• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 4
  • 3
  • 1
  • 1
  • Tagged with
  • 22
  • 22
  • 9
  • 8
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Statistical Properties of 2D Navier-Stokes Equations Driven by Quasi-Periodic Force and Degenerate Noise

Liu, Rongchang 12 April 2022 (has links)
We consider the incompressible 2D Navier-Stokes equations on the torus driven by a deterministic time quasi-periodic force and a noise that is white in time and extremely degenerate in Fourier space. We show that the asymptotic statistical behavior is characterized by a uniquely ergodic and exponentially mixing quasi-periodic invariant measure. The result is true for any value of the viscosity ν > 0. By utilizing this quasi-periodic invariant measure, we show the strong law of large numbers and central limit theorem for the continuous time inhomogeneous solution processes. Estimates of the corresponding rate of convergence are also obtained, which is the same as in the time homogeneous case for the strong law of large numbers, while the convergence rate in the central limit theorem depends on the Diophantine approximation property on the quasi-periodic frequency and the mixing rate of the quasi-periodic invariant measure. We also prove the existence of a stable quasi-periodic solution in the laminar case (when the viscosity is large). The scheme of analyzing the statistical behavior of the time inhomogeneous solution process by the quasi-periodic invariant measure could be extended to other inhomogeneous Markov processes.
12

Cadeias estocásticas de memória ilimitada com aplicação na neurociência / Stochastic chains with unbounded memory applied in neuroscience

Ferreira, Ricardo Felipe 21 March 2019 (has links)
As cadeias estocásticas de memória ilimitada são uma generalização natural das cadeias de Markov, no caso em que as probabilidades de transição podem depender de todo o passado da cadeia. Estas cadeias, introduzidas, independentemente, por Onicescu e Mihoc em 1935 e Doeblin e Fortet em 1937, vêm recebendo uma atenção crescente na literatura probabilística, não só por serem uma classe mais rica que a classe das cadeias de Markov, como por suas capacidades práticas de modelagem de dados científicos em diversas áreas, indo da biologia à linguística. Neste trabalho, as utilizamos para modelar a interação entre sequências de disparos neuronais. Nosso objetivo principal é desenvolver novos resultados matemáticos acerca das cadeias de memória ilimitada. Inicialmente, estudamos as condições que garantem a existência e a unicidade de cadeias estacionárias compatíveis com uma família de probabilidades de transição descontínua. Em seguida, tratamos do entendimento da fenomenologia dos trens de disparos neuronais e usamos da informação dirigida para modelar a informação que flui de uma sequência de disparos a outra. Nesta ocasião, fixamos limites da concentração para estimação da informação dirigida. / Stochastic chains with unbounded memory are a natural generalization of Markov chains, in the sense that the transition probabilities may depend on the whole past. These process, introduced independently by Onicescu and Mihoc in 1935 and Doeblin and Fortet in 1937, have been receiving increasing attention in the probabilistic literature, because they form a class richer than the Markov chains and have practical capabilities modelling of scientific data in several areas, from biology to linguistics. In this work, we use them to model interactions between spike trains. Our main goal is to develop new mathematical results about stochastic chains with unbounded memory. First, we study conditions that guarantee the existence and uniqueness of stationary chains compatible with a discontinuous family of transition probabilities. Then, we address the understanding of the phenomenology of spike trains and we propose to use directed information to quantify the information flow from one neuron to another. In this occasion, we fix concentration bounds for directed information estimation.
13

A Study of Smooth Functions and Differential Equations on Fractals

Pelander, Anders January 2007 (has links)
<p>In 1989 Jun Kigami made an analytic construction of a Laplacian on the Sierpiński gasket, a construction that he extended to post critically finite fractals. Since then, this field has evolved into a proper theory of analysis on fractals. The new results obtained in this thesis are all in the setting of Kigami's theory. They are presented in three papers.</p><p>Strichartz recently showed that there are first order linear differential equations, based on the Laplacian, that are not solvable on the Sierpiński gasket. In the first paper we give a characterization on the polynomial p so that the differential equation p(Δ)u=f is solvable on any open subset of the Sierpiński gasket for any f continuous on that subset. For general p we find the open subsets on which p(Δ)u=f is solvable for any continuous f.</p><p>In the second paper we describe the infinitesimal geometric behavior of a large class of smooth functions on the Sierpiński gasket in terms of the limit distribution of their local eccentricity, a generalized direction of gradient. The distribution of eccentricities is codified as an infinite dimensional perturbation problem for a suitable iterated function system, which has the limit distribution as an invariant measure. We extend results for harmonic functions found by Öberg, Strichartz and Yingst to larger classes of functions.</p><p>In the third paper we define and study intrinsic first order derivatives on post critically finite fractals and prove differentiability almost everywhere for certain classes of fractals and functions. We apply our results to extend the geography is destiny principle, and also obtain results on the pointwise behavior of local eccentricities. Our main tool is the Furstenberg-Kesten theory of products of random matrices.</p>
14

A Study of Smooth Functions and Differential Equations on Fractals

Pelander, Anders January 2007 (has links)
In 1989 Jun Kigami made an analytic construction of a Laplacian on the Sierpiński gasket, a construction that he extended to post critically finite fractals. Since then, this field has evolved into a proper theory of analysis on fractals. The new results obtained in this thesis are all in the setting of Kigami's theory. They are presented in three papers. Strichartz recently showed that there are first order linear differential equations, based on the Laplacian, that are not solvable on the Sierpiński gasket. In the first paper we give a characterization on the polynomial p so that the differential equation p(Δ)u=f is solvable on any open subset of the Sierpiński gasket for any f continuous on that subset. For general p we find the open subsets on which p(Δ)u=f is solvable for any continuous f. In the second paper we describe the infinitesimal geometric behavior of a large class of smooth functions on the Sierpiński gasket in terms of the limit distribution of their local eccentricity, a generalized direction of gradient. The distribution of eccentricities is codified as an infinite dimensional perturbation problem for a suitable iterated function system, which has the limit distribution as an invariant measure. We extend results for harmonic functions found by Öberg, Strichartz and Yingst to larger classes of functions. In the third paper we define and study intrinsic first order derivatives on post critically finite fractals and prove differentiability almost everywhere for certain classes of fractals and functions. We apply our results to extend the geography is destiny principle, and also obtain results on the pointwise behavior of local eccentricities. Our main tool is the Furstenberg-Kesten theory of products of random matrices.
15

Stable iterated function systems

Gadde, Erland January 1992 (has links)
The purpose of this thesis is to generalize the growing theory of iterated function systems (IFSs). Earlier, hyperbolic IFSs with finitely many functions have been studied extensively. Also, hyperbolic IFSs with infinitely many functions have been studied. In this thesis, more general IFSs are studied. The Hausdorff pseudometric is studied. This is a generalization of the Hausdorff metric. Wide and narrow limit sets are studied. These are two types of limits of sequences of sets in a complete pseudometric space. Stable Iterated Function Systems, a kind of generalization of hyperbolic IFSs, are defined. Some different, but closely related, types of stability for the IFSs are considered. It is proved that the IFSs with the most general type of stability have unique attractors. Also, invariant sets, addressing, and periodic points for stable IFSs are studied. Hutchinson’s metric (also called Vaserhstein’s metric) is generalized from being defined on a space of probability measures, into a class of norms, the £-norms, on a space of real measures (on certain metric spaces). Under rather general conditions, it is proved that these norms, when they are restricted to positive measures, give rise to complete metric spaces with the metric topology coinciding with the weak*-topology. Then, IFSs with probabilities (IFSPs) are studied, in particular, stable IFSPs. The £-norm-results are used to prove that, as in the case of hyperbolic IFSPs, IFSPs with the most general kind of stability have unique invariant measures. These measures are ”attractive”. Also, an invariant measure is constructed by first ”lifting” the IFSP to the code space. Finally, it is proved that the Random Iteration Algorithm in a sense will ”work” for some stable IFSPs. / <p>Diss. Umeå : Umeå universitet, 1992</p> / digitalisering@umu
16

Stochastické diferenciální rovnice s Gaussovským šumem / Stochastic Differential Equations with Gaussian Noise

Janák, Josef January 2018 (has links)
Title: Stochastic Differential Equations with Gaussian Noise Author: Josef Janák Department: Department of Probability and Mathematical Statistics Supervisor: Prof. RNDr. Bohdan Maslowski, DrSc., Department of Probability and Mathematical Statistics Abstract: Stochastic partial differential equations of second order with two un- known parameters are studied. The strongly continuous semigroup (S(t), t ≥ 0) for the hyperbolic system driven by Brownian motion is found as well as the formula for the covariance operator of the invariant measure Q (a,b) ∞ . Based on ergodicity, two suitable families of minimum contrast estimators are introduced and their strong consistency and asymptotic normality are proved. Moreover, another concept of estimation using "observation window" is studied, which leads to more families of strongly consistent estimators. Their properties and special cases are descibed as well as their asymptotic normality. The results are applied to the stochastic wave equation perturbed by Brownian noise and illustrated by several numerical simula- tions. Keywords: Stochastic hyperbolic equation, Ornstein-Uhlenbeck process, invariant measure, paramater estimation, strong consistency, asymptotic normality.
17

Dinâmica do mapa logístico via supertracks / Dynamic of logistic map via supertrack

Fidélis, Antônio João 08 March 2013 (has links)
Made available in DSpace on 2016-12-12T20:15:50Z (GMT). No. of bitstreams: 1 Antonio J Fidelis.pdf: 14922669 bytes, checksum: 6b0a7e53941481a93d4afce451520db9 (MD5) Previous issue date: 2013-03-08 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / In this work we present a study of the logistic map xn+1 = rxn(1 xn) based on the supertracks, a set of continuous functions of the fixed parameter r recursively generated from the map s critical point Xmax = 1/2. This functions determine some iriternal and externa! boundaries of the orbit diagram of the map and provide information about the dynamics of the orbits. The iritersections of these functions can be periodic points or Misiurewicz points. We analyze the dynamics of the orbit in a particular Misiurewicz point, originated from the first coilision between the unstable fixed point and the chaotic attractor. As inedited results, we present algebraically the Lyapunov exponent and the invariant measure for this fixed parameter s value r. Algebraical orbits from the birth and the death of the famous period 3 window are presented as inedited result too. / Neste trabalho apresentamos um estudo do mapa logístico xn + 1 = rxn(1 xn) através do formalismo de supertracks, um conjunto de funções contínuas do parâmetro fixo r geradas recursivamente a partir do ponto crítico do mapa Xmax = 1/2. Essas funções determinam algumas fronteiras internas e externas no diagrama de bifurcação do mapa e fornecem informações sobre a dinâmica das órbitas. As interseções dessas funções podem ser pontos periódicos ou pontos de Misiurewicz. Analisamos a dinâmica da órbita num ponto de Misiurewicz em particular, originado da primeira colisão do ponto fixo instável com o atrator caótico. Como resultados inéditos, apresentamos de forma algébrica o expoente de Lyapunov e a medida invariante para este valor do parâmetro r. As órhitas algébricas do nascimento e da morte da famosa janela de período 3 são também ineditamente apresentados.
18

Nonequilibrium stationary states of rotor and oscillator chains / États stationnaires hors-équilibre de chaînes de rotateurs et oscillateurs

Iacobucci, Alessandra 20 October 2017 (has links)
Nous étudions les propriétés des états stationnaires et de dynamiques hors-équilibre, d’un point de vue théorique et numérique. Ces dynamiques sont obtenues en perturbant la dynamique d’équilibre par forçage mécanique et/ou thermique. Dans l’approche théorique, le système considéré évolue selon une dynamique de Langevin à laquelle on ajoute une force extérieure. Nous étudions la convergence de la loi de la dynamique vers la mesure stationnaire, en donnant des estimations quantitatives du taux, dans les régimes Hamiltonien et sur amorties. Dans l’approche numérique, nous considérons une chaîne de rotateurs soumise aux deux forçages et une chaîne d’oscillateurs de Toda soumise à un forçage thermique et à une perturbation stochastique. Nous étudions les caractéristiques de l’état stationnaire et les propriétés de transport. Dans le cas de la chaîne de rotateurs nous observons en particulier que le courant d’énergie moyen est dans certains cas accru par un gradient de température opposé. / We study the properties of stationary states associated with nonequilibrium dynamics from a theoretical and a numerical point of view. These dynamics are obtained by perturbing equilibrium dynamics with mechanical and / or thermal forcings. In the theoretical approach, the system considered evolves according to a Langevin dynamics perturbed by a torque. In this framework, we study the convergence of the law of dynamics to the stationary measure, giving quantitative estimates of the exponential rate, both in the Hamiltonian and `` overdamped '' regimes.By a numerical approach, we consider a chain of rotors subjected to both forcings and a chain of Toda oscillators subject to a thermal forcing and a stochastic perturbation. We study the features of the stationary state and analyze its transport properties. In particular, in the case of the rotor chain, contrary to what is naively expected, we observe that the average energy current is in some cases increased by an opposite temperature gradient.
19

Limit order books, diffusion approximations and reflected SPDEs : from microscopic to macroscopic models

Newbury, James January 2016 (has links)
Motivated by a zero-intelligence approach, the aim of this thesis is to unify the microscopic (discrete price and volume), mesoscopic (discrete price and continuous volume) and macroscopic (continuous price and volume) frameworks of limit order books, with a view to providing a novel yet analytically tractable description of their behaviour in a high to ultra high-frequency setting. Starting with the canonical microscopic framework, the first part of the thesis examines the limiting behaviour of the order book process when order arrival and cancellation rates are sent to infinity and when volumes are considered to be of infinitesimal size. Mathematically speaking, this amounts to establishing the weak convergence of a discrete-space process to a mesoscopic diffusion limit. This step is initially carried out in a reduced-form context, in other words, by simply looking at the best bid and ask queues, before the procedure is extended to the whole book. This subsequently leads us to the second part of the thesis, which is devoted to the transition between mesoscopic and macroscopic models of limit order books, where the general idea is to send the tick size to zero, or equivalently, to consider infinitely many price levels. The macroscopic limit is then described in terms of reflected SPDEs which typically arise in stochastic interface models. Numerical applications are finally presented, notably via the simulation of the mesocopic and macroscopic limits, which can be used as market simulators for short-term price prediction or optimal execution strategies.
20

Comportement asymptotique des systèmes de fonctions itérées et applications aux chaines de Markov d'ordre variable / Asymptotic behaviour of iterated function systems and applications to variable length Markov chains

Dubarry, Blandine 14 June 2017 (has links)
L'objet de cette thèse est l'étude du comportement asymptotique des systèmes de fonctions itérées (IFS). Dans un premier chapitre, nous présenterons les notions liées à l'étude de tels systèmes et nous rappellerons différentes applications possibles des IFS telles que les marches aléatoires sur des graphes ou des pavages apériodiques, les systèmes dynamiques aléatoires, la classification de protéines ou encore les mesures quantiques répétées. Nous nous attarderons sur deux autres applications : les chaînes de Markov d'ordre infini et d'ordre variable. Nous donnerons aussi les principaux résultats de la littérature concernant l'étude des mesures invariantes pour des IFS ainsi que ceux pour le calcul de la dimension de Hausdorff. Le deuxième chapitre sera consacré à l'étude d'une classe d'IFS composés de contractions sur des intervalles réels fermés dont les images se chevauchent au plus en un point et telles que les probabilités de transition sont constantes par morceaux. Nous donnerons un critère pour l'existence et pour l'unicité d'une mesure invariante pour l'IFS ainsi que pour la stabilité asymptotique en termes de bornes sur les probabilités de transition. De plus, quand il existe une unique mesure invariante et sous quelques hypothèses techniques supplémentaires, on peut montrer que la mesure invariante admet une dimension de Hausdorff exacte qui est égale au rapport de l'entropie sur l'exposant de Lyapunov. Ce résultat étend la formule, établie dans la littérature pour des probabilités de transition continues, au cas considéré ici des probabilités de transition constantes par morceaux. Le dernier chapitre de cette thèse est, quant à lui, consacré à un cas particulier d'IFS : les chaînes de Markov de longueur variable (VLMC). On démontrera que sous une condition de non-nullité faible et de continuité pour la distance ultramétrique des probabilités de transitions, elles admettent une unique mesure invariante qui est attractive pour la convergence faible. / The purpose of this thesis is the study of the asymptotic behaviour of iterated function systems (IFS). In a first part, we will introduce the notions related to the study of such systems and we will remind different applications of IFS such as random walks on graphs or aperiodic tilings, random dynamical systems, proteins classification or else $q$-repeated measures. We will focus on two other applications : the chains of infinite order and the variable length Markov chains. We will give the main results in the literature concerning the study of invariant measures for IFS and those for the calculus of the Hausdorff dimension. The second part will be dedicated to the study of a class of iterated function systems (IFSs) with non-overlapping or just-touching contractions on closed real intervals and adapted piecewise constant transition probabilities. We give criteria for the existence and the uniqueness of an invariant probability measure for the IFSs and for the asymptotic stability of the system in terms of bounds of transition probabilities. Additionally, in case there exists a unique invariant measure and under some technical assumptions, we obtain its exact Hausdorff dimension as the ratio of the entropy over the Lyapunov exponent. This result extends the formula, established in the literature for continuous transition probabilities, to the case considered here of piecewise constant probabilities. The last part is dedicated to a special case of IFS : Variable Length Markov Chains (VLMC). We will show that under a weak non-nullness condition and continuity for the ultrametric distance of the transition probabilities, they admit a unique invariant measure which is attractive for the weak convergence.

Page generated in 0.0755 seconds