Spelling suggestions: "subject:"inverse problem"" "subject:"lnverse problem""
281 |
Analyse de vitesse par migration quantitative dans les domaines images et données pour l’imagerie sismique / Subsurface seismic imaging based on inversion velocity analysis in both image and data domainsLi, Yubing 16 January 2018 (has links)
Les expériences sismiques actives sont largement utilisées pour caractériser la structure de la subsurface. Les méthodes dites d’analyse de vitesse par migration ont pour but la détermination d’un macro-modèle de vitesse, lisse, et contrôlant la cinématique de propagation des ondes. Le modèle est estimé par des critères de cohérence d’image ou de focalisation d’image. Les images de réflectivité obtenues par les techniques de migration classiques sont cependant contaminées par des artefacts, altérant la qualité de la remise à jour du macro-modèle. Des résultats récents proposent de coupler l’inversion asymptotique, qui donne des images beaucoup plus propres en pratique, avec l’analyse de vitesse pour la version offset en profondeur. Cette approche cependant demande des capacités de calcul et de mémoire importantes et ne peut actuellement être étendue en 3D.Dans ce travail, je propose de développer le couplage entre l’analyse de vitesse et la migration plus conventionnelle par point de tir. La nouvelle approche permet de prendre en compte des modèles de vitesse complexes, comme par exemple en présence d’anomalies de vitesses plus lentes ou de réflectivités discontinues. C’est une alternative avantageuse en termes d’implémentation et de coût numérique par rapport à la version profondeur. Je propose aussi d’étendre l’analyse de vitesse par inversion au domaine des données pour les cas par point de tir. J’établis un lien entre les méthodes formulées dans les domaines données et images. Les méthodologies sont développées et analysées sur des données synthétiques 2D. / Active seismic experiments are widely used to characterize the structure of the subsurface. Migration Velocity Analysis techniques aim at recovering the background velocity model controlling the kinematics of wave propagation. The first step consists of obtaining the reflectivity images by migrating observed data in a given macro velocity model. The estimated model is then updated, assessing the quality of the background velocity model through the image coherency or focusing criteria. Classical migration techniques, however, do not provide a sufficiently accurate reflectivity image, leading to incorrect velocity updates. Recent investigations propose to couple the asymptotic inversion, which can remove migration artifacts in practice, to velocity analysis in the subsurface-offset domain for better robustness. This approach requires large memory and cannot be currently extended to 3D. In this thesis, I propose to transpose the strategy to the more conventional common-shot migration based velocity analysis. I analyze how the approach can deal with complex models, in particular with the presence of low velocity anomaly zones or discontinuous reflectivities. Additionally, it requires less memory than its counterpart in the subsurface-offset domain. I also propose to extend Inversion Velocity Analysis to the data-domain, leading to a more linearized inverse problem than classic waveform inversion. I establish formal links between data-fitting principle and image coherency criteria by comparing the new approach to other reflection-based waveform inversion techniques. The methodologies are developed and analyzed on 2D synthetic data sets.
|
282 |
Statistical inverse problem in nonlinear high-speed train dynamics / Problème statistique inverse en dynamique non-linéaire des trains à grande vitesseLebel, David 30 November 2018 (has links)
Ce travail de thèse traite du développement d'une méthode de télédiagnostique de l'état de santé des suspensions des trains à grande vitesse à partir de mesures de la réponse dynamique du train en circulation par des accéléromètres embarqués. Un train en circulation est un système dynamique dont l'excitation provient des irrégularités de la géométrie de la voie ferrée. Ses éléments de suspension jouent un rôle fondamental de sécurité et de confort. La réponse dynamique du train étant dépendante des caractéristiques mécaniques des éléments de suspension, il est possible d'obtenir en inverse des informations sur l'état de ces éléments à partir de mesures accélérométriques embarquées. Connaître l'état de santé réel des suspensions permettrait d'améliorer la maintenance des trains. D’un point de vue mathématique, la méthode de télédiagnostique proposée consiste à résoudre un problème statistique inverse. Elle s'appuie sur un modèle numérique de dynamique ferroviaire et prend en compte l'incertitude de modèle ainsi que les erreurs de mesures. Les paramètres mécaniques associés aux éléments de suspension sont identifiés par calibration Bayésienne à partir de mesures simultanées des entrées (les irrégularités de la géométrie de la voie) et sorties (la réponse dynamique du train) du système. La calibration Bayésienne classique implique le calcul de la fonction de vraisemblance à partir du modèle stochastique de réponse et des données expérimentales. Le modèle numérique étant numériquement coûteux d'une part, ses entrées et sorties étant fonctionnelles d'autre part, une méthode de calibration Bayésienne originale est proposée. Elle utilise un métamodèle par processus Gaussien de la fonction de vraisemblance. Cette thèse présente comment un métamodèle aléatoire peut être utilisé pour estimer la loi de probabilité des paramètres du modèle. La méthode proposée permet la prise en compte du nouveau type d'incertitude induit par l'utilisation d'un métamodèle. Cette prise en compte est nécessaire pour une estimation correcte de la précision de la calibration. La nouvelle méthode de calibration Bayésienne a été testée sur le cas applicatif ferroviaire, et a produit des résultats concluants. La validation a été faite par expériences numériques. Par ailleurs, l'évolution à long terme des paramètres mécaniques de suspensions a été étudiée à partir de mesures réelles de la réponse dynamique du train / The work presented here deals with the development of a health-state monitoring method for high-speed train suspensions using in-service measurements of the train dynamical response by embedded acceleration sensors. A rolling train is a dynamical system excited by the track-geometry irregularities. The suspension elements play a key role for the ride safety and comfort. The train dynamical response being dependent on the suspensions mechanical characteristics, information about the suspensions state can be inferred from acceleration measurements in the train by embedded sensors. This information about the actual suspensions state would allow for providing a more efficient train maintenance. Mathematically, the proposed monitoring solution consists in solving a statistical inverse problem. It is based on a train-dynamics computational model, and takes into account the model uncertainty and the measurement errors. A Bayesian calibration approach is adopted to identify the probability distribution of the mechanical parameters of the suspension elements from joint measurements of the system input (the track-geometry irregularities) and output (the train dynamical response).Classical Bayesian calibration implies the computation of the likelihood function using the stochastic model of the system output and experimental data. To cope with the fact that each run of the computational model is numerically expensive, and because of the functional nature of the system input and output, a novel Bayesian calibration method using a Gaussian-process surrogate model of the likelihood function is proposed. This thesis presents how such a random surrogate model can be used to estimate the probability distribution of the model parameters. The proposed method allows for taking into account the new type of uncertainty induced by the use of a surrogate model, which is necessary to correctly assess the calibration accuracy. The novel Bayesian calibration method has been tested on the railway application and has achieved conclusive results. Numerical experiments were used for validation. The long-term evolution of the suspension mechanical parameters has been studied using actual measurements of the train dynamical response
|
283 |
Nouvelles approches de tomographies hydrauliques en aquifère hétérogène : théories et applications en milieu karstique et fracturé. / New hydraulic tomography approaches in heterogeneous aquifer : theories and applications in karst and fractured fieldsFischer, Pierre 21 November 2018 (has links)
Ce manuscrit de thèse présente une nouvelle approche pour caractériser qualitativement et quantitativement la localisation et les propriétés des structures dans un aquifère fracturé et karstique à l’échelle décamétrique. Cette approche est basée sur une tomographie hydraulique menée à partir de réponses à une investigation de pompages et interprétée avec des méthodes d’inversions adaptées à la complexité des systèmes karstiques. L’approche est appliquée sur un site karstique d’étude expérimental en France, une première fois avec des signaux de pompage constants, et une deuxième fois avec des signaux de pompage harmoniques. Dans les deux cas, l’investigation a fourni des réponses de niveaux d’eau de nappe mesurés pendant des pompages alternés à différentes positions. L’interprétation quantitative de ces jeux de réponses consiste à les reproduire par un modèle avec un champ de propriété réaliste adéquat généré par inversion. Les méthodes d’inversions proposées dans ce manuscrit permettent de reconstruire un champ de propriétés hydrauliques réaliste en représentant les structures karstiques soit par un réseau généré par automates cellulaires, soit par un réseau discrétisé. Les résultats d’interprétations obtenus sur le site d’étude expérimental permettent d’imager les structures karstiques sur une carte et de « lire » leur localisation. De plus, les résultats obtenus avec les réponses à des pompages harmoniques tendent à montrer le rôle de la fréquence du signal sur les informations portées par les réponses. En effet, les fréquences plus élevées caractérisent mieux les structures les plus conductrices, alors que les fréquences plus faibles mobilisent des écoulements également dans des structures karstiques moins conductrices. / This thesis manuscript presents a novel approach to characterize qualitatively and quantitatively the structures localization and properties in a fractured and karstic aquifer at a decametric scale. This approach relies on a hydraulic tomography led from responses to a pumping investigation and interpreted with inversion methods adapted to the complexity of karstic systems. The approach is applied on a karstic experimental study site in France, a first time with constant pumping signals, and a second time with harmonic pumping signals. In both applications, the investigation resulted in groundwater level responses measured during alternated pumping tests at different locations. The quantitative interpretation of these sets of responses consists in reproducing these responses through a model with an adequate realistic property field generated by inversion. The inversion methods proposed in this manuscript permit to reconstruct a realistic hydraulic property field by representing the karstic structures either through a network generated by cellular automata, or through a discretized network. The interpretation results obtained on the experimental study site permit to image the karstic structures on a map and to‘read’ their localization. Furthermore, the results obtained with the responses to harmonic pumping tests tend to show the role of the signal frequency on the information carried by the responses. In fact, higher frequencies better characterize the most conductive structures, while lower frequencies mobilize flows also in less conductive karstic structures.
|
284 |
Approche bayésienne de l'estimation des composantes périodiques des signaux en chronobiologie / A Bayesian approach for periodic components estimation for chronobiological signalsDumitru, Mircea 25 March 2016 (has links)
La toxicité et l’efficacité de plus de 30 agents anticancéreux présentent de très fortes variations en fonction du temps de dosage. Par conséquent, les biologistes qui étudient le rythme circadien ont besoin d’une méthode très précise pour estimer le vecteur de composantes périodiques (CP) de signaux chronobiologiques. En outre, dans les développements récents, non seulement la période dominante ou le vecteur de CP présentent un intérêt crucial, mais aussi leurs stabilités ou variabilités. Dans les expériences effectuées en traitement du cancer, les signaux enregistrés correspondant à différentes phases de traitement sont courts, de sept jours pour le segment de synchronisation jusqu’à deux ou trois jours pour le segment après traitement. Lorsqu’on étudie la stabilité de la période dominante nous devons considérer des signaux très court par rapport à la connaissance a priori de la période dominante, placée dans le domaine circadien. Les approches classiques fondées sur la transformée de Fourier (TF) sont inefficaces (i.e. manque de précision) compte tenu de la particularité des données (i.e. la courte longueur). Dans cette thèse, nous proposons une nouvelle méthode pour l’estimation du vecteur de CP des signaux biomédicaux, en utilisant les informations biologiques a priori et en considérant un modèle qui représente le bruit. Les signaux enregistrés dans le cadre d’expériences développées pour le traitement du cancer ont un nombre limité de périodes. Cette information a priori peut être traduite comme la parcimonie du vecteur de CP. La méthode proposée considère l’estimation de vecteur de CP comme un problème inverse enutilisant l’inférence bayésienne générale afin de déduire toutes les inconnues de notre modèle, à savoir le vecteur de CP mais aussi les hyperparamètres (i.e. les variances associées). / The toxicity and efficacy of more than 30 anticancer agents presents very high variations, depending on the dosing time. Therefore the biologists studying the circadian rhythm require a very precise method for estimating the Periodic Components (PC) vector of chronobiological signals. Moreover, in recent developments not only the dominant period or the PC vector present a crucial interest, but also their stability or variability. In cancer treatment experiments the recorded signals corresponding to different phases of treatment are short, from seven days for the synchronization segment to two or three days for the after treatment segment. When studying the stability of the dominant period we have to consider very short length signals relative to the prior knowledge of the dominant period, placed in the circadian domain. The classical approaches, based on Fourier Transform (FT) methods are inefficient (i.e. lack of precision) considering the particularities of the data (i.e. the short length). In this thesis we propose a new method for the estimation of the PC vector of biomedical signals, using the biological prior informations and considering a model that accounts for the noise. The experiments developed in the cancer treatment context are recording signals expressing a limited number of periods. This is a prior information that can be translated as the sparsity of the PC vector. The proposed method considers the PC vector estimation as an Inverse Problem (IP) using the general Bayesian inference in order to infer all the unknowns of our model, i.e. the PC vector but also the hyperparameters.
|
285 |
Modélisation de la dynamique du transfert hydrique vers les aquifières : application à la détermination de la recharge par inversion dans un système hydrogéologique complexe / Modeling of water transfer to aquifers : application to the determination of groundwater recharge by inversion in a complex hydrogeological systemHassane Mamadou Maina, Fadji Zaouna 29 September 2016 (has links)
Les eaux souterraines constituent une réserve d’eau potable non négligeable, leur alimentation se fait en majeure partie par les précipitations, appelée recharge des nappes. Du fait de leur grande importance, la compréhension du fonctionnement de ces ressources en eau est plus que jamais indispensable. Celle-ci passe par l’élaboration de modèles mathématiques. Ces outils nous offrent une meilleure appréhension et une bonne prévision des phénomènes physiques. Les systèmes hydrogéologiques sont généralement très complexes et caractérisés par des dynamiques hydriques très variables dans le temps et dans l’espace. Cette complexité a attiré l’attention de nombreux hydrogéologues et un grand nombre de modèles très sophistiqués a été développé afin de décrire ces systèmes avec précision. Cependant, la prise en compte de la recharge de ces réservoirs reste toujours un défi dans la modélisation hydrogéologique. En effet, le plus souvent, les modèles hydrogéologiques simulent l’écoulement dans la nappe tout en considérant la recharge comme une constante sur le domaine et indépendante du système. De plus, elle est souvent calculée de façon simplifiée. Or, la recharge traduisant la quantité des précipitations atteignant les nappes est une composante hydrologique complexe et variable car elle interagit avec les nappes et dépend des conditions climatiques, du couvert végétal et du transfert de l’eau dans le sol. Ce présent travail vise à intégrer cette recharge variable et complexe aux modèles hydrogéologiques. À cet effet, un modèle couplé a été développé. Une première partie de ce modèle permet de calculer la recharge des nappes en modélisant les interactions précipitations-sol et l’hydrodynamique dans le sol. Cette modélisation a été effectuée en utilisant des modèles conceptuels simples basés sur des lois empiriques (Gardénia, Nash) et des modèles physiques résolvant l’équation de Richards. La recharge ainsi calculée est intégrée à la deuxième partie du modèle simulant l’hydrodynamique dans les nappes décrite par l’équation de diffusivité. Des méthodes numériques précises et robustes ont été utilisées pour résoudre les équations du modèle mathématique : les éléments finis non conformes ont été utilisés pour résoudre l’équation de diffusivité et l’équation de Richards est résolue sous sa forme mixte par une méthode itérative en temps. En somme, ce modèle couplé permet de décrire les variations de niveaux de nappe à partir des données météorologiques connaissant les paramètres caractéristiques de cet aquifère. [...] / Groundwater is the main available water resource for many countries; they are mainly replenished by water from precipitation, called groundwater recharge. Due to its great importance, management of groundwater resources is more essential than ever, and is achieved through mathematical models which offer us a better understanding of physical phenomena as well as their prediction. Hydrogeological systems are generally complex thus characterized by a highly variable dynamic over time and space. These complexities have attracted the attention of many hydrogeologists and many sophisticated models that can handle these issues and describe these systems accurately were developed. Unfortunately, modeling groundwater recharge is still a challenge in groundwater resource management. Generally, groundwater models are used to simulate aquifers flow without a good estimation of recharge and its spatial-temporal distribution. As groundwater recharge rates show spatial-temporal variability due to climatic conditions, land use, and hydrogeological heterogeneity, these methods have limitations in dealing with these characteristics. To overcome these limitations, a coupled model which simulates flow in the unsaturated zone and recharge as well as groundwater flow was developed. The flow in the unsaturated zone is solved either with resolution of Richards equation or with empirical models while the diffusivity equation governs flow in the saturated zone. Robust numerical methods were used to solve these equations: we apply non-conforming finite element to solve the diffusivity equation and we used an accurate and efficient method for solving the Richards equation. [...]
|
286 |
Développement de méthodes itératives pour la reconstruction en tomographie spectrale / Iterative methods for spectral computed tomography reconstructionTairi, Souhil 20 June 2019 (has links)
Depuis quelques années les détecteurs à pixels hybrides ont ouvert la voie au développement de la tomographie à rayon X spectrale ou tomodensitométrie (TDM) spectrale. La TDM spectrale permet d’extraire plus d’information concernant la structure interne de l’objet par rapport à la TDM d’absorption classique. Un de ses objectifs dans l’imagerie médicale est d’identifier et quantifier des composants d’intérêt dans un objet, tels que des marqueurs biologique appelés agents de contraste (iode, baryum, etc.). La majeure partie de l’état de l’art procède en deux étapes : - la "pré-reconstruction" qui consiste à séparer les composants dans l’espace des projections puis reconstruire, - la "post-reconstruction", qui reconstruit l’objet puis sépare les composants.On s’intéresse dans ce travail de thèse à une approche qui consiste à séparer et reconstruire simultanément les composants de l’objet. L’état de l’art des méthodes de reconstruction et séparation simultanées de données de TDM spectrale reste à ce jour peu fourni et les approches de reconstruction existantes sont limitées dans leurs performances et ne tiennent souvent pas compte de la complexité du modèle d’acquisition.L’objectif principal de ce travail de thèse est de proposer des approches de reconstruction et séparation tenant compte de la complexité du modèle afin d’améliorer la qualité des images reconstruites. Le problème à résoudre est un problème inverse, mal-posé, non-convexe et de très grande dimension. Pour le résoudre, nous proposons un algorithme proximal à métrique variable. Des résultats prometteurs sont obtenus sur des données réelles et montrent des avantages en terme de qualité de reconstruction. / In recent years, hybrid pixel detectors have paved the way for the development of spectral X ray tomography or spectral tomography (CT). Spectral CT provides more information about the internal structure of the object compared to conventional absorption CT. One of its objectives in medical imaging is to obtain images of components of interest in an object, such as biological markers called contrast agents (iodine, barium, etc.).The state of the art of simultaneous reconstruction and separation of spectral CT data methods remains to this day limited. Existing reconstruction approaches are limited in their performance and often do not take into account the complexity of the acquisition model.The main objective of this thesis work is to propose better quality reconstruction approaches that take into account the complexity of the model in order to improve the quality of the reconstructed images. Our contribution considers the non-linear polychromatic model of the X-ray beam and combines it with an earlier model on the components of the object to be reconstructed. The problem thus obtained is an inverse, non-convex and misplaced problem of very large dimensions.To solve it, we propose a proximal algorithmwith variable metrics. Promising results are shown on real data. They show that the proposed approach allows good separation and reconstruction despite the presence of noise (Gaussian or Poisson). Compared to existing approaches, the proposed approach has advantages over the speed of convergence.
|
287 |
Personnalisation non-invasive de modèles électrophysiologiques cardiaques à partir d'électrogrammes surfaciques / Non-invasive personalisation of cardiac electrophysiological models from surface electrogramsGiffard-Roisin, Sophie 11 December 2017 (has links)
L'objectif de cette thèse est d'utiliser des données non-invasives (électrocardiogrammes, ECG) pour personnaliser les principaux paramètres d'un modèle électrophysiologique (EP) cardiaque pour prédire la réponse à la thérapie de resynchronisation cardiaque. La TRC est un traitement utilisé en routine clinique pour certaines insuffisances cardiaques mais reste inefficace chez 30% des patients traités impliquant une morbidité et un coût importants. Une compréhension précise de la fonction cardiaque propre au patient peut aider à prédire la réponse à la thérapie. Les méthodes actuelles se basent sur un examen invasif au moyen d’un cathéter qui peut être dangereux pour le patient. Nous avons développé une personnalisation non-invasive du modèle EP fondée sur une base de données simulée et un apprentissage automatique. Nous avons estimé l'emplacement de l'activation initiale et un paramètre de conduction global. Nous avons étendu cette approche à plusieurs activations initiales et aux ischémies au moyen d'une régression bayésienne parcimonieuse. De plus, nous avons développé une anatomie de référence afin d'effectuer une régression hors ligne unique et nous avons prédit la réponse à différentes stimulations à partir du modèle personnalisé. Dans une seconde partie, nous avons étudié l'adaptation aux données ECG à 12 dérivations et l'intégration dans un modèle électromécanique à usage clinique. L'évaluation de notre travail a été réalisée sur un ensemble de données important (25 patients, 150 cycles cardiaques). En plus d'avoir des résultats comparables avec les dernières méthodes d'imagerie ECG, les signaux ECG prédits présentent une bonne corrélation avec les signaux réels. / The objective of this thesis is to use non-invasive data (body surface potential mapping, BSPM) to personalise the main parameters of a cardiac electrophysiological (EP) model for predicting the response to cardiac resynchronization therapy (CRT). CRT is a clinically proven treatment option for some heart failures. However, these therapies are ineffective in 30% of the treated patients and involve significant morbidity and substantial cost. The precise understanding of the patient-specific cardiac function can help to predict the response to therapy. Until now, such methods required to measure intra-cardiac electrical potentials through an invasive endovascular procedure which can be at risk for the patient. We developed a non-invasive EP model personalisation based on a patient-specific simulated database and machine learning regressions. First, we estimated the onset activation location and a global conduction parameter. We extended this approach to multiple onsets and to ischemic patients by means of a sparse Bayesian regression. Moreover, we developed a reference ventricle-torso anatomy in order to perform an common offline regression and we predicted the response to different pacing conditions from the personalised model. In a second part, we studied the adaptation of the proposed method to the input of 12-lead electrocardiograms (ECG) and the integration in an electro-mechanical model for a clinical use. The evaluation of our work was performed on an important dataset (more than 25 patients and 150 cardiac cycles). Besides having comparable results with state-of-the-art ECG imaging methods, the predicted BSPMs show good correlation coefficients with the real BSPMs.
|
288 |
Méthodes de simulation stochastique pour le traitement de l’information / Stochastic simulation methods for information processingMinvielle-Larrousse, Pierre 05 March 2019 (has links)
Lorsqu’une grandeur d’intérêt ne peut être directement mesurée, il est fréquent de procéder à l’observation d’autres quantités qui lui sont liées par des lois physiques. Ces quantités peuvent contenir de l’information sur la grandeur d’intérêt si l’on sait résoudre le problème inverse, souvent mal posé, et inférer la valeur. L’inférence bayésienne constitue un outil statistique puissant pour l’inversion, qui requiert le calcul d’intégrales en grande dimension. Les méthodes Monte Carlo séquentielles (SMC), aussi dénommées méthodes particulaires, sont une classe de méthodes Monte Carlo permettant d’échantillonner selon une séquence de densités de probabilité de dimension croissante. Il existe de nombreuses applications, que ce soit en filtrage, en optimisation globale ou en simulation d’évènement rare. Les travaux ont porté notamment sur l’extension des méthodes SMC dans un contexte dynamique où le système, régi par un processus de Markov caché, est aussi déterminé par des paramètres statiques que l’on cherche à estimer. En estimation bayésienne séquentielle, la détermination de paramètres fixes provoque des difficultés particulières : un tel processus est non-ergodique, le système n’oubliant pas ses conditions initiales. Il est montré comment il est possible de surmonter ces difficultés dans une application de poursuite et identification de formes géométriques par caméra numérique CCD. Des étapes d’échantillonnage MCMC (Chaîne de Markov Monte Carlo) sont introduites pour diversifier les échantillons sans altérer la distribution a posteriori. Pour une autre application de contrôle de matériau, qui cette fois « hors ligne » mêle paramètres statiques et dynamiques, on a proposé une approche originale. Elle consiste en un algorithme PMMH (Particle Marginal Metropolis-Hastings) intégrant des traitements SMC Rao-Blackwellisés, basés sur des filtres de Kalman d’ensemble en interaction.D’autres travaux en traitement de l’information ont été menés, que ce soit en filtrage particulaire pour la poursuite d’un véhicule en phase de rentrée atmosphérique, en imagerie radar 3D par régularisation parcimonieuse ou en recalage d’image par information mutuelle. / When a quantity of interest is not directly observed, it is usual to observe other quantities that are linked by physical laws. They can provide information about the quantity of interest if it is able to solve the inverse problem, often ill posed, and infer the value. Bayesian inference is a powerful tool for inversion that requires the computation of high dimensional integrals. Sequential Monte Carlo (SMC) methods, a.k.a. interacting particles methods, are a type of Monte Carlo methods that are able to sample from a sequence of probability densities of growing dimension. They are many applications, for instance in filtering, in global optimization or rare event simulation.The work has focused in particular on the extension of SMC methods in a dynamic context where the system, governed by a hidden Markov process, is also determined by static parameters that we seek to estimate. In sequential Bayesian estimation, the determination of fixed parameters causes particular difficulties: such a process is non-ergodic, the system not forgetting its initial conditions. It is shown how it is possible to overcome these difficulties in an application of tracking and identification of geometric shapes by CCD digital camera. Markov Monte Carlo Chain (MCMC) sampling steps are introduced to diversify the samples without altering the posterior distribution. For another material control application, which mixes static and dynamic parameters, we proposed an original offline approach. It consists of a Particle Marginal Metropolis-Hastings (PMMH) algorithm that integrates Rao-Blackwellized SMC, based on a bank of interacting Ensemble Kalman filters.Other information processing works has been conducted: particle filtering for atmospheric reentry vehicle tracking, 3D radar imaging by sparse regularization and image registration by mutual information.
|
289 |
Parameter identification problems for elastic large deformations - Part I: model and solution of the inverse problemMeyer, Marcus 20 November 2009 (has links)
In this paper we discuss the identification of parameter functions in material models for elastic large deformations. A model of the the forward problem is given, where the displacement of a deformed material is found as the solution of a n onlinear PDE. Here, the crucial point is the definition of the 2nd Piola-Kirchhoff stress tensor by using several material laws including a number of material parameters. In the main part of the paper we consider the identification of such parameters from measured displacements, where the inverse problem is given as an optimal control problem. We introduce a solution of the identification problem with Lagrange and SQP methods. The presented algorithm is applied to linear elastic material with large deformations.
|
290 |
Quadratic Inverse Problems and Sparsity Promoting Regularization: Two subjects, some links between them, and an application in laser opticsFlemming, Jens 11 January 2018 (has links)
Ill-posed inverse problems with quadratic structure are introduced, studied and solved. As an example an inverse problem appearing in laser optics is solved numerically based on a new regularized inversion algorithm. In addition, the theory of sparsity promoting regularization is extended to situations in which sparsity cannot be expected and also to equations with non-injective operators.
|
Page generated in 0.0536 seconds