• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 6
  • 5
  • 2
  • 1
  • 1
  • Tagged with
  • 25
  • 25
  • 25
  • 8
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Testing for jumps in face of the financial crisis : Application of Barndorff-Nielsen - Shephard test and the Kou model

Pszczola, Agnieszka, Walachowski, Grzegorz January 2009 (has links)
<p>The purpose of this study is to identify an impact on an option pricing within NASDAQ OMX Stockholm Market, if the underlying</p><p>asset prices include jumps. The current financial crisis, when jumps are much more evident than ever, makes this issue very actual and important in the global sense for the portfolio hedging and other risk management applications for example for the banking sector. Therefore, an investigation is based on OMXS30 Index and SEB A Bank. To detect jumps the Barndorff-Nielsen and Shephard non-parametric bipower variation test is used. First it is examined on simulations, to be finally implemented on the real data. An affirmation of a jumps occurrence requires to apply an appropriate model for the option pricing. For this purpose the Kou model, a double exponential jump-diffusion one, is proposed, as it incorporates essential stylized facts not available for another models. Th parameters in the model are estimated by a new approach - a combined cumulant matching with lambda taken from the Barrndorff-Nielsen and Shephard test. To evaluate how the Kou model manages on the option pricing, it is compared to the Black-Scholes model and to the real prices of European call options from the Stockholm Stock Exchange. The results show that the Kou model outperforms the latter.</p>
12

Testing for jumps in face of the financial crisis : Application of Barndorff-Nielsen - Shephard test and the Kou model

Pszczola, Agnieszka, Walachowski, Grzegorz January 2009 (has links)
The purpose of this study is to identify an impact on an option pricing within NASDAQ OMX Stockholm Market, if the underlying asset prices include jumps. The current financial crisis, when jumps are much more evident than ever, makes this issue very actual and important in the global sense for the portfolio hedging and other risk management applications for example for the banking sector. Therefore, an investigation is based on OMXS30 Index and SEB A Bank. To detect jumps the Barndorff-Nielsen and Shephard non-parametric bipower variation test is used. First it is examined on simulations, to be finally implemented on the real data. An affirmation of a jumps occurrence requires to apply an appropriate model for the option pricing. For this purpose the Kou model, a double exponential jump-diffusion one, is proposed, as it incorporates essential stylized facts not available for another models. Th parameters in the model are estimated by a new approach - a combined cumulant matching with lambda taken from the Barrndorff-Nielsen and Shephard test. To evaluate how the Kou model manages on the option pricing, it is compared to the Black-Scholes model and to the real prices of European call options from the Stockholm Stock Exchange. The results show that the Kou model outperforms the latter.
13

Option Pricing and Virtual Asset Model System

Cheng, Te-hung 07 July 2005 (has links)
In the literature, many methods are proposed to value American options. However, due to computational difficulty, there are only approximate solution or numerical method to evaluate American options. It is not easy for general investors either to understand nor to apply. In this thesis, we build up an option pricing and virtual asset model system, which provides a friendly environment for general public to calculate early exercise boundary of an American option. This system modularize the well-handled pricing models to provide the investors an easy way to value American options without learning difficult financial theories. The system consists two parts: the first one is an option pricing system, the other one is an asset model simulation system. The option pricing system provides various option pricing methods to the users; the virtual asset model system generates virtual asset prices for different underlying models.
14

Expert System for Numerical Methods of Stochastic Differential Equations

Li, Wei-Hung 27 July 2006 (has links)
In this thesis, we expand the option pricing and virtual asset model system by Cheng (2005) and include new simulations and maximum likelihood estimation of the parameter of the stochastic differential equations. For easy manipulation of general users, the interface of original option pricing system is modified. In addition, in order to let the system more completely, some stochastic models and methods of pricing and estimation are added. This system can be divided into three major parts. One is an option pricing system; The second is an asset model simulation system; The last is estimation system of the parameter of the model. Finally, the analysis for the data of network are carried out. The differences of the prices between estimator of this system and real market are compared.
15

動態信用風險與PBJD模型下之可轉債評價 / Pricing Convertible Bonds under Dynamic Credit Risk and Pareto-Beta Jump-Diffusion Model

姚博文 Unknown Date (has links)
可轉換公司債是一種複雜且擁有許多風險的商品,而對於台灣的可轉債市場來說,信用風險佔了評價裡很重要的一部份。本篇論文使用縮減式評價模型,考慮信用風險及股價跳躍。跳躍模型使用Pareto-Beta Jump-Diffusion模型,並且利用信用價差之動態過程,來對可轉換公司債作評價,而為了解決提前轉換的問題,也使用了最小平方蒙地卡羅法來處理。本篇論文分別對宏碁與新光金之可轉債做實證研究,實證結果顯示,加入了股價跳躍之後,的確可以使理論價格更貼近市場真實價格。
16

Oceňování bariérových opcí / Barrier options pricing

Macháček, Adam January 2013 (has links)
In the presented thesis we study three methods of pricing European currency barrier options. With help of these methods we value selected barrier options with underlying asset EUR/CZK. In the first chapter we introduce the basic definitions from the world of financial derivatives and we describe our data. In the second chapter we deal with the classical model based on geometric Brownian motion of underlying asset and we prove a theorem of valuating Up-In-barrier option in this model. In the third chapter we introduce a model with stochastic volatility, the Heston model. We calibrate this model to market data and we use it to value our barrier options. In the last chapter we describe a jump diffusion model. Again we calibrate this jump diffusion model to market data and price our barrier options. The aim of this thesis is to decribe and to compare different methods of valuating barrier options. 1
17

Option pricing models: A comparison between models with constant and stochastic volatilities as well as discontinuity jumps

Paulin, Carl, Lindström, Maja January 2020 (has links)
The purpose of this thesis is to compare option pricing models. We have investigated the constant volatility models Black-Scholes-Merton (BSM) and Merton’s Jump Diffusion (MJD) as well as the stochastic volatility models Heston and Bates. The data used were option prices from Microsoft, Advanced Micro Devices Inc, Walt Disney Company, and the S&amp;P 500 index. The data was then divided into training and testing sets, where the training data was used for parameter calibration for each model, and the testing data was used for testing the model prices against prices observed on the market. Calibration of the parameters for each model were carried out using the nonlinear least-squares method. By using the calibrated parameters the price was calculated using the method of Carr and Madan. Generally it was found that the stochastic volatility models, Heston and Bates, replicated the market option prices better than both the constant volatility models, MJD and BSM for most data sets. The mean average relative percentage error for Heston and Bates was found to be 2.26% and 2.17%, respectively. Merton and BSM had a mean average relative percentage error of 6.90% and 5.45%, respectively. We therefore suggest that a stochastic volatility model is to be preferred over a constant volatility model for pricing options. / Syftet med denna tes är att jämföra prissättningsmodeller för optioner. Vi har undersökt de konstanta volatilitetsmodellerna Black-Scholes-Merton (BSM) och Merton’s Jump Diffusion (MJD) samt de stokastiska volatilitetsmodellerna Heston och Bates. Datat vi använt är optionspriser från Microsoft, Advanced Micro Devices Inc, Walt Disney Company och S&amp;P 500 indexet. Datat delades upp i en träningsmängd och en test- mängd. Träningsdatat användes för parameterkalibrering med hänsyn till varje modell. Testdatat användes för att jämföra modellpriser med priser som observerats på mark- naden. Parameterkalibreringen för varje modell utfördes genom att använda den icke- linjära minsta-kvadratmetoden. Med hjälp av de kalibrerade parametrarna kunde priset räknas ut genom att använda Carr och Madan-metoden. Vi kunde se att de stokastiska volatilitetsmodellerna, Heston och Bates, replikerade marknadens optionspriser bättre än båda de konstanta volatilitetsmodellerna, MJD och BSM för de flesta dataseten. Medelvärdet av det relativa medelvärdesfelet i procent för Heston och Bates beräknades till 2.26% respektive 2.17%. För Merton och BSM beräknades medelvärdet av det relativa medelvärdesfelet i procent till 6.90% respektive 5.45%. Vi anser därför att en stokastisk volatilitetsmodell är att föredra framför en konstant volatilitetsmodell för att prissätta optioner.
18

Mathematical Modelling of Fund Fees / Matematisk Modellering av Fondavgifter

Wollmann, Oscar January 2023 (has links)
The paper examines the impact of fees on the return of a fund investment using different simulation and fee structure models. The results show that fees have a significant expected impact, particularly for well-performing funds. Two simulation models were used, the Geometric Brownian Motion (GBM) model and Merton Jump Diffusion (MJD) model. Two fee structures were also analysed for each simulation, a High-water mark fee structure and a Hurdle fee structure. Comparing the GBM and MJD models, the two tend to generate very similar fee statistics even though the MJD model's day-to-day returns fit better with empirical data. When comparing the HWM and Hurdle fee models, larger differences are observed. While overall average fee statistics are similar, the performance fee statistics are significantly higher in the Hurdle fee structure for assets achieving higher returns, e.g. at least an 8% annual return. However, the HWM fee structure tends to generate higher performance fees for assets with low returns. Regression models are also developed for each combination of the simulation model and fee structure. The regression models reflect the above conclusions and can for investors serve as simple key indicators to estimate expected fund fee payments. The GBM regression results are likely more useful than the MJD regression results, as the parameters of the former are easier to calculate based on historical return data. / Uppsatsen undersöker effekten av avgifter på avkastningen av en fondinvestering med hjälp av olika simuleringar och avgiftsmodeller. Resultaten visar att avgifter förväntas ha en betydande påverkan, särskilt för fonder som genererar hög avkastning. Två simuleringar användes, Geometric Brownian Motion (GBM) och Merton Jump Diffusion (MJD). Två avgiftsstrukturer analyserades också för varje simulering, en High-water mark avgiftsstruktur och en Hurdle avgiftsstruktur. Jämförelse mellan GBM och MJD-modellerna visar att de två tenderar att generera mycket liknande avgiftsstatistik trots att MJD-modellens dagliga avkastning passar bättre med empiriska data. Vid jämförelse av HWM- och Hurdle avgiftsmodellerna observeras större skillnader. Medan den övergripande genomsnittliga avgiftsstatistiken är liknande för avgiftsmodellerna, är resultatbaserade avgifterna betydligt högre i Hurdle avgiftsstrukturen för tillgångar som uppnår högre avkastning, t.ex. minst 8% årlig avkastning. Däremot tenderar HWM-avgiftsstrukturen att generera högre resultatbaserade avgifter för tillgångar med låg avkastning. Regressionsmodeller utvecklades också för varje kombination av simulering och avgiftsstruktur. Regressionmodellerna återspeglar ovanstående slutsatser och kan för investerare fungera som enkla nyckeltal för att uppskatta förväntad kostnad av fondavgifter. GBM-regressionsresultaten är sannolikt mer användbara än MJD-regressionsresultaten, eftersom parametrarna för den förra är lättare att beräkna baserat på historisk avkastningsdata.
19

巨災保險選擇權評價模式之研究

劉卓皓 Unknown Date (has links)
保險業及再保險業以往對於巨災危險的風險管理方式大部份都佼給全世界的再保險承保能量去承擔。然而從1995年開始,美國芝加哥交易所(CBOT)與產物損失部門(PCS)共同推出巨災保險選擇權,提供保險人以及再保險人利用國際金融市場移轉核保業務上所承擔之巨災危險的管道。此種業務上的巨災危險提供保險業處理巨災損失的新管道,例如產險業因為天然災害或是人為疏失所導致的鉅額核保損失以及壽險業的團體保險和健康保險的鉅額損失。巨災保險選擇權是一種新的衍生性金融商品,其交易標的物是專門針對保險業所承保的業務(尤其是巨災),因此如果運用得當,除了能有效的分散核保風險之外,更可以避免傳統的再保險契約所衍生的問題。 本研究在第一章首先說明台灣地區是地震、颱風以及水患等天然災害頗為集中的地區,因為傳統再保險的分散風險方式有其成本較高以及資訊不對稱的問題,所以保業以及再保險業應該考慮其他類型的危險管理策略。第二章以巨災保險選擇權評價的相關基礎理論為主要的架構,並且探討美國PCS所開發的巨災保險選擇權,並說明如何利用此種金融工具移轉保險與再保險人因地理上的核保因素所產生的風險。 第三章以及第四章討論模擬方法與分析模擬所得的結果,我們並利用情境分析的方式,探討在單位時間內,平均跳躍次數對於每一個模型中假設,交易標的物為損失指數時的影響,以及依此損失指數所得對於巨災保險選擇權價格之變化幅度。第五章則是歸納本研究所得的結果並且提出後續研究的建議。 / The insurance and reinsurance industries traditionally transfer their insurance risk of catastrophe disasters through the international reinsurance market. Since the capacity of the international reinsurance market is not always available to cover the entire risks. In 1995, CBOT (Chicago Board of Trade) and PCS (Property Claims Service) have begun trading the PCS catastrophe options Through the catastrophe options, the insures and reinsures could hedging their operating risks in the international financial market. These risks consist of large amount of underwriting losses from the natural disasters, personal default in property insurance, inflation of claims amount and the large claims in group insurance and health insurance. The loss ratios of the insured business are trading through the catastrophe options. Hedging the operating risks of the insures and reinsures in the financial market could effectively reduce the costs and avoid the complexity from the reinsurance contracts. In this study, we have reviewed the development of the catastrophe option. Asian style call options are illustrated to monitor the process of option pricing. The trading loss ratios are modeled through lognormal distribution based on the claim experience collected from 1970-1996. The methodology of pricing the modified options based on pure jump model proposed by Cox, et al (1976) and the jump diffusion model proposed by Merton (1976) are discussed. Computer simulations and scenario analysis are performed to investigate the pricing of Asian style catastrophe option under various proposed models. Sensitivity analysis is also completed at various parameters in the jump process. Finally, comments on future works and the limitation of the proposed risk-transfer mechanism using catastrophe options are discussed.
20

Calibration, Optimality and Financial Mathematics

Lu, Bing January 2013 (has links)
This thesis consists of a summary and five papers, dealing with financial applications of optimal stopping, optimal control and volatility. In Paper I, we present a method to recover a time-independent piecewise constant volatility from a finite set of perpetual American put option prices. In Paper II, we study the optimal liquidation problem under the assumption that the asset price follows a geometric Brownian motion with unknown drift, which takes one of two given values. The optimal strategy is to liquidate the first time the asset price falls below a monotonically increasing, continuous time-dependent boundary. In Paper III, we investigate the optimal liquidation problem under the assumption that the asset price follows a jump-diffusion with unknown intensity, which takes one of two given values. The best liquidation strategy is to sell the asset the first time the jump process falls below or goes above a monotone time-dependent boundary. Paper IV treats the optimal dividend problem in a model allowing for positive jumps of the underlying firm value. The optimal dividend strategy is of barrier type, i.e. to pay out all surplus above a certain level as dividends, and then pay nothing as long as the firm value is below this level. Finally, in Paper V it is shown that a necessary and sufficient condition for the explosion of implied volatility near expiry in exponential Lévy models is the existence of jumps towards the strike price in the underlying process.

Page generated in 0.05 seconds