• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 7
  • 4
  • 3
  • 1
  • Tagged with
  • 24
  • 18
  • 16
  • 14
  • 13
  • 11
  • 11
  • 10
  • 10
  • 10
  • 10
  • 9
  • 8
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Standortbasierte Ertragsmodellierung von Pappel- und Weidenklonen in Kurzumtriebsplantagen

Amthauer Gallardo, Daniel Alejandro 24 June 2014 (has links)
The cultivation of fast growing tree species on arable land is deemed to be one of the most promising alternatives amongst the approaches to the cultivation of renewable resources currently available. As the site factors influencing the growth of poplar and willow have not yet been sufficiently identified and quantified, it is not possible to provide reliable national yield expectations as a function of the prevailing soil and climate conditions at a particular site on the basis of the data currently available. The main objective of this study, therefore, was to develop a supraregional site-based yield model for the assessment of yield expectations for poplar and willow grown on arable land over short rotations. In order to achieve this goal, a total of 38 research sites were established across as many regions of Germany as possible. The clones selected for the experiment were the poplar clones Max 1, Hybride 275 (H 275) and AF 2, and the willow clones Inger and Tordis. Each site was also characterised, on the basis of climate and soil data. From the site parameters recorded, variables were defined for modelling purposes. The climate variables comprised temperature (T), precipitation (N) and aridity index (TI) derived from total or average values from selected periods during the year and during the vegetation period. Within the variables the months were indexed as numbers (January = 1), periods were separated by comma. Parameters of the German soil appraisal such as the condition grade (ZS), the soil quality index value (BZ) and the arable land quality index value (AZ) were used as soil variables. The selected texture parameters were the proportions of sand (S[%]), silt (U[%]) and clay (T[%]). Variables of the pore space parameters were the available field moisture capacity (nFK), the air capacity (LK) and the dry bulk density (TRD). Both the texture and the pore space variables referred to a soil depth of 0 to 60 cm. To increase the precision of the results, site clusters were derived, differentiated by main soil type, and the variables were aggregated. The dGZ, measured in odt ha-1 a-1,at the end of the first three-year rotation was chosen as the dependent variable. The main results of the study are outlined in the following: Negative correlations between dGZ and temperatures in the vegetation period, especially in the months July to September, were observed on the sandy and loamy soils. Precipitation variables always had a positive effect on the growth of poplar and willow across all clones and site clusters. Taking into consideration all experimental sites, precipitation in the period from May to July was most important. The parameters of the German soil appraisal revealed a moderate correlation with growth for all sites. From the appraisal of all sites and of the individual site clusters it became apparent that U[%] represents the most important texture variable for poplar and willow growth. Considered for all sites simultaneously, the nFK had the greatest significance for growth across all of the parameters examined. The site-based yield models were all univariate and often comprised aggregated variables. Under consideration of all sites, the model predictors for Max 1, Inger and Tordis were (nFK * TI5.7) and (nFK * N5.7) for AF 2. Each model was calculated with the inverse or sigmoid approach and revealed an R²korr between 0.45 and 0.64 with a RMSE of an average of 2.0 odt ha-1 a-1. The division into site clusters improved the accuracy of the models considerably. In the sandy site cluster, the models exhibited an R²korr of 0.77 to 0.97 and an RMSE of 0.95 to 1.36 odt ha-1 a-1. These comprised (U[%]* N6.7) for Max 1 and F 2, (S[%]/ TI6.7) for H 275 and (S[%]* T7.8) for Inger and Tordis. For the silty site cluster, significant models could only be determined for the clones Max 1 and Tordis. The model predictor for Max 1 was (BZ * TI4.5) and for Tordis solely (BZ). The calculated R²korr values were 0.84 and 0.95 with a corresponding RMSE of 0.22 and 0.62 odt ha-1 a-1, respectively. For the loamy soils the models for Max 1 and Inger comprised the variable nFK, for AF 2 the variables (nFK * N5.6). R²korr varied between 0.86 and 0.98 with RMSE between 0.56 and 1.21 odt ha-1 a-1.:Inhaltsverzeichnis 1 Einleitung 1 1.1 Problemstellung 1 1.2 Zielstellung 3 2 Hintergrund 4 2.1 Energieziele Deutschlands 4 2.1.1 Flächen- und Nutzungskonkurrenz mit der Forstwirtschaft 4 2.1.2 Flächen- und Nutzungskonkurrenz mit der Landwirtschaft 5 2.2 Anbau schnellwachsender Baumarten 6 2.2.1 Anbau im Kurzumtrieb 7 2.3 Verwendete Baumarten in Kurzumtriebsplantagen 11 2.3.1 Pappel 11 2.3.2 Weide 13 2.3.3 Anmerkung Züchtung 14 2.4 Leistung von Kurzumtriebsplantagen mit Pappel und Weide in zwei- bis dreijähriger Umtriebs-zeit 15 2.5 Ertragsdynamik und leistungsbeeinflussende Faktoren von Kurzumtriebsplantagen 17 2.5.1 Baumart und Klon 18 2.5.2 Umtriebszeit und Bestandesdichte 19 2.5.3 Standortanforderungen 21 2.5.3.1 Reichliche Wasserversorgung 21 2.5.3.2 Lockere Böden 22 2.5.3.3 Ausreichende Mineralstoffzufuhr 23 2.5.3.4 Wachstumsangepasste Bodenreaktion 23 2.5.3.5 Wärme 23 2.5.3.6 Bodenschätzungskennwerte 24 2.5.3.7 Textur 24 2.5.3.8 Standorte der Pappel 24 2.6 Waldwachstumsmodellierung mit Schwerpunkt in Kurzumtriebsplantagen 25 2.6.1 Empirische Modelle 26 2.6.1.1 Pappelmodell nach ALI (2009) 26 2.6.1.2 Pappel- und Weidenmodell nach AYLOTT et al. (2008) 27 2.6.1.3 Leistungsbeeinflussende Standorteigenschaften für Pappel und Weide nach BERGANTE et al. (2010) 28 2.6.2 Mechanistische Modelle 29 3 Material und Methoden 33 3.1 Flächenanlage und Versuchsdesign 33 3.1.1 Flächenvorbereitung und Pflegemaßnahmen 37 3.1.2 Prüfglieder 39 3.1.2.1 Pappelklon Max 1 39 3.1.2.2 Pappelklon H 275 39 3.1.2.3 Pappelklon AF 2 40 3.1.2.4 Weidenklon Inger 41 3.1.2.5 Weidenklon Tordis 41 3.2 Klimatische Standortcharakterisierung 42 3.2.1 Temperatur 44 3.2.2 Niederschlag 46 3.3 Bodenkundliche Standortcharakterisierung 47 3.3.1 Profilansprache und allgemeine Standortinformationen 48 3.3.2 Durchführung der Probennahme 48 3.3.3 Bodenphysikalische Untersuchungen 49 3.3.4 Grundwassereinfluss 49 3.3.5 Bodenchemische Untersuchungen 50 3.3.6 Bodenschätzungskennwerte 50 3.3.7 Zusammenfassende Betrachtung der bodenkundlichen Charakteristika 51 3.4 Bestandesaufnahmen und Ernte 55 3.4.1 Anwuchs- und Überlebensrate 55 3.4.2 Anzahl an Höhentrieben 55 3.4.3 Höhe 55 3.4.4 Durchmesser 55 3.4.5 Ertragsbestimmung 55 3.4.5.1 Biomassefunktionen 56 3.4.5.2 Systematische Teilbeernteung der Kernparzelle 56 3.5 Identifizierung von leistungsbeeinflussenden Standorteigenschaften und Entwicklung standortbasierter Ertragsmodelle 57 3.5.1 Variablenwahl und -bildung 58 3.5.1.1 Klima 58 3.5.1.2 Bodenschätzung 59 3.5.1.3 Textur 59 3.5.1.4 Porenraum 59 3.5.1.5 Aggregierte Variablen 60 3.5.1.6 Weitere Einflussgrößen 60 3.5.1.7 Abhängige Variable 61 3.5.2 Standortcluster 61 3.6 Datenbasis der standortbasierten Ertragsmodellierung 61 3.7 Ertragsteigerungfaktor 63 3.8 EDV und Statistik 65 3.8.1 Varianzanalyse 65 3.8.2 Korrelationsanalyse 66 3.8.3 Regressionsanalyse 66 3.8.3.1 Nicht-lineare Regression 68 3.8.3.2 Evaluierungsgrößen 69 4 Ergebnisse 71 4.1 Waldwachstumskundliche Ergebnisse 71 4.1.1 Anwuchs- und Überlebensrate 71 4.1.2 Anzahl an Höhentrieben 72 4.1.3 Übersicht Bestandesdimensionen und Wuchsleistung 73 4.1.4 Höhe 75 4.1.5 Durchmesser 77 4.1.6 Durchschnittlicher Gesamtzuwachs 81 4.1.7 Biomassefunktionen 84 4.1.7.1 Wahl der unabhängigen Variablen 84 4.1.7.2 Einfluss der Gattung und des Klons 85 4.1.7.3 Einfluss der Bestandesmittelhöhe 85 4.1.7.4 Allgemeingültige Biomassefunktionen 87 4.2 Leistungsbeeinflussende Standorteigenschaften 88 4.2.1 Temperatur 88 4.2.2 Niederschlag 90 4.2.3 Trockenheitsindex 92 4.2.4 Bodenschätzungskennwerte 94 4.2.5 Textur 96 4.2.6 Porenraum 99 4.2.7 Korrelation zwischen unabhängigen Variablen 102 4.2.8 Aggregierte Variablen 102 4.2.9 Weitere Einflussgrößen 105 4.2.9.1 Vornutzung 105 4.2.9.2 Bodentyp 106 4.2.9.3 Grundwasser 106 4.3 Standortbasierte Ertragsmodellierung 107 4.3.1 Standortcluster ALL 107 4.3.2 Standortcluster S 110 4.3.3 Standortcluster U 113 4.3.4 Standortcluster L 115 4.4 Ertragssteigerungsfaktoren und Ertragssteigerung in Folgerotationen 118 5 Diskussion 122 5.1 Material und Methodik 122 5.1.1 Versuchsflächen 122 5.1.2 Modellierung und Variablenbildung 123 5.2 Waldwachstumskundliche Ergebnisse 124 5.2.1 Anwuchs- und Überlebensrate 124 5.2.2 Anzahl an Höhentrieben 125 5.2.3 Höhe 125 5.2.4 Durchmesser 126 5.2.5 Durchschnittlicher Gesamtzuwachs 126 5.2.6 Biomassefunktionen 128 5.3 Leistungsbeinflussende Standorteigenschaften 129 5.3.1 Temperatur 129 5.3.2 Niederschlag 130 5.3.3 Trockenheitsindex 132 5.3.4 Bodenschätzungskennwerte 132 5.3.5 Textur 133 5.3.6 Porenraum 134 5.3.7 Aggregierte Variablen 135 5.3.8 Weitere Einflussgrößen 136 5.4 Standortbasierte Ertragsmodellierung 136 5.4.1 Standortcluster ALL 137 5.4.2 Standortcluster S 138 5.4.3 Standortcluster U 138 5.4.4 Standortcluster L 138 5.4.5 Vergleich mit anderen Modellen 138 5.5 Ertragssteigerungsfaktoren und Ertragsteigerung in Folgerotationen 140 6 Schlussfolgerungen und Ausblick 141 7 Zusammenfassung 144 8 Literatur 156 9 Anhang 176
12

Wirtschaftliche und rechtliche Rahmenbedingungen für die Anlage und Nutzung von Kurzumtriebsplantagen auf landwirtschaftlichen Flächen in Estland, Lettland und Litauen

Wehner, Wolf-Dieter 12 October 2016 (has links)
Die Nachfrage nach Holz wird im Zeitraum der nächsten 15 Jahre bis 2030 sowohl in der EU als auch global zunehmen. Bedarfsabschätzungen zeigen Nachfrageüberhänge in der EU von jährlich 300 Mio. m³, eine Prognose spricht sogar von Holzfehlmengen von 430 Mio. m³. Der Anstieg der Weltbevölkerung bei wachsender Wirtschaft wird den Holzbedarf erhöhen, auch wenn derzeit weltweit in etwa ein Gleichgewicht zwischen Angebot und Nachfrage besteht. Die Nachfrage nach Holz unterliegt vielen Treibern. Die Langfrist-Prognosen bis zum Jahre 2030 sagen vor allem bei der energetischen Holznutzung eine permanente, über den Verbrauch von Holz zur stofflichen Nutzung liegende, hohe Nachfragesteigerung voraus. Der Trend der Bioökonomie mit der sukzessiven Reduktion des Anteils der fossilen Energieträger beim Primärenergieverbrauch zur Reduktion der Emissionen von Treibhausgasen wurde durch das Paris-Abkommen, das 2015 durch die internationale Gemeinschaft mit dem Ziel des Klimaschutzes verabschiedet wurde, noch verstärkt. Auch die Tendenz zur dezentralen Energieversorgung vor allem in den Kommunen, die besonders die Nachfrage nach Energieholz und schwachen Sortimenten wachsen lässt, das Bestreben zur Verringerung von nationalen Abhängigkeiten zu Russland als Lieferant bei Erdgas und Erdöl haben auf eine steigende zukünftige Nachfrage ebenso einen bedeutenden Einfluss wie die Substitution des Rohstoffes Erdöl durch Holz bei der Herstellung von Chemikalien und Treibstoffen. In den Wäldern der Mitgliedstaaten sind nach Einschätzung der EU größere stehende Holzvorräte vorhanden, die mobilisiert werden müssten, um das Ziel der EU, 20 % der Primärenergie aus erneuerbaren Energien bis zum Jahre 2020, zu erreichen. Die Produktion und die Nutzung von Holz im Rahmen einer nachhaltigen Forstwirtschaft hat über den gesamten Lebenszyklus eine ausgeglichene CO2 Bilanz. Durch die erhöhte Nutzung von Holz im Energiemix vermindert sich die CO2 Belastung der Atmosphäre. Wald-Inventuren, wie z.B. die in Deutschland vorliegenden Ergebnisse der 3. Bundeswaldinventur, bestätigen die Einschätzung der EU über die bestehenden Ressourcen. Die Verwendbarkeit dieser Ressourcen wird allerdings in zunehmendem Maße durch die Herausnahme von Wäldern aus der Produktion aus ökologischen oder sozioökonomischen Gründen beeinträchtigt. Unternehmer, deren Geschäftsmodell die Produktion von Holz auf landwirtschaftlichen Flächen ist, evaluieren mögliche Standorte zur Produktion von Holz im Kurzumtrieb nach der politisch-rechtlichen Sicherheit, nach der Verfügbarkeit von Ressourcen und den Faktorpreisen. Günstige Voraussetzungen für die Anlage von Baumplantagen für die Produktion von Holz bestehen im Baltikum. In den drei Staaten sind die wesentlichen Parameter für den Holzanbau in Plantagen auf landwirtschaftlichen Flächen gegeben: Gesichertes Rechtssystem mit dem Schutz des Eigentums, barrierefreier Zugang zu den Märkten innerhalb der EU, keine Währungsrisiken, günstige klimatischen Bedingungen mit ausreichend Niederschlag und freie Ressourcen bei Arbeit und Boden. Die EU-rechtliche Klassifizierung einer KUP als landwirtschaftliche Tätigkeit auf landwirtschaftlicher Fläche und als landwirtschaftliche Dauerkultur eröffnet die grundsätzliche Möglichkeit der Teilnahme der Kurzumtriebswirtschaft an den EU-Förderprogrammen der Direktförderung, der 1. Säule, und der Förderung der Entwicklung des ländlichen Raumes, der 2. Säule. KUP ist in das Ziele-Cluster Europa 2020/GAP 2020 der EU einbezogen. Für die KUP-Bauern sind auf nationaler Ebene die in das jeweilige Recht der baltischen Staaten transformierten EU Bestimmungen und die jeweils dazu gehörende Verwaltungsauffassung maßgebend. Der Umweltleistung der Dauerkultur „Niederwald im Kurzumtrieb“ wurde in den rechtlichen Bestimmungen der EU grundsätzlich Rechnung getragen. KUP sind von der Greening-Verpflichtung befreit. Es überrascht allerdings, dass KUP als „gleichwertige Methode zur Flächennutzung im Umweltinteresse“ bei der Anrechnung auf eine ökologischen Vorrangfläche nur mit Faktor 0,3, hingegen die Agroforstsysteme mit Faktor 1,0 Berücksichtigung fanden. Der KUP-Landwirt kann nur, wenn er Abweichungen beim Verwaltungshandeln zu den übergeordneten nationalen Gesetzen oder EU-Regeln zu seinem Nachteil erkennt, sein Recht im Widerspruchsverfahren suchen. Sowohl bei der Direktförderung wie auch bei der Strukturförderung wurden in allen drei baltischen Staaten Verwaltungsauffassungen identifiziert, die KUP im Vergleich zur Förderung der herkömmlichen Landwirtschaft mit annuellen Feldfrüchten benachteiligen oder weitgehend von der Förderung ausschließen. Im Bereich der Direktförderung gilt dies im besonderen Maße bei meliorierten Flächen. Die Detailanalyse zeigt, dass die Etablierung von KUP auf solchen Böden entweder, wie in Lettland, zur Versagung der Direktförderung führt, oder, wie in Estland und Litauen mit Auflagen verbunden ist, die die Bereitschaft der Landwirte für die Anlage einer KUP stark hemmen. Bedeutend ist dies vor dem Hintergrund, dass in Estland rund 54 %., in Lettland rund 62 % und in Litauen rund 78 % der landwirtschaftlich nutzbaren Flächen mit Drainagen versehen sind. Im Bereich der Förderung nach der 2. Säule, insbesondere die Gewährung von Zuschüssen bei Auf- und Ausbau der Hofstelle sowie beim Ankauf von Maschinen und anderen Ausrüstungen, ist der KUP-Landwirt von der Förderung ausgeschlossen. Die Festlegung der Rotationszeiten verursacht ein weiteres Hemmnis. Die Produktion von Holz in KUP wird dadurch in den baltischen Staaten in Richtung bestimmter Holzsortimente, nämlich hauptsächlich Energieholz und schwache Sortimente, gelenkt. Die Bestimmungen legen in der Regel fünf Jahre als Umtriebszeit fest. Versuche, diese restriktiven Vorgaben aufzuweichen, waren bisher erfolglos. Zusätzliche Lenkungsimpulse in Richtung bestimmter anderer, stärkerer Holzsortimente gehen auch durch die Förderung der Aufforstung im Rahmen der Strukturförderung aus. Auf den baltischen Faktormärkten stehen für die Holzproduktion auf landwirtschaftlichen Flächen im Kurzumtrieb Boden und Arbeitskräfte zu günstigen Preisen in ausreichendem Umfang zur Verfügung. Restriktionen beim Bodenerwerb in den ab dem Jahre 2014 geltenden nationalstaatlichen Bodenverkehrsrechtssystemen können für die Neu-Etablierung eines KUP-Betriebes hinderlich sein. Zu den realen Holzerträgen liegen für die baltischen Staaten noch keine Ernteergebnisse aus KUP auf größeren Flächen vor. Abschätzungen der Erntemengen waren deshalb anhand von Vergleichszahlen für KUP in klimatisch ähnlichen Regionen, anhand von Wuchsleistungen gängiger Klone und unter Einbeziehungen von Messungen auf Versuchsplantagen in Estland, Lettland und Litauen vorzunehmen. Die so taxierten realen Holzerträge liegen bei einem Durchschnitt von 10,00 tatro ha-1 a-1. Das Niveau der Marktpreise für das im Kurzumtrieb produzierte Hauptsortiment Hackschnitzel deutet auf einen aufnahmebereiten Markt mit für die Wirtschaftlichkeit der Produktion ausreichenden Preisen hin. Vergleiche mit längeren Zeitreihen, bei denen aktuelle Preisschwankungen geglättet sind, für Estland zwischen 2003 bis 2013, für Lettland zwischen 2009 bis 2014 und für Litauen zwischen 2008 bis 2014, bestätigen diese Aussage. Durch die Ermittlung der Annuitäten wird die Wirtschaftlichkeit einer KUP am Beispiel eines Betriebes in Lettland untersucht. Auf der Aufwandsseite konnten tatsächliche Kosten-Größen für eine Fläche von 100 ha in die Berechnungen einbezogen werden. Damit steht für eine Wirtschaftlichkeitsberechnung eine Datenbasis zu den Kosten zur Verfügung, die nicht ausschließlich für kleine Versuchsflächen in Estland, Lettland und Litauen erhoben wurde. Auf der Marktseite kann auf aktuelle Marktpreise für Hackschnitzel, bestätigt durch langfristige Zeitreihen, zurückgegriffen werden. In dieser, mit realen Zahlen fundierten Berechnung sind die Zahlungsströme dargestellt. Nicht in diese Kalkulation wurden wegen der Unsicherheit eines positiven Bescheides durch den LAD die Fördergelder einbezogen. Die Berechnungen zeigen positive Annuitäten, dem Indikator für den profitablen Betrieb einer KUP. Eine Sensitivitätsanalyse mit Veränderungen aller Kosten- und Ertragsfaktoren um jeweils 10 % bestätigt die Ertragsstabilität. Schließlich wird durch den Vergleich des Ergebnisses der Annuitätenberechnung mit einem landwirtschaftlichen Betrieb, der als Hauptkultur Weizen produziert, aufgezeigt, dass die Produktion von Holz auf landwirtschaftlichen Flächen mittels KUP die wirtschaftlich sinnvollere Alternative ist. Als agrarpolitischer Ausblick für die EU lässt sich aus der Gesamtanalyse resümieren, dass eine „Arbeitsteilung“, Feldfrüchte in den Mitgliedsländern zu erzeugen, in denen die Produktionsbedingungen aufgrund von klimatischen Aspekten und Standortparametern optimal sind, nicht gefördert, sondern eher gebremst wird. Wenn die Betriebsergebnisse aus der Produktion von Holz in KUP weiter zunehmen, wird der Markt durch die Aussicht auf höhere monetäre Erträge die Strukturanpassung, auch gegen die restriktive nationale Auslegung der EU-Förderrichtlinien in Estland, Lettland und Litauen bewirken.:Danksagung I Inhaltsverzeichnis III Abbildungsverzeichnis VII Tabellenverzeichnis VIII Abkürzungsverzeichnis XII 1 Einleitung 1 1.1 Diskrepanz bei der Abschätzung der zukünftigen Holznachfrage und der tatsächlichen Entwicklung 1 1.2 Tendenzen bei der Nachfrage und dem Angebot von Holz in der Europäischen Union 4 1.3 Positive Voraussetzungen für die Produktion von Holz in Estland, Lettland und Litauen 7 2 Zielstellung der Arbeit 11 3 Vorgehensweise 14 4 Stand des Wissens 17 4.1 Europarechtliche Bestimmungen für die Holzproduktion auf landwirtschaftlichen Flächen 17 4.1.1 Begriffsabgrenzungen 18 4.1.1.1 Abgrenzungen des Begriffs der Kurzumtriebsplantage von Wald 18 4.1.1.2 Waldbegriff der Europäischen Union 19 4.1.2 Kurzumtriebswirtschaft als landwirtschaftliche Tätigkeit 19 4.1.2.1 Erlaubte Baumarten für den Kurzumtrieb in der Europäischen Union 20 4.1.2.2 Agroforstsysteme im Vergleich zu Kurzumtriebsplantagen in der Terminologie der Europäischen Union 20 4.1.3 Gemeinsame Agrarpolitik 2020 21 4.1.3.1 Organe der Gemeinsamen Agrarpolitik auf Ebene der Europäischen Union und der Verwaltungsunterbau in den Mitgliedstaaten 21 4.1.3.2 Ziele der Gemeinsamen Agrarpolitik 2020 im Rahmen des Zielsystems Europa 2020 24 4.1.3.3 Instrumentarien der Gemeinsamen Agrarpolitik 2020 26 4.1.3.4 Finanzmittel zur Agrarstrukturförderung im Rahmen der Gemeinsamen Agrarpolitik 2020 36 4.2 Kurzumtriebsplantagen auf landwirtschaftlichen Flächen in Estland, Lettland und Litauen 37 4.2.1 Derzeitiger Bestand und Betrieb von Kurzumtriebsplantagen in Estland, Lettland und Litauen 37 4.2.2 Entwicklung der Plantagenflächen zur Produktion von Holz im Kurzumtrieb in Estland, Lettland und Litauen bis 2014 40 4.2.2.1 Estland 40 4.2.2.2 Lettland 41 4.2.2.3 Litauen 41 5 Analyse der rechtlichen Rahmenbedingungen in Estland, Lettland und Litauen zur Holzproduktion in Kurzumtriebsplantagen 43 5.1 Begriffs-Präzisierungen als Ausdruck der nationalen Verständnisse der Vorschriften der Europäischen Union 43 5.1.1 Waldbegriff in Estland, Lettland und Litauen 43 5.1.1.1 Waldbegriff in Estland 43 5.1.1.2 Waldbegriff in Lettland mit der Besonderheit der Forstplantage nach dem lettischen Waldgesetz 44 5.1.1.3 Waldbegriff in Litauen 50 5.1.2 Umtriebszeiten bei Kurzumtriebsplantagen in Estland, Lettland und Litauen 51 5.1.3 Zugelassene Baumarten für Kurzumtriebsplantagen in Estland, Lettland und Litauen 52 5.1.4 Unbestimmte Rechtsbegriffe für Nachhaltigkeit in den Waldgesetzen von Estland, Lettland und Litauen 53 5.2 Umsetzung der Förderbestimmungen nach der Gemeinsamen Agrarpolitik 2020 in Estland, Lettland und Litauen 55 5.2.1 Direktförderung (Säule 1) in Estland, Lettland und Litauen 56 5.2.1.1 Ausgestaltungen der Voraussetzungen für die Direktförderung 57 5.2.1.2 Instrumentarien der Direktförderung 60 5.2.2 Strukturförderung (Säule 2) in Estland, Lettland und Litauen 69 6 Wirtschaftliche Rahmenbedingungen für die Produktion von Holz in Kurzumtriebsplantagen auf landwirtschaftlichen Flächen in Estland, Lettland und Litauen 74 6.1 Parameter zur Definition der Angebotsseite: Verfügbare Produktionsfaktoren 74 6.1.1 Verfügbarkeit der Ressource Arbeit 74 6.1.2 Verfügbarkeit der Ressource Boden 77 6.1.2.1 Eignung von Flächen in Estland, Lettland und Litauen zur Produktion von Holz in Kurzumtriebsplantagen 77 6.1.2.2 Möglichkeit des Bodenerwerbs 79 6.1.2.3 Maßnahmen zur Erhöhung des Flächenangebotes auf den Bodenmärkten in Estland, Lettland und Litauen 82 6.1.2.4 Entwicklung der Preise für landwirtschaftliche Flächen in Estland, Lettland und Litauen 84 6.1.3 Verfügbarkeit der Ressource Kapital 85 6.1.3.1 Infrastruktur als maßgebliche Größe des volkswirtschaftlichen Sozialkapitals 85 6.1.3.2 Betriebliches Privatkapital als Investitionsvoraussetzung 86 6.2 Marktsegment für in Kurzumtriebsplantagen erzeugtem Holz in Estland, Lettland und Litauen 87 6.2.1 Potenzialabschätzungen für die Holzmärkte in Estland, Lettland, Litauen und für die Europäische Union 87 6.2.2 Nachfrage nach Holz in der Zielplanung für die Energiebedarfsdeckung in Estland, Lettland und Litauen 91 6.2.2.1 Planerische Ansätze zur Energieversorgung in Estland 94 6.2.2.2 Planerische Ansätze zur Energieversorgung in Lettland 95 6.2.2.3 Planerische Ansätze zur Energieversorgung in Litauen 96 6.3 Business Case für ein reales Unternehmen in Lettland 97 6.3.1 Naturale und monetäre Erträge von Weidenplantagen 98 6.3.1.1 Mengenerträge in Kurzumtriebsplantagen 99 6.3.1.2 Preisniveaus auf dem Markt für Hackschnitzel in Lettland 104 6.3.1.3 Preisniveauvergleich für Litauen und Estland 107 6.3.2 Kosten der Bewirtschaftung von Kurzumtriebsplantagen 108 6.3.3 Ermittlung der Annuitäten als Entscheidungsgrundlage 113 6.3.4 Betrachtung von Veränderungen von Parametern anhand einer Sensitivitätsanalyse 118 6.3.5 Betrachtung des Ergebnisses der Business Case-Berechnung 120 7 Diskussion der Ergebnisse 126 7.1 Hypothese: Das Regelwerk und die darin enthaltenen Fördermaßnahmen der Gemeinsamen Agrarpolitik 2020/Europa 2020 begünstigen die Produktion von Holz in Kurzumtriebsplantagen in Estland, Lettland und Litauen. 126 7.2 Hypothese: Die nationalen Ausgestaltungen der Bestimmungen der EU favorisieren nicht die Anlage und Nutzung von Kurzumtriebsplantagen in Estland, Lettland und Litauen 135 7.3 Hypothese: Die Produktionsfaktoren Arbeit, Boden und Kapital stehen in Estland, Lettland und Litauen in ausreichendem Maße zur Verfügung. 143 7.4 Hypothese: Die Märkte für in Kurzumtriebsplantagen erzeugtem Holz sind zu Preisen aufnahmefähig, die einen rentablen Betrieb von Kurzumtriebsplantagen in Estland, Lettland und Litauen erlauben. 145 7.5 Hypothese: Die Holzproduktion auf Kurzumtriebsplantagen führt zu höheren monetären Erträgen als der Anbau von annuellen Feldfrüchten in Estland, Lettland und Litauen 149 8 Zusammenfassung 152 9 Abstract 157 10 Literaturverzeichnis 161 10.1 Quellennachweis nach Autoren 161 10.2 Rechtsquellen 194 10.2.1 Völkerrechtliche Verträge 194 10.2.2 Rechtsquellen der Europäischen Union 194 10.2.2.1 Grundlagen für die Europäische Union 194 10.2.2.2 Verordnungen der Europäischen Union in chronologisch-numerischer Reihenfolge 194 10.2.2.3 Richtlinien der Europäischen Union in chronologisch-numerischer Reihenfolge 197 10.2.2.4 Delegierte Verordnungen der Europäischen Union in chronologisch-numerischer Reihenfolge und Entscheidungen 197 10.2.3 Rechtsquellen der Bundesrepublik Deutschland 199 10.2.4 Rechtsquellen der Republik Estland 199 10.2.5 Rechtsquellen der Republik Lettland 200 10.2.6 Rechtsquellen der Republik Litauen 201 / The demand for timber will rise over the prognosis timeframe of the next 15 years until 2030. For Europe, demand forecast shows a deficit of supply of 300 mio. m³ per year; one study even states the amount at 430 mio. m³. The growth of the world population in combination with a growing economy will further increase the demand for wood, despite the current situation of equilibrium between demand and supply as shown by figures regarding the actual wood production. The demand is driven by many factors. Long-term prognoses to the year 2030 predict a permanent rise in demand for energetic use, which is above the rise of wood for material use. The bio economic trend, including the reduction of greenhouse gas emissions through the gradual reduction of fossil energy sources as a primary energy supply, has been reinforced through the Paris Agreement, adopted by the international community in 2015 with the aim of climate protection. Also other factors will strengthen future demand: the tendency towards decentralised energy production, especially within municipalities, which will particularly grow the demand for fuel wood and weak assortments; the tendency towards reducing dependence on Russia as a supplier of natural gas and oil; and the substitution of fossil energy sources for wood in the production of chemicals and fuel. The EU sees in the forests of its member states a large standing wood supply, which would need to be activated to reach the goal of substituting 20% of primary energy with renewable energy sources by 2020. Wood production and use has a neutral CO2 footprint throughout its lifecycle; if produced sustainably, it only emits as much CO2 as it had previously bound within itself through photosynthesis. Increasing the use of timber in the energy mix reduces the pollution of the atmosphere with CO2 Forest-inventories like the recently published 3rd German National Forest Inventory underline this assumption of the EU regarding the reserves. However, not all of the stock in the forests can be activated, as some forests are taken out of production due to ecological and socio-economic reasons. Entrepreneurs whose business model is determined by the production of wood on agricultural land evaluate possible locations for the production of wood in short rotation according the political and legal security, the availability of resources and the factor prices. The Baltic States offer favorable preconditions. All three states fulfill the major parameters for wood production on coppices on agricultural land: protection of the liberal order; secured legal system with the protection of property; barrier-free access to the markets within the EU; no currency risks; favorable climatic conditions with sufficient precipitation; and large amounts of resources in land and labor. The classification as agricultural activity on agricultural land and as an agricultural permanent crop makes SRC principally entitled to EU funding programs through direct support, the so-called 1st pillar, as well as though the funding of the agricultural structures, the so-called 2nd pillar. SRC are included in the goal cluster of Europe2020/CAP2020. For the SRC farmers on a national level, the applicable legislation derived from the EU-regulations and their administrative interpretations are crucial. The environmental performance of SRC was especially recognised, while excluding them from the Greening-Commitment. Surprisingly however, SRC is recognised with the factor 0.3 as a substitute for the compulsory creation of ecological compensation conservation areas, whereas argoforest systems with a lower soil regeneration period are recognised with the factor 1. The SRC agriculturist can request an appeal proceeding only if he feels there are discrepancies between the administrative acting and the superior national laws or EU rules. In comparison to the funding of traditional agriculture with annual crops, interpretations were identified in both pillars which discriminate against SRC by diminishing it or excluding it all together. In the direct funding sector this is especially applicable to meliorated land. A detailed analysis has shown that the establishment of SRC on such land leads to the complete denial of direct funding, like in Latvia, or subjection to strict conditions which hinder any SRC, like in Estonia and Lithuania. This is significant because in Estonia roughly 54%, in Latvia roughly 62% and in Lithuania roughly 78% of agricultural land has a drainage system. Within the 2nd pillar, the SRC farmer is excluded from support, especially in granting subsidies for building construction, acquisition of machines and other equipment. The definition of the rotation periods is causing another hurdle. The production of wood on SRC is steered towards certain market segments, mainly fuel wood and weak assortments, through the predefined rotation periods within the different Baltic States. These are generally set to five years. Efforts to soften this restrictive rule have so far been unsuccessful. Further stimulus guiding towards certain segments comes from the subsidies provided for reforestation by the structural funding. In the Baltic factor market, land and labour for wood production in SRC on agricultural land are available for reasonable prices and in sufficient quantities.Restrictions in purchasing land could arise from the “land-mobilisation” legal systems valid from 2014 for the new establishment of SRC. There are no authoritative figures available for the harvest yields on large scale SRC in the Baltic States. Estimations of the crop volume had to be made in comparison to regions with similar climatic conditions and the growth performance of common clones, taking into account measures from test facilities in Estonia, Latvia and Lithuania. Assessed like this, the average wood production lies at 10.00 tovd ha-1 a-1.. The price levels for the wood sales in the market segment of SRC wood is robust for the internal market, as is the export demand. This is confirmed by a time-series analysis in which price fluctuations are evened out, for Estonia between 2003 and 2013, for Latvia between 2009 and 2014 and for Lithuania between 2008 and 2014. By calculating the annuity, the profitability of a SRC is evaluated using the example of an enterprise in Latvia. On the expenses side, real cost-figures for an area of 100ha could be used for the calculation, thus providing a data base which does not derive from only small experimental areas in Estonia, Latvia and Lithuania. On the market side, actual current market prices, backed up with long-term data series regarding the price level of wood chips, could be resorted to. In this calculation based on real figures, the cash-flow was illustrated. Money from the 1st and 2nd pillar was not added into the calculation due to the uncertainty of a positive decision by the LAD. The calculations show a positive result, indicating that a profitable management of a KUP is possible. A sensitivity analysis in which all cost and dendromass production figures where changed by 10% shows the stability of the calculation. Finally, a comparison of the annuity results to the income of a large company which produces annual field crops in crop rotation shows that the production of wood on agricultural land with SRC is the more economically sound alternative. Considering the agricultural outlook for the EU, one can draw from the overall analysis that a “division of labor” in which field crops are produced in the member states in which the climate aspects and the soil parameters are optimal is not supported, but rather inhibited. When the profits from the production of wood on agricultural land rise further, the market will, driven by the higher return of investment, cause that structural adjustment, despite EU subsidies.:Danksagung I Inhaltsverzeichnis III Abbildungsverzeichnis VII Tabellenverzeichnis VIII Abkürzungsverzeichnis XII 1 Einleitung 1 1.1 Diskrepanz bei der Abschätzung der zukünftigen Holznachfrage und der tatsächlichen Entwicklung 1 1.2 Tendenzen bei der Nachfrage und dem Angebot von Holz in der Europäischen Union 4 1.3 Positive Voraussetzungen für die Produktion von Holz in Estland, Lettland und Litauen 7 2 Zielstellung der Arbeit 11 3 Vorgehensweise 14 4 Stand des Wissens 17 4.1 Europarechtliche Bestimmungen für die Holzproduktion auf landwirtschaftlichen Flächen 17 4.1.1 Begriffsabgrenzungen 18 4.1.1.1 Abgrenzungen des Begriffs der Kurzumtriebsplantage von Wald 18 4.1.1.2 Waldbegriff der Europäischen Union 19 4.1.2 Kurzumtriebswirtschaft als landwirtschaftliche Tätigkeit 19 4.1.2.1 Erlaubte Baumarten für den Kurzumtrieb in der Europäischen Union 20 4.1.2.2 Agroforstsysteme im Vergleich zu Kurzumtriebsplantagen in der Terminologie der Europäischen Union 20 4.1.3 Gemeinsame Agrarpolitik 2020 21 4.1.3.1 Organe der Gemeinsamen Agrarpolitik auf Ebene der Europäischen Union und der Verwaltungsunterbau in den Mitgliedstaaten 21 4.1.3.2 Ziele der Gemeinsamen Agrarpolitik 2020 im Rahmen des Zielsystems Europa 2020 24 4.1.3.3 Instrumentarien der Gemeinsamen Agrarpolitik 2020 26 4.1.3.4 Finanzmittel zur Agrarstrukturförderung im Rahmen der Gemeinsamen Agrarpolitik 2020 36 4.2 Kurzumtriebsplantagen auf landwirtschaftlichen Flächen in Estland, Lettland und Litauen 37 4.2.1 Derzeitiger Bestand und Betrieb von Kurzumtriebsplantagen in Estland, Lettland und Litauen 37 4.2.2 Entwicklung der Plantagenflächen zur Produktion von Holz im Kurzumtrieb in Estland, Lettland und Litauen bis 2014 40 4.2.2.1 Estland 40 4.2.2.2 Lettland 41 4.2.2.3 Litauen 41 5 Analyse der rechtlichen Rahmenbedingungen in Estland, Lettland und Litauen zur Holzproduktion in Kurzumtriebsplantagen 43 5.1 Begriffs-Präzisierungen als Ausdruck der nationalen Verständnisse der Vorschriften der Europäischen Union 43 5.1.1 Waldbegriff in Estland, Lettland und Litauen 43 5.1.1.1 Waldbegriff in Estland 43 5.1.1.2 Waldbegriff in Lettland mit der Besonderheit der Forstplantage nach dem lettischen Waldgesetz 44 5.1.1.3 Waldbegriff in Litauen 50 5.1.2 Umtriebszeiten bei Kurzumtriebsplantagen in Estland, Lettland und Litauen 51 5.1.3 Zugelassene Baumarten für Kurzumtriebsplantagen in Estland, Lettland und Litauen 52 5.1.4 Unbestimmte Rechtsbegriffe für Nachhaltigkeit in den Waldgesetzen von Estland, Lettland und Litauen 53 5.2 Umsetzung der Förderbestimmungen nach der Gemeinsamen Agrarpolitik 2020 in Estland, Lettland und Litauen 55 5.2.1 Direktförderung (Säule 1) in Estland, Lettland und Litauen 56 5.2.1.1 Ausgestaltungen der Voraussetzungen für die Direktförderung 57 5.2.1.2 Instrumentarien der Direktförderung 60 5.2.2 Strukturförderung (Säule 2) in Estland, Lettland und Litauen 69 6 Wirtschaftliche Rahmenbedingungen für die Produktion von Holz in Kurzumtriebsplantagen auf landwirtschaftlichen Flächen in Estland, Lettland und Litauen 74 6.1 Parameter zur Definition der Angebotsseite: Verfügbare Produktionsfaktoren 74 6.1.1 Verfügbarkeit der Ressource Arbeit 74 6.1.2 Verfügbarkeit der Ressource Boden 77 6.1.2.1 Eignung von Flächen in Estland, Lettland und Litauen zur Produktion von Holz in Kurzumtriebsplantagen 77 6.1.2.2 Möglichkeit des Bodenerwerbs 79 6.1.2.3 Maßnahmen zur Erhöhung des Flächenangebotes auf den Bodenmärkten in Estland, Lettland und Litauen 82 6.1.2.4 Entwicklung der Preise für landwirtschaftliche Flächen in Estland, Lettland und Litauen 84 6.1.3 Verfügbarkeit der Ressource Kapital 85 6.1.3.1 Infrastruktur als maßgebliche Größe des volkswirtschaftlichen Sozialkapitals 85 6.1.3.2 Betriebliches Privatkapital als Investitionsvoraussetzung 86 6.2 Marktsegment für in Kurzumtriebsplantagen erzeugtem Holz in Estland, Lettland und Litauen 87 6.2.1 Potenzialabschätzungen für die Holzmärkte in Estland, Lettland, Litauen und für die Europäische Union 87 6.2.2 Nachfrage nach Holz in der Zielplanung für die Energiebedarfsdeckung in Estland, Lettland und Litauen 91 6.2.2.1 Planerische Ansätze zur Energieversorgung in Estland 94 6.2.2.2 Planerische Ansätze zur Energieversorgung in Lettland 95 6.2.2.3 Planerische Ansätze zur Energieversorgung in Litauen 96 6.3 Business Case für ein reales Unternehmen in Lettland 97 6.3.1 Naturale und monetäre Erträge von Weidenplantagen 98 6.3.1.1 Mengenerträge in Kurzumtriebsplantagen 99 6.3.1.2 Preisniveaus auf dem Markt für Hackschnitzel in Lettland 104 6.3.1.3 Preisniveauvergleich für Litauen und Estland 107 6.3.2 Kosten der Bewirtschaftung von Kurzumtriebsplantagen 108 6.3.3 Ermittlung der Annuitäten als Entscheidungsgrundlage 113 6.3.4 Betrachtung von Veränderungen von Parametern anhand einer Sensitivitätsanalyse 118 6.3.5 Betrachtung des Ergebnisses der Business Case-Berechnung 120 7 Diskussion der Ergebnisse 126 7.1 Hypothese: Das Regelwerk und die darin enthaltenen Fördermaßnahmen der Gemeinsamen Agrarpolitik 2020/Europa 2020 begünstigen die Produktion von Holz in Kurzumtriebsplantagen in Estland, Lettland und Litauen. 126 7.2 Hypothese: Die nationalen Ausgestaltungen der Bestimmungen der EU favorisieren nicht die Anlage und Nutzung von Kurzumtriebsplantagen in Estland, Lettland und Litauen 135 7.3 Hypothese: Die Produktionsfaktoren Arbeit, Boden und Kapital stehen in Estland, Lettland und Litauen in ausreichendem Maße zur Verfügung. 143 7.4 Hypothese: Die Märkte für in Kurzumtriebsplantagen erzeugtem Holz sind zu Preisen aufnahmefähig, die einen rentablen Betrieb von Kurzumtriebsplantagen in Estland, Lettland und Litauen erlauben. 145 7.5 Hypothese: Die Holzproduktion auf Kurzumtriebsplantagen führt zu höheren monetären Erträgen als der Anbau von annuellen Feldfrüchten in Estland, Lettland und Litauen 149 8 Zusammenfassung 152 9 Abstract 157 10 Literaturverzeichnis 161 10.1 Quellennachweis nach Autoren 161 10.2 Rechtsquellen 194 10.2.1 Völkerrechtliche Verträge 194 10.2.2 Rechtsquellen der Europäischen Union 194 10.2.2.1 Grundlagen für die Europäische Union 194 10.2.2.2 Verordnungen der Europäischen Union in chronologisch-numerischer Reihenfolge 194 10.2.2.3 Richtlinien der Europäischen Union in chronologisch-numerischer Reihenfolge 197 10.2.2.4 Delegierte Verordnungen der Europäischen Union in chronologisch-numerischer Reihenfolge und Entscheidungen 197 10.2.3 Rechtsquellen der Bundesrepublik Deutschland 199 10.2.4 Rechtsquellen der Republik Estland 199 10.2.5 Rechtsquellen der Republik Lettland 200 10.2.6 Rechtsquellen der Republik Litauen 201
13

Entscheidungsfaktoren für den Anbau schnellwachsender Baumarten auf landwirtschaftlichen Flächen in Schweden: Eine explorative Fallstudie mit Landbesitzern zum Salixanbau

Hertweck, Sebastian 20 December 2010 (has links)
This study is dealing with the adoption of Short Rotation Woody Crops (SRWC) by Swedish farmers during the last 20 years. SRWC is considered as an innovation in land use. An exploratory case study was set up by interviewing Swedish farmers and land owners to find out (1) about their decision process and reasons to start with Salix cultivation and (2) their opinions from today’s (time of interview, 2008) point of view about that decision. The aim is to improve German investigations in this field, to find out about reasons for farmers to decide in favour of or against SRWC. The development of Salix cultivation in Sweden seemed successful in the beginning of the 1990s as the total area of SRWC increased considerably until 1995. With the entry to the EU and participation in the common agricultural policy (CAP) in 1995 the positive development ended and has remained on the same level until this investigation. The study is based on 14 interviews with farmers who have been involved in SRWC. The interviews are part of the appendix A (Anhang A). On the basis of these 14 cases reasons and aspects for making decisions are evaluated in a qualitative method. Important factors for decision making in Sweden were in this study: agricultural policy before 1995, income from Salix, workload, service enterprise Agroenergi AB, hunting, site quality, and some miscellaneous aspects more. Further investigations should consider the type of farmer referring to his personal income structures as SRWC seems suitable for landowners who are financially independent from agricultural income. Another topic for further investigations should be the transfer of the obtained knowledge in Sweden to Germany.:Abbildungs- und Tabellenverzeichnis........................................................................... 6 Abkürzungsverzeichnis .................................................................................................. 7 1 Einleitung ........................................................................................................... 10 1.1 Problemstellung................................................................................................... 10 1.2 Ziel der Diplomarbeit .......................................................................................... 11 1.3 Untersuchungsgebiet ........................................................................................... 12 1.3.1 Geografie, Klima und Politik .................................................................. 12 1.3.2 Landwirtschaft......................................................................................... 15 1.3.3 Salixkultivierung in Schweden................................................................ 16 1.4 Begriffsabgrenzung und deduktiv entwickelte Faktoren..................................... 19 1.5 Vorgehensweise................................................................................................... 22 2 Theoretischer Rahmen...................................................................................... 23 3 Methodik ............................................................................................................ 31 3.1 Forschungsdesign ................................................................................................ 31 3.2 Datenerhebung..................................................................................................... 32 3.2.1 Befragung................................................................................................ 32 3.2.2 Erhebungsinstrumente............................................................................. 33 3.2.3 Auswahlverfahren und Interviewdurchführung ...................................... 35 3.2.4 Transkription ........................................................................................... 36 3.3 Auswertung.......................................................................................................... 37 3.3.1 Strategie................................................................................................... 37 3.3.2 Kategoriensystem, Paraphrase und Reduktion........................................ 38 3.3.3 Integration der Ergebnisse....................................................................... 42 4 Ergebnisse .......................................................................................................... 46 4.1 Die Interviewpartner............................................................................................ 46 4.2 Spektrum der Entscheidungsgründe .................................................................... 54 4.3 Entscheidungsfaktoren und Thesen..................................................................... 65 4.3.1 Agrarpolitische Faktoren vor 1995 ......................................................... 65 4.3.2 Einkommen aus SRWC........................................................................... 66 4.3.3 Faktor Dienstleister ................................................................................. 66 4.3.4 Faktor Arbeitsbelastung .......................................................................... 67 4.3.5 Faktor Jagd .............................................................................................. 68 4.3.6 Faktor Standort........................................................................................ 68 4.3.7 Weitere Faktoren ..................................................................................... 69 5 Diskussion........................................................................................................... 70 6 Zusammenfassung ............................................................................................. 82 7 Literaturverzeichnis .......................................................................................... 84 Anhang A: Fallübersichten .......................................................................................... 91 A.1 SÖD-A, 19.01.2008 ........................................................................................ 91 A.2 SÖD-B, 19.01.2008 ........................................................................................ 94 A.3 SÖD-C, 21.02.2008 ........................................................................................ 97 A.4 UPP-A, 20.01.2008....................................................................................... 100 A.5 UPP-B, 22.01.2008 ....................................................................................... 103 A.6 UPP-C, 22.01.2008 ....................................................................................... 107 A.7 ÖST-B, 12.01.2008....................................................................................... 111 A.8 ÖST-C, 13.01.2008....................................................................................... 114 A.9 ÖST-E, 15.01.2008 ....................................................................................... 117 A.10 ÖST-F, 16.01.2008 ....................................................................................... 121 A.11 ÖST-G, 16.01.2008....................................................................................... 124 A.12 ÖST-H, 17.01.2008....................................................................................... 128 A.13 VGT-A, 23.01.2008...................................................................................... 132 A.14 VGT-B, 25.01.2008 ...................................................................................... 136 Anhang B: Materialien und Informationen ............................................................. 139 B.1 Zeitstrahl ....................................................................................................... 139 B.2 Interviewleitfaden ......................................................................................... 140 B.3 Kurzfragebogen ............................................................................................ 142 B.4 Codierleitfaden ............................................................................................. 144 B.5 Materialien auf CD-ROM Anhang ............................................................... 145 B.6 Anmerkung zum Thema Gender .................................................................. 145 B.7 Glossar .......................................................................................................... 146
14

Rekultivierung von Deponien unter Betrachtung des Einsatzes von Klärschlammkompost

Penckert, Paula 02 March 2021 (has links)
Durch die Novellierung der AbfKlärV im Jahr 2017 wurde die bodenbezogene Nutzung von Klärschlamm stark eingeschränkt. Dadurch rückt dessen thermische Verwertung zunehmend in den Vordergrund, wobei durch eine Mitverbrennung Nährstoffe verloren gehen. Diese Arbeit betrachtet alternative Möglichkeiten zur stofflichen Verwertung, wie den Einsatz als Rekultivierungsmaterial auf Deponien in Form von Komposten. In die Arbeit fließt die Betrachtung von Pilzkultursubstraten als weiterer Zuschlagstoff ein, da diese aufgrund von Hygienisierungsvorschriften ebenfalls meist thermisch verwertet werden und auch hier wichtige Nährstoffe verloren gehen. Weiterhin wird untersucht, ob Deponieflächen generell für den Anbau von Bewuchs geeignet sind und insbesondere, ob auf derartig rekultivierten Flächen Rohstoffgewinnung aus Energiepflanzen möglich ist. Dafür wurden verschiedene Materialmischungen hergestellt und in Pflanzversuchen unter Laborbedingungen sowie im Freiland und in geotechnischen Versuchen auf ihre Eignung überprüft. Es wird gezeigt, dass Deponien ein Flächenpotential darstellen und diese auch für Bewuchs geeignet sind. Auch eignen sich die hergestellten Materialmischungen grundsätzlich als Rekultivierungsmaterial. Diese müssen aber in zukünftigen Versuchen in Hinsicht auf die Einhaltung von Grenzwerten und bspw. deren Wasserdurchlässigkeiten weiter angepasst werden, bevor die Mischungen produktiv im großen Maßstab einsetzbar sind.
15

Lagerung von Pappelrundholz aus Kurzumtriebsplantagen – Evaluierung verschiedener Lagerungsverfahren unter besonderer Berücksichtigung der Holzfeuchte als möglicher Parameter einer automatisierten Qualitätsüberwachung

Starke, Nicole 25 January 2023 (has links)
Vor dem Hintergrund einer angestrebten stofflichen Nutzung von Pappelholz aus Kurzumtriebsplantagen (KUP) zur Herstellung von Holzwerkstoffen und des eingeschränkten Erntezeitpunktes der Pappeln in den Wintermonaten ergab sich die Frage, wie das Holz über einen Lagerungszeitraum von bis zu neun Monaten bei gleichzeitiger Erhaltung der Holzqualität gelagert werden kann. Zu diesem Zweck wurden verschiedene Lagerungsverfahren getestet: Trockenlagerung mit und ohne Rinde, Beregnung mit und ohne Rinde, Folienlagerung mit und ohne Rinde sowie einem aus Beregnung und Trockenlagerung kombinierten Verfahren. Insgesamt wurden 105 Raummeter Pappelrundholz aus KUP in zwei verschiedenen Lagerungsperioden 2018 und 2019 eingelagert. Die Holzqualität des gelagerten Pappelholzes wurde anhand von Untersuchungen zur Veränderung der Darrdichte, der chemischen Zusammensetzung (Cellulose-, Hemicellulosen-, Lignin-, Extraktstoffanteil) und ergänzend durch mikroskopische Untersuchungen bewertet. Ein weiterer Fokus lag auf der Holzfeuchte zur Abschätzung der Gefahr eines Pilzbefalls. Die Ergebnisse zeigten, dass es bei der Trockenlagerung mit Rinde in der Lagerungsperiode 2019 durch einen festgestellten Befall durch holzzerstörende Pilze, einer Reduktion der Darrdichte von 11 % sowie starken Änderungen der chemischen Zusammensetzung (vor allem Reduktion der Holzpolyosen) zu den stärksten Veränderungen kam. Bei der Trockenlagerung ohne Rinde waren die beobachteten Veränderungen deutlich geringer (maximale Abnahme der Darrdichte 3 %). Bei den beiden Lagerungsverfahren Beregnung und Folienlagerung konnte eine Lagerung des Holzes in einem für holzzerstörende Pilze unkritischen Holzfeuchtebereich nachgewiesen werden. Ein Befall durch holzzerstörende Pilze wurde durch die mikroskopischen Untersuchungen nicht festgestellt. Bei der Beregnung fiel die Veränderung der Darrdichte bei einigen Varianten stärker aus als erwartet. Für eine abschließende Bewertung sind weitere Untersuchungen notwendig. Der Klon Max 1 zeigte oft stärkere Veränderungen als der Klon AF2. Auch hier sind weitere Untersuchungen notwendig. Aus den Ergebnissen wurde geschlussfolgert, dass die Holzqualität mittels Folienlagerung am besten erhalten werden konnte. Auch die Trockenlagerung ohne Rinde wird aufgrund der geringen festgestellten Veränderungen und im Hinblick auf die geringen Kosten als geeignet erachtet. Es muss jedoch beachtet werden, dass dieses Lagerungsverfahren stark witterungsabhängig ist.:Kurzfassung Abstract Abbildungsverzeichnis Tabellenverzeichnis Abkürzungsverzeichnis 1 Einleitung 1.1 Hintergrund 1.2 Ziele und Thesen 1.3 Aufgabenstellung 2 Stand von Wissenschaft und Technik 2.1 Die Pappel und ihr Holz 2.1.1 Die Baumart Pappel 2.1.2 Die Holzart Pappel 2.1.3 Verwendung von Pappelholz 2.2 Kurzumtriebsplantagen (KUP) 2.2.1 Allgemein 2.2.2 Pappel auf Kurzumtriebsplantagen 2.2.3 Verwendung von Pappelholz aus KUP 2.3 Rundholzlagerung 2.3.1 Anwendungsgebiete und Ziele der Rundholzlagerung 2.3.2 Einflussfaktoren auf den Lagerungserfolg 2.3.3 Verfahren der Rundholzlagerung 2.3.3.1 Übersicht über die Lagerungsverfahren 2.3.3.2 Trockenlagerung 2.3.3.3 Nasslagerung 2.3.3.4 Folienlagerung 2.3.4 Risiken für die Rundholzlagerung 2.3.4.1 Einleitung 2.3.4.2 Biotische Risiken 2.3.4.3 Abiotische Risiken 2.3.5 Lagerung von Pappelrundholz aus Kurzumtriebsplantagen 2.4 Holzfeuchtebestimmung und Holzfeuchtemonitoring durch elektrische Widerstands-messung 2.4.1 Überblick Verfahren zur Bestimmung der Holzfeuchte 2.4.2 Elektrische Widerstandsmessung 2.4.2.1 Prinzip 2.4.2.2 Kalibrierfunktionen 2.4.3 Monitoring durch elektrische Widerstandsmessung 3 Material und Methoden 3.1 Material 3.1.1 Eingesetztes Versuchsmaterial für die Lagerungsperiode 2018 3.1.2 Eingesetztes Versuchsmaterial für die Lagerungsperiode 2019 3.2 Methoden 3.2.1 Überblick Methoden 3.2.2 Versuchsaufbau 3.2.2.1 Lagerungsperiode 2018 3.2.2.2 Lagerungsperiode 2019 3.2.3 Untersuchungen 3.2.3.1 Überblick Untersuchungen und Beprobungsstrategie 3.2.3.2 Holzfeuchte 3.2.3.3 Darrdichte 3.2.3.4 Chemische Analysen 3.2.3.5 Pilz- und Bakterienbefall 3.2.3.6 Triebbildung 3.2.3.7 Gasanalyse 3.2.3.8 Elektrische Widerstandsmessung zur Ermittlung der Holzfeuchte 3.2.4 Dokumentation von Witterungsdaten 3.2.5 Statistische Auswertung 4 Ergebnisse 4.1 Systematik der Ergebnisdarstellung 4.2 Witterungsdaten 4.2.1 Lagerungsperiode 2018 4.2.2 Lagerungsperiode 2019 4.3 Gasatmosphäre 4.4 Holzfeuchte 4.4.1 Lagerungsperiode 2018 4.4.2 Lagerungsperiode 2019 4.5 Darrdichte 4.5.1 Lagerungsperiode 2018 4.5.2 Lagerungsperiode 2019 4.6 Chemische Zusammensetzung 4.6.1 Lagerungsperiode 2018 4.6.2 Lagerungsperiode 2019 4.7 Pilz- und Bakterienbefall 4.7.1 Lagerungsperiode 2018 4.7.2 Lagerungsperiode 2019 4.8 Triebbildung 4.8.1 Lagerungsperiode 2018 4.8.2 Lagerungsperiode 2019 4.9 Sonstige Beobachtungen 4.9.1 Rissbildungen bei der Trockenlagerung 4.9.2 Mäuse und einwachsende Pflanzenteile 4.10 Monitoring der Holzfeuchteentwicklung im Laufe der Lagerungsperiode 2019 4.10.1 Erstellung der Kalibrierfunktion für Pappelholz 4.10.1.1 Modell 1 4.10.1.2 Modell 2 4.10.2 Anwendung der ermittelten Kalibrierfunktion auf die mittels Datenlogger aufgezeichneten Messwerte im Zuge der Lagerungsperiode 2019 5 Diskussion 5.1 Evaluierung der Lagerungsverfahren unter Berücksichtigung der Holzfeuchte 5.1.1 Erwartete Holzqualität der einzelnen Lagerungsvarianten aufgrund der festgestellten Holzfeuchte 5.1.2 Trockenlagerung 5.1.2.1 Holzfeuchte und Witterungsbedingungen 5.1.2.2 Veränderung der Darrdichte und der chemischen Zusammensetzung, Pilzbefall 5.1.2.3 Zusammenfassende Einschätzung zur Trockenlagerung 5.1.3 Beregnung 5.1.3.1 Holzfeuchte 5.1.3.2 Veränderung der Darrdichte und der chemischen Zusammensetzung, Pilz- und Bakterienbefall 5.1.3.3 Zusammenfassende Einschätzung zur Beregnung 5.1.4 Kombiniertes Verfahren aus Beregnung und Trockenlagerung 5.1.4.1 Holzfeuchte und Witterungsbedingungen 5.1.4.2 Veränderung der Darrdichte und der chemischen Zusammensetzung, Pilz- und Bakterienbefall 5.1.4.3 Zusammenfassende Einschätzung zum kombinierten Verfahren 5.1.5 Folienlagerung 5.1.5.1 Gasanalyse in den Folienpaketen 5.1.5.2 Holzfeuchte 5.1.5.3 Veränderung der Darrdichte und der chemischen Zusammensetzung, Pilz- und Bakterienbefall 5.1.5.4 Zusammenfassende Einschätzung zur Folienlagerung 5.1.6 Vergleich der Klone Max 1 und AF2 5.1.7 Zusammenfassung und Bewertung der Lagerungsvarianten 5.2 Monitoring der Holzfeuchteentwicklung im Laufe der Lagerungsperiode durch elektrische Widerstandsmessung 5.2.1.1 Kalibierfunktion für Pappelholz aus KUP 5.2.1.2 Einsatzmöglichkeit der elektrischen Widerstandsmessung zur Qualitätsüberwachung von Pappelrundholzpoltern 6 Schlussfolgerung 7 Zusammenfassung 8 Ausblick Literaturverzeichnis / Considering the desired material use of poplar wood from short-rotation coppices (SRC) for the production of wooden materials and the limited harvest season, the question arose how the wood should be stored over a period of up to nine months while preserving the wood quality (at the same time). For this purpose, different storage methods were tested: storage in compact piles with and without bark, storage with water sprinkling with and without bark and storage under oxygen exclusion with and without bark, as well as storage in compact pile with temporary water sprinkling as a combined storage method. A total amount of 105 cubic meters test piles with poplar logs from SRC were set up in two different storage periods, 2018 and 2019. The clones Max 1 and AF2 were evaluated using 18 different storage variants. The quality of the stored poplar wood was evaluated based on changes in the wood density ρ0, chemical composition (cellulose, hemicelluloses, lignin and extract content) complemented by microscopic examinations. A further focus was the wood moisture content evaluation to estimate the potential risk of fungal decay. The results demonstrated that storage in compact piles in the storage period of 2019 resulted in the biggest changes caused by an infestation of wood-destroying fungi, 11.1% reduction of the wood density ρ0, and significant changes of chemical composition, in particular reduction of wood polyoses. Storage in compact piles without bark showed substantially lower changes (maximum decrease of wood density ρ0 of 3.3%). For storage with water sprinkling and storage under oxygen exclusion it could be shown that both result in storage conditions with an uncritical wood moisture range in relation to wood-destroying fungi (fungi decay). Fungi decay could not be observed by microscopic examination. Additional studies are required for a final assessment. Clone Max 1 showed frequently stronger changes than clone AF2. Further investigation is needed here as well. Based on the results it can be concluded that the wood quality could be preserved best by using the storage under oxygen exclusion. Storage in compact piles without bark can be considered as suitable as well due to the minor changes and considering the low costs. However, it has to be taken into account hat this storage method is very climate-dependent.:Kurzfassung Abstract Abbildungsverzeichnis Tabellenverzeichnis Abkürzungsverzeichnis 1 Einleitung 1.1 Hintergrund 1.2 Ziele und Thesen 1.3 Aufgabenstellung 2 Stand von Wissenschaft und Technik 2.1 Die Pappel und ihr Holz 2.1.1 Die Baumart Pappel 2.1.2 Die Holzart Pappel 2.1.3 Verwendung von Pappelholz 2.2 Kurzumtriebsplantagen (KUP) 2.2.1 Allgemein 2.2.2 Pappel auf Kurzumtriebsplantagen 2.2.3 Verwendung von Pappelholz aus KUP 2.3 Rundholzlagerung 2.3.1 Anwendungsgebiete und Ziele der Rundholzlagerung 2.3.2 Einflussfaktoren auf den Lagerungserfolg 2.3.3 Verfahren der Rundholzlagerung 2.3.3.1 Übersicht über die Lagerungsverfahren 2.3.3.2 Trockenlagerung 2.3.3.3 Nasslagerung 2.3.3.4 Folienlagerung 2.3.4 Risiken für die Rundholzlagerung 2.3.4.1 Einleitung 2.3.4.2 Biotische Risiken 2.3.4.3 Abiotische Risiken 2.3.5 Lagerung von Pappelrundholz aus Kurzumtriebsplantagen 2.4 Holzfeuchtebestimmung und Holzfeuchtemonitoring durch elektrische Widerstands-messung 2.4.1 Überblick Verfahren zur Bestimmung der Holzfeuchte 2.4.2 Elektrische Widerstandsmessung 2.4.2.1 Prinzip 2.4.2.2 Kalibrierfunktionen 2.4.3 Monitoring durch elektrische Widerstandsmessung 3 Material und Methoden 3.1 Material 3.1.1 Eingesetztes Versuchsmaterial für die Lagerungsperiode 2018 3.1.2 Eingesetztes Versuchsmaterial für die Lagerungsperiode 2019 3.2 Methoden 3.2.1 Überblick Methoden 3.2.2 Versuchsaufbau 3.2.2.1 Lagerungsperiode 2018 3.2.2.2 Lagerungsperiode 2019 3.2.3 Untersuchungen 3.2.3.1 Überblick Untersuchungen und Beprobungsstrategie 3.2.3.2 Holzfeuchte 3.2.3.3 Darrdichte 3.2.3.4 Chemische Analysen 3.2.3.5 Pilz- und Bakterienbefall 3.2.3.6 Triebbildung 3.2.3.7 Gasanalyse 3.2.3.8 Elektrische Widerstandsmessung zur Ermittlung der Holzfeuchte 3.2.4 Dokumentation von Witterungsdaten 3.2.5 Statistische Auswertung 4 Ergebnisse 4.1 Systematik der Ergebnisdarstellung 4.2 Witterungsdaten 4.2.1 Lagerungsperiode 2018 4.2.2 Lagerungsperiode 2019 4.3 Gasatmosphäre 4.4 Holzfeuchte 4.4.1 Lagerungsperiode 2018 4.4.2 Lagerungsperiode 2019 4.5 Darrdichte 4.5.1 Lagerungsperiode 2018 4.5.2 Lagerungsperiode 2019 4.6 Chemische Zusammensetzung 4.6.1 Lagerungsperiode 2018 4.6.2 Lagerungsperiode 2019 4.7 Pilz- und Bakterienbefall 4.7.1 Lagerungsperiode 2018 4.7.2 Lagerungsperiode 2019 4.8 Triebbildung 4.8.1 Lagerungsperiode 2018 4.8.2 Lagerungsperiode 2019 4.9 Sonstige Beobachtungen 4.9.1 Rissbildungen bei der Trockenlagerung 4.9.2 Mäuse und einwachsende Pflanzenteile 4.10 Monitoring der Holzfeuchteentwicklung im Laufe der Lagerungsperiode 2019 4.10.1 Erstellung der Kalibrierfunktion für Pappelholz 4.10.1.1 Modell 1 4.10.1.2 Modell 2 4.10.2 Anwendung der ermittelten Kalibrierfunktion auf die mittels Datenlogger aufgezeichneten Messwerte im Zuge der Lagerungsperiode 2019 5 Diskussion 5.1 Evaluierung der Lagerungsverfahren unter Berücksichtigung der Holzfeuchte 5.1.1 Erwartete Holzqualität der einzelnen Lagerungsvarianten aufgrund der festgestellten Holzfeuchte 5.1.2 Trockenlagerung 5.1.2.1 Holzfeuchte und Witterungsbedingungen 5.1.2.2 Veränderung der Darrdichte und der chemischen Zusammensetzung, Pilzbefall 5.1.2.3 Zusammenfassende Einschätzung zur Trockenlagerung 5.1.3 Beregnung 5.1.3.1 Holzfeuchte 5.1.3.2 Veränderung der Darrdichte und der chemischen Zusammensetzung, Pilz- und Bakterienbefall 5.1.3.3 Zusammenfassende Einschätzung zur Beregnung 5.1.4 Kombiniertes Verfahren aus Beregnung und Trockenlagerung 5.1.4.1 Holzfeuchte und Witterungsbedingungen 5.1.4.2 Veränderung der Darrdichte und der chemischen Zusammensetzung, Pilz- und Bakterienbefall 5.1.4.3 Zusammenfassende Einschätzung zum kombinierten Verfahren 5.1.5 Folienlagerung 5.1.5.1 Gasanalyse in den Folienpaketen 5.1.5.2 Holzfeuchte 5.1.5.3 Veränderung der Darrdichte und der chemischen Zusammensetzung, Pilz- und Bakterienbefall 5.1.5.4 Zusammenfassende Einschätzung zur Folienlagerung 5.1.6 Vergleich der Klone Max 1 und AF2 5.1.7 Zusammenfassung und Bewertung der Lagerungsvarianten 5.2 Monitoring der Holzfeuchteentwicklung im Laufe der Lagerungsperiode durch elektrische Widerstandsmessung 5.2.1.1 Kalibierfunktion für Pappelholz aus KUP 5.2.1.2 Einsatzmöglichkeit der elektrischen Widerstandsmessung zur Qualitätsüberwachung von Pappelrundholzpoltern 6 Schlussfolgerung 7 Zusammenfassung 8 Ausblick Literaturverzeichnis
16

Modelling of Biomass Production Potential of Poplar in Short Rotation Plantations on Agricultural Lands of Saxony, Germany / Modellierung der Ertragspotentiale von Pappelklonen in Kurzumtriebsplantagen auf sächsischen Ackerflächen

Ali, Wael 16 March 2009 (has links) (PDF)
The interest in renewables for energy has increased in the last 2-3 decades because of the negative environmental impact caused by the burning of fossil fuels, the raising prices of traditional fuels, the dependence on foreign oil, and the decrease in fossil fuels resources. Biomass energy represents one of the most promising alternatives. Many studies worldwide were devoted to investigate growth and yield of short rotation forestry plantations for energetic use and several empirical and process-based models were developed to predict the potential production of biomass. The current work was concentrated on modelling site productivity (potential of biomass production) of specific poplar clones planted on arable Saxon land under different stocking densities. Empirical data collected from several experimental areas were used. Site productivity has been predicted depending on stand age and site variables using a two-step model. In step one age and site variables were used to model stand dominant height and in step two the constructed dominant height was involved with stocking density to predict stand oven dried biomass. Depending on data availability the model was parameterized for four different groups of poplar clones: Androscoggin (clone Androscoggin), Matrix (Matrix and hybrid 275), Max (Max 1 …Max 5) and Münden (clone Münden). Both stand dominant height and stand dry biomass were modelled for ages 2 – 9 years for clone groups: Matrix and Max and for ages 2 – 7 years for clone groups: Androscoggin and Münden. The model has been tested and validated using several statistical and graphical methods. The relative bias (ē %) in the dominant height estimates ranged between 0.5 % > ē % > - 0.5 % in all clone groups and had a maximum bias of 10.41 % in stand biomass estimates. Model accuracy (mx %) in the dominant height estimates ranged between 12.25 and 17.56 % and between 8.05 and 27.32 % in stand biomass estimates. Two different scenarios were presented to show the potential of biomass that can be produced from poplar plantations on arable and former fallow Saxon lands at different stocking densities. ArcGIS has been used to visualize model application results. In order to produce a mean annual increment ≥ 8 [dry t/ha/a] from poplar plantations (Max group) for more than 50 % of arable or former fallow lands in the first rotation at least 9 years are required under stocking density of 4000 stems/ha and 7 years for both stocking densities 8333 and 10,000 stems/ha. / Die Nachfrage nach Holz für energetische Zwecke nimmt in Deutschland und ganz Europa zu. Um diesen Bedarf künftig besser befriedigen zu können, müssen verstärkt Ressourcen aus verschiedenen Quellen wie z. B. Holz aus Niederwäldern oder Durchforstungsreserven im Hochwald mobilisiert und ergänzend Holz in Kurzumtriebsflächen produziert werden (Guericke, M. 2006). Ziel dieser Arbeit war es, das Ertragspotential von Pappelklonen in Kurzumtriebsplantagen unterschiedlicher Baumdichte auf sächsischen Ackerflächen zu untersuchen. Hierzu wurden die potentiellen Erträge anhand empirischer, auf verschiedenen Versuchsflächen erhobener Daten modelliert. Zur Schätzung des Ertragspotentials wurde ein zweistufiges Modell entwickelt: Im ersten Schritt erfolgte die Modellierung der Oberhöhe eines Bestandes (ho, m) in Abhängigkeit von Bestandesalter und Standortfaktoren unter Verwendung einer multiplen linearen Regressionsanalyse, dabei wurden Bestimmtheitsmaße (R²) von 0,975 bis 0,989 erreicht. In einem zweiten Schritt lässt sich dann der Biomassevorrat [tatro/ha/a] mittels nichtlinearer Regressionsanalyse durch die Bestandesoberhöhe schätzen. Das Bestimmtheitsmaß von R² ≥ 0,933 weist auch hier auf eine hohe Anpassungsgüte hin. Die Modellparametrisierung erfolgte für folgende vier Gruppen von Pappelklonen: • Max-Gruppe: Klone Max 1, Max 2, Max 3, Max 4 und Max 5, Altersbereich 2 – 9 Jahre, Baumdichten von 1150 – 13000 Stämmen/ha; • Matrix-Gruppe: Klon Matrix und Hybride 275, Altersbereich 2 – 9 Jahre, Baumdichte 1550 Stämme/ha; • Androscoggin-Gruppe: Klon Androscoggin, Altersbereich 2 – 7 Jahre, Baumdichte 1550 Stämme/ha; und • Münden-Gruppe: Klon Münden, Altersbereich 2 – 7 Jahre, Baumdichte 1550 Stämme/ha. Die Güte des Modells wurde mit Hilfe verschiedener statistischer Verfahren überprüft. Bei der Validierung anhand des Datensatzes, welcher für die Modellkonstruktion Verwendung fand, zeigte das Modell eine Verzerrung bzw. einen Bias von 0,5 % > ē % > - 0,5 % bei der Bestandesoberhöhenschätzung und einen maximalen Bias von 10,41 % bei der Schätzung der Bestandesbiomasse. Die Treffgenauigkeit (mx %) des Modells hingegen variierte zwischen 12,25 % und 17,56 % bzw. 8,05 und 27,32 % (bei Schätzung der Bestandesoberhöhe bzw. der Bestandesbiomasse). Zudem wies das Modell keinen systematischen Fehler zwischen den geschätzten und den realen Werten auf. Bei der Validierung mit einem unabhängigen Datensatz betrug die Treffgenauigkeit (mx %) für die Schätzung der Bestandsoberhöhe und des Biomassevorrates 15,72 bzw. 26,68 %. Um das Ertragspotenzial von Pappelplantagen für die gesamte sächsische Ackerfläche bzw. die gesamte ehemalige Stilllegungsfläche zu bestimmen, wurden die zu Schätzung erforderlichen Standortvariablen auf Gemeindebasis kalkuliert, mittels ArcGIS dargestellt sowie Simulationsrechungen für verschiedene Bestandsdichten vorgenommen und ebenfalls visualisiert. Den Ergebnissen der Simulationsrechnungen zufolge wäre bei einer Stammzahl von 4000 N/ha eine Rotationslänge von 9 Jahren, bei 8333 bis 10.000 N/ha von 7 Jahren erforderlich, um einen durchschnittlichen Gesamtzuwachs (dGz) von ≥ 8 [tatro/ha/a] auf mehr als 50 % der sächsischen Ackerflächen bzw. ehemaligen Stilllegungsflächen in erster Rotation zu erreichen. Würde die gesamte ehemalige sächsische Stilllegungsfläche mit einer Baumdichte von 10.000 Stämmen/ha bepflanzt werden, könnten Pappelplantagen im Alter 9 einen dGz von 520.000 [tatro/a] (entsprechend 250.000 Kubikmeter Diesel) erreichen. Bei Bestockung aller sächsischen Ackerflächen würde sich der Ertrag auf bis zu 9.087.000 [tatro/a] (entsprechend 4.367.000 Kubikmeter Diesel) erhöhen.
17

Der Rote Pappelblattkäfer in Kurzumtriebsplantagen

Georgi, Richard, Helbig, Christiane, Schubert, Martin 21 January 2013 (has links) (PDF)
Kurzumtriebsplantagen (KUP) bieten für eine Vielzahl von Organismen einen idealen Lebensraum. Einige Insektenarten reagieren darauf mit einer massenhaften Vermehrung. Besonders der Einfluss des Roten Pappelblattkäfers (Chrysomela (=Melasoma) populi) führte in den vergangenen Jahren vermehrt zur Schädigung von KUP. Bisher nehmen die Schäden noch selten bestandesbedrohende Ausmaße an, sind in der Tendenz jedoch klar zunehmend. Immer häufiger kommt es zu relevanten Zuwachsverlusten, verzögertem Austrieb und dem Ausfall einzelner Pflanzen. Daher werden im Rahmen des BMBF-Verbundprojektes „AgroForNet“ Möglichkeiten der Überwachung, Prognose und Bekämpfung des Roten Pappelblattkäfers erforscht. Erste Ergebnisse aus dem Jahr 2011 zeigen vielversprechende Ansätze, mit denen sich C. populi effektiv überwachen und Schäden kostengünstig minimieren lassen.
18

Modelling of Biomass Production Potential of Poplar in Short Rotation Plantations on Agricultural Lands of Saxony, Germany

Ali, Wael 03 March 2009 (has links)
The interest in renewables for energy has increased in the last 2-3 decades because of the negative environmental impact caused by the burning of fossil fuels, the raising prices of traditional fuels, the dependence on foreign oil, and the decrease in fossil fuels resources. Biomass energy represents one of the most promising alternatives. Many studies worldwide were devoted to investigate growth and yield of short rotation forestry plantations for energetic use and several empirical and process-based models were developed to predict the potential production of biomass. The current work was concentrated on modelling site productivity (potential of biomass production) of specific poplar clones planted on arable Saxon land under different stocking densities. Empirical data collected from several experimental areas were used. Site productivity has been predicted depending on stand age and site variables using a two-step model. In step one age and site variables were used to model stand dominant height and in step two the constructed dominant height was involved with stocking density to predict stand oven dried biomass. Depending on data availability the model was parameterized for four different groups of poplar clones: Androscoggin (clone Androscoggin), Matrix (Matrix and hybrid 275), Max (Max 1 …Max 5) and Münden (clone Münden). Both stand dominant height and stand dry biomass were modelled for ages 2 – 9 years for clone groups: Matrix and Max and for ages 2 – 7 years for clone groups: Androscoggin and Münden. The model has been tested and validated using several statistical and graphical methods. The relative bias (ē %) in the dominant height estimates ranged between 0.5 % > ē % > - 0.5 % in all clone groups and had a maximum bias of 10.41 % in stand biomass estimates. Model accuracy (mx %) in the dominant height estimates ranged between 12.25 and 17.56 % and between 8.05 and 27.32 % in stand biomass estimates. Two different scenarios were presented to show the potential of biomass that can be produced from poplar plantations on arable and former fallow Saxon lands at different stocking densities. ArcGIS has been used to visualize model application results. In order to produce a mean annual increment ≥ 8 [dry t/ha/a] from poplar plantations (Max group) for more than 50 % of arable or former fallow lands in the first rotation at least 9 years are required under stocking density of 4000 stems/ha and 7 years for both stocking densities 8333 and 10,000 stems/ha. / Die Nachfrage nach Holz für energetische Zwecke nimmt in Deutschland und ganz Europa zu. Um diesen Bedarf künftig besser befriedigen zu können, müssen verstärkt Ressourcen aus verschiedenen Quellen wie z. B. Holz aus Niederwäldern oder Durchforstungsreserven im Hochwald mobilisiert und ergänzend Holz in Kurzumtriebsflächen produziert werden (Guericke, M. 2006). Ziel dieser Arbeit war es, das Ertragspotential von Pappelklonen in Kurzumtriebsplantagen unterschiedlicher Baumdichte auf sächsischen Ackerflächen zu untersuchen. Hierzu wurden die potentiellen Erträge anhand empirischer, auf verschiedenen Versuchsflächen erhobener Daten modelliert. Zur Schätzung des Ertragspotentials wurde ein zweistufiges Modell entwickelt: Im ersten Schritt erfolgte die Modellierung der Oberhöhe eines Bestandes (ho, m) in Abhängigkeit von Bestandesalter und Standortfaktoren unter Verwendung einer multiplen linearen Regressionsanalyse, dabei wurden Bestimmtheitsmaße (R²) von 0,975 bis 0,989 erreicht. In einem zweiten Schritt lässt sich dann der Biomassevorrat [tatro/ha/a] mittels nichtlinearer Regressionsanalyse durch die Bestandesoberhöhe schätzen. Das Bestimmtheitsmaß von R² ≥ 0,933 weist auch hier auf eine hohe Anpassungsgüte hin. Die Modellparametrisierung erfolgte für folgende vier Gruppen von Pappelklonen: • Max-Gruppe: Klone Max 1, Max 2, Max 3, Max 4 und Max 5, Altersbereich 2 – 9 Jahre, Baumdichten von 1150 – 13000 Stämmen/ha; • Matrix-Gruppe: Klon Matrix und Hybride 275, Altersbereich 2 – 9 Jahre, Baumdichte 1550 Stämme/ha; • Androscoggin-Gruppe: Klon Androscoggin, Altersbereich 2 – 7 Jahre, Baumdichte 1550 Stämme/ha; und • Münden-Gruppe: Klon Münden, Altersbereich 2 – 7 Jahre, Baumdichte 1550 Stämme/ha. Die Güte des Modells wurde mit Hilfe verschiedener statistischer Verfahren überprüft. Bei der Validierung anhand des Datensatzes, welcher für die Modellkonstruktion Verwendung fand, zeigte das Modell eine Verzerrung bzw. einen Bias von 0,5 % > ē % > - 0,5 % bei der Bestandesoberhöhenschätzung und einen maximalen Bias von 10,41 % bei der Schätzung der Bestandesbiomasse. Die Treffgenauigkeit (mx %) des Modells hingegen variierte zwischen 12,25 % und 17,56 % bzw. 8,05 und 27,32 % (bei Schätzung der Bestandesoberhöhe bzw. der Bestandesbiomasse). Zudem wies das Modell keinen systematischen Fehler zwischen den geschätzten und den realen Werten auf. Bei der Validierung mit einem unabhängigen Datensatz betrug die Treffgenauigkeit (mx %) für die Schätzung der Bestandsoberhöhe und des Biomassevorrates 15,72 bzw. 26,68 %. Um das Ertragspotenzial von Pappelplantagen für die gesamte sächsische Ackerfläche bzw. die gesamte ehemalige Stilllegungsfläche zu bestimmen, wurden die zu Schätzung erforderlichen Standortvariablen auf Gemeindebasis kalkuliert, mittels ArcGIS dargestellt sowie Simulationsrechungen für verschiedene Bestandsdichten vorgenommen und ebenfalls visualisiert. Den Ergebnissen der Simulationsrechnungen zufolge wäre bei einer Stammzahl von 4000 N/ha eine Rotationslänge von 9 Jahren, bei 8333 bis 10.000 N/ha von 7 Jahren erforderlich, um einen durchschnittlichen Gesamtzuwachs (dGz) von ≥ 8 [tatro/ha/a] auf mehr als 50 % der sächsischen Ackerflächen bzw. ehemaligen Stilllegungsflächen in erster Rotation zu erreichen. Würde die gesamte ehemalige sächsische Stilllegungsfläche mit einer Baumdichte von 10.000 Stämmen/ha bepflanzt werden, könnten Pappelplantagen im Alter 9 einen dGz von 520.000 [tatro/a] (entsprechend 250.000 Kubikmeter Diesel) erreichen. Bei Bestockung aller sächsischen Ackerflächen würde sich der Ertrag auf bis zu 9.087.000 [tatro/a] (entsprechend 4.367.000 Kubikmeter Diesel) erhöhen.
19

Phytodiversity in Short Rotation Coppice plantations / Phytodiversität in Kurzumtriebsplantagen

Baum, Sarah 08 June 2012 (has links)
No description available.
20

Der Rote Pappelblattkäfer in Kurzumtriebsplantagen

Georgi, Richard, Helbig, Christiane, Schubert, Martin January 2012 (has links)
Kurzumtriebsplantagen (KUP) bieten für eine Vielzahl von Organismen einen idealen Lebensraum. Einige Insektenarten reagieren darauf mit einer massenhaften Vermehrung. Besonders der Einfluss des Roten Pappelblattkäfers (Chrysomela (=Melasoma) populi) führte in den vergangenen Jahren vermehrt zur Schädigung von KUP. Bisher nehmen die Schäden noch selten bestandesbedrohende Ausmaße an, sind in der Tendenz jedoch klar zunehmend. Immer häufiger kommt es zu relevanten Zuwachsverlusten, verzögertem Austrieb und dem Ausfall einzelner Pflanzen. Daher werden im Rahmen des BMBF-Verbundprojektes „AgroForNet“ Möglichkeiten der Überwachung, Prognose und Bekämpfung des Roten Pappelblattkäfers erforscht. Erste Ergebnisse aus dem Jahr 2011 zeigen vielversprechende Ansätze, mit denen sich C. populi effektiv überwachen und Schäden kostengünstig minimieren lassen.

Page generated in 0.0334 seconds