Lopes (renatasil82@gmail.com) on 2017-05-29T11:45:03Z No. of bitstreams: 1 edsonmartinsgagliardi.pdf: 1001962 bytes, checksum: a18ae7643c8253581ca782eebf23bb84 (MD5) / Approved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2017-05-29T19:17:43Z (GMT) No. of bitstreams: 1 edsonmartinsgagliardi.pdf: 1001962 bytes, checksum: a18ae7643c8253581ca782eebf23bb84 (MD5) / Made available in DSpace on 2017-05-29T19:17:43Z (GMT). No. of bitstreams: 1 edsonmartinsgagliardi.pdf: 1001962 bytes, checksum: a18ae7643c8253581ca782eebf23bb84 (MD5) Previous issue date: 2012-10-04 / CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Em 1979, J.P. Jouanolou em seu livro ”Equations de Pfaff Algébriques ”[12] apresenta um resultado de densidade que diz que o conjunto de equações algébricas de Pfaff de grau m > 2 em P2 sem soluções algébricas é denso no conjunto das equações algébricas de Pfaff. Por se tratar de um resultado de densidade, era preciso garantir que o conjunto das equações algébricas de Pfaff sem soluções algébricas não é vazio. Para isso, Jouanolou apresenta, neste mesmo trabalho, um exemplo de equação de Pfaff sem solução algébrica. Neste trabalho, estudamos o exemplo do Jouanolou, com base no artigo [23] de Zoladek. O autor traz uma abordagem mais analítica para este problema e apresenta uma demonstração baseada em uma generalização do Teorema de Integração de Darboux, (ver [4]), proposta pelo autor neste mesmo artigo. / In 1979, J.P.Jouanolou, in his book ”Equations de Pfaff Algébriques”[12], presents a density’s result which says that the set of Pfaff’s algebraic equations of degree m > 2 in P2 without algebraic solutions is dense in the set of Pfaff’s algebraic equations. As this is a result about density, it is necessary to ensure that the set of Pfaff’s algebraic equations without algebraic solutions is not empty. In order to do it, Jouanolou presents in the same paper an example of Pfaff’s equation without algebraic solution. In this work, we study the example of Jouanolou, based on the Zoladek’s article [23]. The author brings a more analytical approach to this problem and presents one proof based on a generalization of the Integration Theorem of Darboux (see [4]) proposed by the author in the same article.
6

Анализ стохастических аттракторов модели Ферхюльста с запаздыванием : магистерская диссертация / Analysis of stochastic attractors of Verhulst model with delay

Екатеринчук, Е. Д., Ekaterinchuk, E. D. January 2015 (has links)
We investigate attractors of the Verhulst model with delay under the influence of random perturbations. In this work, we study dynamic regimes and bifurcations for the deterministic discrete model in zones of stable equilibria, closed invariant curves and discrete cycles. Here, a stability level of attractors is studied by Lyapunov exponents. Transformations of the closed invariant curve that appears as a result of Neimark-Sacker bifurcation, were analyzed via the rotation number and angular density. A parametric analysis of stochastically forced regular attractors of this model is performed using the stochastic sensitivity functions technique. A spatial arrangement of random states in stochastic attractors is described by confidence domains. The phenomenon of noise-induced transitions in a zone of discrete cycles is discussed. / Мы исследуем аттракторы модели Ферхюльста с запаздыванием под влиянием случайных возмущений. В работе мы изучаем динамические режимы и бифуркации для детерминированной дискретной модели в зонах устойчивых равновесий, замкнутых инвариантных кривых и дискретных циклов. Исследована устойчивость регулярных аттракторов. Замкнутая инвариантная кривая, которая появляется в результате бифуркации Неймарка–Сакера, анализируется с помощью числа вращения и секторной плотности. Параметрический анализ стохастически возмущенных регулярных аттракторов этой модели выполняется с помощью техники функции стохастической чувствительности. Пространственное распределение случайных состояний стохастических аттракторов описывается с помощью доверительных областей. Наблюдается явление индуцированных шумом переходов в зоне дискретных циклов.
7

Sur les courbes invariantes par un difféomorphisme C1-générique symplectique d’une surface / On the invariant curves of a C1-generic symplectic diffeomorphism of a surface

Girard, Marie 18 December 2009 (has links)
Au début du XXème siècle, Poincaré puis Birkhoff ont été amenés, lors de leur recherche sur le problème restreint des trois corps, à étudier les courbes invariantes par une transformation d’une surface préservant l’aire. Cinquante ans plus tard, les théorèmes KAM démontrent la persistance de courbes invariantes après perturbation en topologie de classe k plus grande ou égale à trois. On peut alors se demander ce que devient ce résultat en topologie de classe moins élevée. Par ailleurs, l’étude des dynamiques C1-génériques connaît de nombreux développements, grâce notamment au Connecting Lemma. Par exemple, Bonatti et Crovisier on démontré qu’un difféomorphisme C1-générique d’une telle surface possède un ensemble dense de points dont l’orbite sort de tout compact. Ces deux résultats permettent de penser qu’un difféomorphisme C1-générique d’une surface n’admet pas de courbes fermées simples invariantes. C’est ce que nous démontrons dans ce travail. On obtient assez facilement, en utilisant le Connecting Lemma ainsi que les propriétés topologiques de l’anneau, qu’un difféomorphisme C1-générique de l’anneau possède des points périodiques sur toute courbe fermée simple invariante. Cela se généralise à une surface quelconque en utilisant une famille dénombrable d’anneau constituant une base de voisinages d’une courbe fermée simple quelconque. La construction d’une telle famille d’anneaux est le principal résultat du premier chapitre. Il s’agit alors de supprimer les points périodiques sur les courbes invariantes. Dans un premier temps, nous nous inspirerons d’un argument qu’Herman utilise dans le cadre de courbes invariantes par les twists de l’anneau pour montrer que tous les points périodiques ne peuvent être hyperboliques. Ensuite, nous définissons une propriété, la propriété G, qui si elle est vérifiée par un difféomorphisme symplectique et l’un de ses points périodiques elliptiques, empêche que ce point périodique appartienne à une courbe invariante. En montrant que cette propriété est vérifiée par un difféomorphisme C1-générique et tous ses points périodiques elliptiques, nous obtenons le résultat souhaité. Dans le quatrième chapitre, nous nous employons à définir de façon rigoureuse la notion de fonction génératrice qui est l’outil classique pour perturber des difféomorphismes symplectiques / Poincaré and Birkhoff were led, during their research on the restricted problem of three bodies, to study invariant curves under an area preserving map of a surface. Fifty years later, theorems KAM show the persistance of invariant curves in topology Ck with k greater or equal to three. What becomes this result in topology class lower. Moreover, the study of C1-generic dynamics knows many developments particulary through the Connecting Lemma. For example, Bonatti and Crovisier showed a C1-generic symplectic diffeomorphism of a compact surface is transitive. What they have adapted with M.-C. Arnaud to a non compact surface : a C1-generic symplectic diffeomorphism of a non compact surface has a dense set of points whose orbit leaves every compacts. These two results suggest a such application has not an invariant simple closed curve. The proof of this result is the aim of this work. We obtain, using the Connecting Lemma, a C1-generic symplectic diffeomorphism has periodic points on all the invariant curves. Then, deleting the periodic points from the invariant curves is the challenge. At first, we use an argument that Herman used in the context of curves invariant by a twist of annulus, to show that all periodic points cannot be hyperbolic. Then, we define a property, the property G, which, if it is verified by a symplectic diffeomorphism and one of its periodic elliptic points, prevents this periodic point belongs to an invariant curve. By showing that property is verified by a C1-generic symplectic diffeomorphism, we obtain the desired result. In the fourth chapter, we explain how to pertube a symplectic diffeomorphism with generating functions
8

Cislunar Trajectory Design Methodologies Incorporating Quasi-Periodic Structures With Applications

Brian P. McCarthy (5930747) 29 April 2022 (has links)
<p> </p> <p>In the coming decades, numerous missions plan to exploit multi-body orbits for operations. Given the complex nature of multi-body systems, trajectory designers must possess effective tools that leverage aspects of the dynamical environment to streamline the design process and enable these missions. In this investigation, a particular class of dynamical structures, quasi-periodic orbits, are examined. This work summarizes a computational framework to construct quasi-periodic orbits and a design framework to leverage quasi-periodic motion within the path planning process. First, quasi-periodic orbit computation in the Circular Restricted Three-Body Problem (CR3BP) and the Bicircular Restricted Four-Body Problem (BCR4BP) is summarized. The CR3BP and BCR4BP serve as preliminary models to capture fundamental motion that is leveraged for end-to-end designs. Additionally, the relationship between the Earth-Moon CR3BP and the BCR4BP is explored to provide insight into the effect of solar acceleration on multi-body structures in the lunar vicinity. Characterization of families of quasi-periodic orbits in the CR3BP and BCR4BP is also summarized. Families of quasi-periodic orbits prove to be particularly insightful in the BCR4BP, where periodic orbits only exist as isolated solutions. Computation of three-dimensional quasi-periodic tori is also summarized to demonstrate the extensibility of the computational framework to higher-dimensional quasi-periodic orbits. Lastly, a design framework to incorporate quasi-periodic orbits into the trajectory design process is demonstrated through a series of applications. First, several applications were examined for transfer design in the vicinity of the Moon. The first application leverages a single quasi-periodic trajectory arc as an initial guess to transfer between two periodic orbits. Next, several quasi-periodic arcs are leveraged to construct transfer between a planar periodic orbit and a spatial periodic orbit. Lastly, transfers between two quasi-periodic orbits are demonstrated by leveraging heteroclinic connections between orbits at the same energy. These transfer applications are all constructed in the CR3BP and validated in a higher-fidelity ephemeris model to ensure the geometry persists. Applications to ballistic lunar transfers are also constructed by leveraging quasi-periodic motion in the BCR4BP. Stable manifold trajectories of four-body quasi-periodic orbits supply an initial guess to generate families of ballistic lunar transfers to a single quasi-periodic orbit. Poincare mapping techniques are used to isolate transfer solutions that possess a low time of flight or an outbound lunar flyby. Additionally, impulsive maneuvers are introduced to expand the solution space. This strategy is extended to additional orbits in a single family to demonstrate "corridors" of transfers exist to reach a type of destination motion. To ensure these transfers exist in a higher fidelity model, several solutions are transitioned to a Sun-Earth-Moon ephemeris model using a differential corrections process to show that the geometries persist.</p>

Page generated in 0.0541 seconds