Spelling suggestions: "subject:"kupfer"" "subject:"dopfer""
231 |
Oberflächenmodifizierung von Metallen und Metalloxiden mit wasserlöslichen Polymeren und Charakterisierung der Adsorbate mit solvatochromen SondenmolekülenSeifert, Susan 05 July 2011 (has links) (PDF)
Gegenstand der vorliegenden Arbeit ist die Oberflächenmodifizierung von drei industriell bedeutenden Metallen, Eisen, Zink und Kupfer, sowie den Oxiden von Zink und Eisen, mit wasserlöslichen Polyvinyl-formamid-Polyvinylamin-Copolymeren (PVFA-co-PVAmen). Der Einfluss des pH-Wertes, des Hydrolysegrades der PVFA-co-PVAme, und der Einfluss von im wässrigen Medium ablaufenden Redoxprozessen an den Metalloberflächen auf die adsorbierte Polymermenge, wurden studiert. Ferner werden polymeranaloge Reaktionen des PVAms bzw. PVAm-modifizierter Metall- und Metalloxidpulver mit Kohlendioxid, ein Multischichtaufbau mit PVAm und Natriumpolyacrylat, als auch die Hydrophobierung durch Maleinsäureanhydridcopolymere beschrieben. Zur Charakterisierung der polymermodifizierten Oberflächen wurde die XPS, die DRIFT-Spektroskopie und die Sorptiochromie genutzt. Besonders der Sorptiochromie wurde aufgrund der hohen Sensitivität ein hoher Stellenwert in der vorliegenden Arbeit eingeräumt. Das Konzept der Sorptiochromie wurde zum ersten Mal auf Metalloberflächen angewendet. Ein zweiter zentraler Aspekt der Arbeit war deshalb die Suche nach Sondenmolekülen, die geeignet waren Polaritätsparameter farbiger Metalloxid- und Metallpulver zu ermitteln. Hierfür wurden das solvatochrome und acidochrome Verhalten, sowie die Wechselwirkungen von Barbituratfarbstoffen mit Merocyaninstruktur mit Metallionen, Metall- und Metalloxidoberflächen studiert.
|
232 |
Growth Monitoring of Ultrathin Copper and Copper Oxide Films Deposited by Atomic Layer Deposition / Untersuchungen zum Wachstum ultradünner Kupfer- und Kupferoxid Schichten mittels AtomlagenabscheidungDhakal, Dileep 25 October 2017 (has links) (PDF)
Atomic layer deposition (ALD) of copper films is getting enormous interest. Ultrathin Cu films are applied as the seed layer for electrochemical deposition (ECD) of copper in interconnect circuits and as the non-magnetic material for the realization of giant magnetoresistance (GMR) sensors. Particularly, Co/Cu multi-layered structures require sub 4.0 nm copper film thickness for obtaining strong GMR effects. The physical vapor deposition process for the deposition of the copper seed layers are prone to non-conformal coating and poor step coverage on side-walls and bottoms of trenches and vias, and presence of overhanging structures. This may cause failure of interconnections due to formation of voids after copper ECD. ALD is the most suitable technology for the deposition of conformal seed layers for the subsequent ECD in very high aspect ratio structures, also for the technology nodes below 20 nm. Surface chemistry during the ALD of oxides is quite well studied. However, surface chemistry during the ALD of pure metal is rather immature. This knowledge is necessary to optimize the process parameters, synthesize better precursors systems, and enhance the knowledge of existing metal ALD processes. The major goal of this work is to understand the surface chemistry of the used precursor and study the growth of ultrathin copper films using in-situ X-ray photoelectron spectroscopy (XPS). Copper films are deposited by ALD using the precursor mixture consisting of 99 mol% [(nBu3P)2Cu(acac)], as copper precursor and 1 mol% of Ru(η5 C7H11)(η5 C5H4SiMe3), as ruthenium precursor. The purpose in having catalytic amount of ruthenium precursor is to obtain the Ru doped Cu2O layers for subsequent reduction with formic acid at temperatures below 150 °C on arbitrary substrates. Two different approaches for the growth of ultrathin copper films have been studied in this dissertation. In the first approach, direct thermal ALD of copper has been studied by using H2 as co-reactant on Co as catalytic substrate. In the second approach, Ru-doped Cu2O is deposited by ALD using wet-O2 as co-reactant on SiO2 as non-catalytic substrate. The Ru-doped Cu2O is successfully reduced by using either formic acid or carbon-monoxide on SiO2. / Atomlagenabscheidung (ALD) von Kupfer steht im Fokus der ALD Gemeinschaft. Ultradünne Kupferschichten können als Keimschicht für die elektrochemische Abscheidung (ECD) von Kupfer in der Verbindungstechnologie eingesetzt werden. Sie können ebenfalls für Sensoren, welche auf den Effekt des Riesenmagnetowiderstandes (GMR) basieren, als nicht-ferromagnetische Zwischenschicht verwendet werden. Insbesondere Multischichtstrukturen aus ferromagnetische Kobalt und Kupfer erfordern Schichtdicken von weniger als 4,0 nm, um einen starken GMR-Effekt zu gewährleisten. Das derzeit verwendete physikalische Dampfabscheidungsverfahren für ultradünne Kupferschichten, ist besonders anfällig für eine nicht-konforme Abscheidung an den Seitenwänden und Böden von Strukturen mit hohem Aspektverhältnis. Des Weiteren kann es zur Bildung von Löchern und überhängenden Strukturen kommen, welche bei der anschließenden Kupfer ECD zu Kontaktlücken (Voids) führen können. Für die Abscheidung einer Kupfer-Keimschicht ist die ALD besonders gut geeignet, da sie es ermöglicht, ultradünne konforme Schichten auf strukturierten Oberflächen mit hohem Aspektverhältnis abzuscheiden. Dies macht sie zu einer der Schlüsseltechnologien für Struckturgrößen unter 20 nm. Im Gegensatz zur Oberflächenchemie rein metallischer ALD sind die Oberflächenreaktionen für oxidische ALD Schichten sehr gut untersucht. Die Kenntnis der Oberflächenchemie während eines ALD Prozesses ist essenziel für die Bestimmung von wichtigen Prozessparametern als auch für die Verbesserung der Präkursorsynthese ansich. Diese Arbeit beschäftigt sich mit der Untersuchung der Oberflächenchemie und Charakterisierung des Wachstums von ultradünnen Metall-Cu-Schichten mittels In-situ XPS, welche eines indirekten (Oxid) bzw. direkten Metall-ALD Prozesses abgeschieden werden, wobei die Kupfer-Oxidschichten im Anschluss einem Reduktionsprozess unterworfen werden. Hierfür wird eine Präkursormischung bestehend aus 99 mol% [(nBu3P)2Cu(acac)] und 1 mol% [Ru(η5 C7H11)(η5-C5H4SiMe3)] verwendet. Die katalytische Menge an Ru, welche in der entstehenden Cu2O Schicht verbleibt, erhöht den Effekt der Reduktion der Cu2O Schicht auf beliebigen Substraten mit Ameinsäure bei Wafertemperaturen unter 150 °C. In einem ersten Schritt wird ein direkter thermisches Kupfer ALD-Prozess, unter Verwendung von molekularem Wasserstoff als Coreaktant, auf einem Kobalt-Substrat untersucht. In einem zweiten Schritt wird ein indirekter thermischer Cu2O-ALD-Prozess, unter gleichzeitiger Verwendung von Sauerstoff und Wasserdampf als Coreaktant, mit anschließender Reduktion durch Ameinsäure oder Kohlenstoffmonoxid zu Kupfer auf den gleichen Substraten betrachtet. Die vorliegende Arbeit beschreibt das Wachstum von ultradünnen und kontinuierlichen Kupfer-Schichten mittels thermischer ALD auf inerten- SiO2 und reaktiven Kobalt-Substraten.
|
233 |
3D-Wafer Level Packaging approaches for MEMS by using Cu-based High Aspect Ratio Through Silicon Vias / Ansätze zum 3D-Wafer Level Packaging für MEMS unter Nutzung von Cu-basierten Si-Durchkontaktierungen mit hohem AspektverhältnisHofmann, Lutz 06 December 2017 (has links) (PDF)
For mobile electronics such as Smartphones, Smartcards or wearable devices there is a trend towards an increasing functionality as well as miniaturisation. In this development Micro Electro- Mechanical Systems (MEMS) are an important key element for the realisation of functions such as motion detection. The specifications given by such devices together with the limited available space demand advanced packaging technologies. The 3D-Wafer Level Packaging (3D-WLP) enables one solution for a miniaturised MEMS package by using techniques such as Wafer Level Bonding (WLB) and Through Silicon Vias (TSV). This technology increases the effective area of the MEMS device by elimination dead space, which is typically required for other approaches based on wire bond assembly. Within this thesis, different TSV technology concepts with respect to a 3D-WLP for MEMS have been developed. Thereby, the focus was on a copper based technology as well as on two major TSV implementation methods. This comprises a Via Middle approach based on the separated TSV fabrication in the cap wafer as well as a Via Last approach with a TSV implementation in either the MEMS or cap wafer, respectively. For each option with its particular challenges, corresponding process modules have been developed. In the Via Middle approach, the wafer-related etch rate homogeneity determines the TSV reveal from the wafer backside Here, a reduction of the TSV depth down to 80 μm is favourable as long as the desired Cu-thermo-compression bonding (Cu-TCB) is performed before the thinning. For the TSV metallisation, a Cu electrochemical deposition method was developed, which allows the deposition of one redistribution layer as well as the bonding patterns for Cu-TCB at the same time. In the Via Last approach, the TSV isolation represents one challenge. Chemical Vapour Deposition processes have been investigated, for which a combination of PE-TEOS and SA-TEOS as well as a Parylene deposition yield the most promising results. Moreover, a method for the realisation of a suitable bonding surface for the Silicon Direct Bonding method has been developed, which does not require any wet pre treatment of the fabricated MEMS patterns. A functional MEMS acceleration sensor as well as Dummy devices serve as demonstrators for the overall integration technology as well as for the characterisation of electrical parameters. / Im Bereich mobiler Elektronik, wie z.B. bei Smartphones, Smartcards oder in Kleidung integrierten Geräten ist ein Trend zu erkennen hinsichtlich steigender Funktionalität und Miniaturisierung. Bei dieser Entwicklung spielen Mikroelektromechanische Systeme (MEMS) eine entscheidende Rolle zur Realisierung neuer Funktionen, wie z.B. der Bewegungsdetektion. Die Anforderungen derartiger Bauteile zusammen mit dem begrenzten zur Verfügung stehenden Platz erfordern neuartige Technologien für die Aufbau- und Verbindungstechnick (engl. Packaging) der Bauteile. Das 3D-Wafer Level Packaging (3D-WLP) ermöglicht eine Lösung für eine miniaturisierte MEMS-Bauform unter Nutzung von Techniken wie dem Waferlevelbonden (WLB) und den Siliziumdurchkontaktierungen (TSV von engl. Through Silicon Via). Diese Technologie erhöht die effektive aktive Fläche des MEMS Bauteils durch die Reduzierung von Toträumen, welche für andere Ansätze wie der Drahtbond-Montage üblich sind. In der vorliegenden Arbeit wurden verschiedene Technologiekonzepte für den Aufbau von 3D-WLP für MEMS erarbeitet. Dabei lag der Fokus auf einer Kupfer-basierten Technologie sowie auf zwei prinzipiellen Varianten für die TSV-Implementierung. Dies umfasst den Via Middle Ansatz, welcher auf der TSV Herstellung auf einem separaten Kappenwafer beruht, sowie den Via Last Ansatz mit einer TSV Herstellung entweder im MEMS-Wafer oder im Kappenwafer. Für beide Varianten mit individuellen Herausforderungen wurden entsprechende Prozessmodule entwickelt. Beim Via Middle Ansatz ist die Wafer-bezogene Ätzratenhomogenität des Siliziumtiefenätzen entscheidend für das spätere Freilegen der TSVs von der Rückseite. Hier hat sich eine Reduzierung der TSV-Tiefe auf bis zu 80 μm vorteilhaft erwiesen insofern, das Kupfer-Thermokompressionsbonden (Cu-TKB) vor dem Abdünnen erfolgt. Zur Metallisierung der TSVs wurde ein Cu Galvanikprozess erarbeitet, welcher es ermöglicht gleichzeitig eine Umverdrahtungsebene sowie die Bondstrukturen für das Cu-TKB zu erzeugen. Beim Via Last Ansatz ist die TSV Isolation eine Herausforderung. Es wurden CVD (Chemische Dampfphasenabscheidung) Prozesse untersucht, wobei eine Kombination aus PE-TEOS und SA-TEOS sowie eine Parylene Beschichtung erfolgversprechende Ergebnisse liefern. Des Weiteren wurde eine Methode zur Erzeugung bondfähiger Oberflächen für das Siliziumdirektbonden erarbeitet, welche eine Nass-Vorbehandlung des MEMS umgeht. Ein realer MEMS-Beschleunigungssensor sowie Testaufbauten dienen zur Demonstration der Gesamtintegrationstechnologie sowie zur Charakterisierung elektrischer Parameter.
|
234 |
ALD-grown seed layers for electrochemical copper deposition integrated with different diffusion barrier systemsWaechtler, Thomas, Ding, Shao-Feng, Hofmann, Lutz, Mothes, Robert, Xie, Qi, Oswald, Steffen, Detavernier, Christophe, Schulz, Stefan E., Qu, Xin-Ping, Lang, Heinrich, Gessner, Thomas January 2011 (has links)
The deposition of Cu seed layers for electrochemical Cu deposition (ECD) via atomic layer deposition (ALD) of copper oxide and subsequent thermal reduction at temperatures between 110 and 120°C was studied on different diffusion barrier systems. While optimization of the process is required on TaN with respect to reduction and plating, promising results were obtained on blanket PVD Ru. The plating results on layers of ALD Cu with underlying Ru even outperformed the ones achieved on PVD Cu seed layers with respect to morphology and resistivity. Applying the processes to via and line patterns gave similar results, suggesting that a combination of ALD Cu with PVD or ALD-grown Ru could significantly improve the ECD Cu growth.
|
235 |
Oberflächenmodifizierung von Metallen und Metalloxiden mit wasserlöslichen Polymeren und Charakterisierung der Adsorbate mit solvatochromen SondenmolekülenSeifert, Susan 07 June 2011 (has links)
Gegenstand der vorliegenden Arbeit ist die Oberflächenmodifizierung von drei industriell bedeutenden Metallen, Eisen, Zink und Kupfer, sowie den Oxiden von Zink und Eisen, mit wasserlöslichen Polyvinyl-formamid-Polyvinylamin-Copolymeren (PVFA-co-PVAmen). Der Einfluss des pH-Wertes, des Hydrolysegrades der PVFA-co-PVAme, und der Einfluss von im wässrigen Medium ablaufenden Redoxprozessen an den Metalloberflächen auf die adsorbierte Polymermenge, wurden studiert. Ferner werden polymeranaloge Reaktionen des PVAms bzw. PVAm-modifizierter Metall- und Metalloxidpulver mit Kohlendioxid, ein Multischichtaufbau mit PVAm und Natriumpolyacrylat, als auch die Hydrophobierung durch Maleinsäureanhydridcopolymere beschrieben. Zur Charakterisierung der polymermodifizierten Oberflächen wurde die XPS, die DRIFT-Spektroskopie und die Sorptiochromie genutzt. Besonders der Sorptiochromie wurde aufgrund der hohen Sensitivität ein hoher Stellenwert in der vorliegenden Arbeit eingeräumt. Das Konzept der Sorptiochromie wurde zum ersten Mal auf Metalloberflächen angewendet. Ein zweiter zentraler Aspekt der Arbeit war deshalb die Suche nach Sondenmolekülen, die geeignet waren Polaritätsparameter farbiger Metalloxid- und Metallpulver zu ermitteln. Hierfür wurden das solvatochrome und acidochrome Verhalten, sowie die Wechselwirkungen von Barbituratfarbstoffen mit Merocyaninstruktur mit Metallionen, Metall- und Metalloxidoberflächen studiert.
|
236 |
Atomic Layer Deposition and Microanalysis of Ultrathin LayersMelzer, Marcel 17 October 2012 (has links)
Carbon nanotubes (CNTs) are a highly promising material for future interconnects. It is expected that the decoration of CNTs with Cu particles or also the filling of the interspaces between the CNTs with Cu instead of the currently used SiO2 can enhance the performance of CNT-based interconnects.
Due to the high aspect ratio of CNTs an appropriate deposition technique has to be applied which is able to coat such structures uniformly. The current work is therefore considered with thermal atomic layer deposition (ALD) of CuxO from the liquid Cu (I) β-diketonate precursor [(nBu3P)2Cu(acac)] and wet oxygen at 135°C on variously pretreated multi-walled CNTs.
The different in-situ pre-treatments of the CNTs with oxygen, water vapor and wet oxygen in a temperature range from 100 to 300°C at a pressure of 1.33 mbar have been carried out prior to the ALD to enable uniform nucleation on the otherwise chemical inert CNT surface. The reduction of the CuxO as well as the filling of the space between the CNTs is not part of this work.
Variations of the oxidation temperature as well as the oxidation agents resulted in different growth modes of the CuxO. An oxidation with wet oxygen at 300°C yielded in a partially layer like growth of the CuxO. It is expected that this growth mode is connected to a partial destruction of the outer CNT shell due to the oxidation. However, the damage introduced to the CNTs was not high enough to be detected by Raman spectroscopy.
For all other investigated pretreatments, the formation of nanoparticles (NPs) was observed by electron microscopy. This formation of CuxO NPs can be explained by the metal-tube-interaction. Furthermore, the NPs probably decorate defect sites of the CNTs due to their higher reactivity. Additionally, analysis of energy-dispersive X-ray spectroscopy and spectroscopic ellipsometry measurements suggests that the used precursor [(nBu3P)2Cu(acac)] requires reactive oxygen surface groups for initiating the ALD growth.
The observation of layer-like growth of CuxO on CNTs pretreated with wet oxygen at 300°C appears promising for deposition processes of Cu seed layers on CNTs. However, more aggressive pretreatments at higher temperatures or with more aggressive oxidation agents could be required to enable layer like growth on the entire CNTs.
|
237 |
Growth Monitoring of Ultrathin Copper and Copper Oxide Films Deposited by Atomic Layer DepositionDhakal, Dileep 16 December 2016 (has links)
Atomic layer deposition (ALD) of copper films is getting enormous interest. Ultrathin Cu films are applied as the seed layer for electrochemical deposition (ECD) of copper in interconnect circuits and as the non-magnetic material for the realization of giant magnetoresistance (GMR) sensors. Particularly, Co/Cu multi-layered structures require sub 4.0 nm copper film thickness for obtaining strong GMR effects. The physical vapor deposition process for the deposition of the copper seed layers are prone to non-conformal coating and poor step coverage on side-walls and bottoms of trenches and vias, and presence of overhanging structures. This may cause failure of interconnections due to formation of voids after copper ECD. ALD is the most suitable technology for the deposition of conformal seed layers for the subsequent ECD in very high aspect ratio structures, also for the technology nodes below 20 nm. Surface chemistry during the ALD of oxides is quite well studied. However, surface chemistry during the ALD of pure metal is rather immature. This knowledge is necessary to optimize the process parameters, synthesize better precursors systems, and enhance the knowledge of existing metal ALD processes. The major goal of this work is to understand the surface chemistry of the used precursor and study the growth of ultrathin copper films using in-situ X-ray photoelectron spectroscopy (XPS). Copper films are deposited by ALD using the precursor mixture consisting of 99 mol% [(nBu3P)2Cu(acac)], as copper precursor and 1 mol% of Ru(η5 C7H11)(η5 C5H4SiMe3), as ruthenium precursor. The purpose in having catalytic amount of ruthenium precursor is to obtain the Ru doped Cu2O layers for subsequent reduction with formic acid at temperatures below 150 °C on arbitrary substrates. Two different approaches for the growth of ultrathin copper films have been studied in this dissertation. In the first approach, direct thermal ALD of copper has been studied by using H2 as co-reactant on Co as catalytic substrate. In the second approach, Ru-doped Cu2O is deposited by ALD using wet-O2 as co-reactant on SiO2 as non-catalytic substrate. The Ru-doped Cu2O is successfully reduced by using either formic acid or carbon-monoxide on SiO2. / Atomlagenabscheidung (ALD) von Kupfer steht im Fokus der ALD Gemeinschaft. Ultradünne Kupferschichten können als Keimschicht für die elektrochemische Abscheidung (ECD) von Kupfer in der Verbindungstechnologie eingesetzt werden. Sie können ebenfalls für Sensoren, welche auf den Effekt des Riesenmagnetowiderstandes (GMR) basieren, als nicht-ferromagnetische Zwischenschicht verwendet werden. Insbesondere Multischichtstrukturen aus ferromagnetische Kobalt und Kupfer erfordern Schichtdicken von weniger als 4,0 nm, um einen starken GMR-Effekt zu gewährleisten. Das derzeit verwendete physikalische Dampfabscheidungsverfahren für ultradünne Kupferschichten, ist besonders anfällig für eine nicht-konforme Abscheidung an den Seitenwänden und Böden von Strukturen mit hohem Aspektverhältnis. Des Weiteren kann es zur Bildung von Löchern und überhängenden Strukturen kommen, welche bei der anschließenden Kupfer ECD zu Kontaktlücken (Voids) führen können. Für die Abscheidung einer Kupfer-Keimschicht ist die ALD besonders gut geeignet, da sie es ermöglicht, ultradünne konforme Schichten auf strukturierten Oberflächen mit hohem Aspektverhältnis abzuscheiden. Dies macht sie zu einer der Schlüsseltechnologien für Struckturgrößen unter 20 nm. Im Gegensatz zur Oberflächenchemie rein metallischer ALD sind die Oberflächenreaktionen für oxidische ALD Schichten sehr gut untersucht. Die Kenntnis der Oberflächenchemie während eines ALD Prozesses ist essenziel für die Bestimmung von wichtigen Prozessparametern als auch für die Verbesserung der Präkursorsynthese ansich. Diese Arbeit beschäftigt sich mit der Untersuchung der Oberflächenchemie und Charakterisierung des Wachstums von ultradünnen Metall-Cu-Schichten mittels In-situ XPS, welche eines indirekten (Oxid) bzw. direkten Metall-ALD Prozesses abgeschieden werden, wobei die Kupfer-Oxidschichten im Anschluss einem Reduktionsprozess unterworfen werden. Hierfür wird eine Präkursormischung bestehend aus 99 mol% [(nBu3P)2Cu(acac)] und 1 mol% [Ru(η5 C7H11)(η5-C5H4SiMe3)] verwendet. Die katalytische Menge an Ru, welche in der entstehenden Cu2O Schicht verbleibt, erhöht den Effekt der Reduktion der Cu2O Schicht auf beliebigen Substraten mit Ameinsäure bei Wafertemperaturen unter 150 °C. In einem ersten Schritt wird ein direkter thermisches Kupfer ALD-Prozess, unter Verwendung von molekularem Wasserstoff als Coreaktant, auf einem Kobalt-Substrat untersucht. In einem zweiten Schritt wird ein indirekter thermischer Cu2O-ALD-Prozess, unter gleichzeitiger Verwendung von Sauerstoff und Wasserdampf als Coreaktant, mit anschließender Reduktion durch Ameinsäure oder Kohlenstoffmonoxid zu Kupfer auf den gleichen Substraten betrachtet. Die vorliegende Arbeit beschreibt das Wachstum von ultradünnen und kontinuierlichen Kupfer-Schichten mittels thermischer ALD auf inerten- SiO2 und reaktiven Kobalt-Substraten.
|
238 |
Design und Synthese von mehrfunktionalen Cyclamliganden zur Entwicklung von stabilen radioaktiven Kupferkomplexen für Diagnostik und TherapieKubeil, Manja 25 April 2014 (has links)
Die Entwicklung von makrocyclischen Chelatoren, die mit Kupferionen thermodynamisch stabile und kinetisch inerte Komplexe bilden, ist in den letzten Jahren zunehmend in den Fokus der Forschung gerückt. Das ergibt sich insbesondere aus der Möglichkeit, Radiokupfernuklide aufgrund günstiger kernphysikalischer Eigenschaften sowohl für diagnostische (64Cu) als auch therapeutische (67Cu) Anwendungen einzusetzen.
Hervorzuheben ist der Azamakrocyclus Cyclam (1,4,8,11-Tetraazacyclodecan), da dieser mit Kupfer(II)-Ionen Komplexe hoher thermodynamischer Stabilität bildet. Zudem weist der Chelator weitere Funktionalisierungsmöglichkeiten auf, um in Hinblick auf eine nuklearmedizinische Anwendung pharmakologisch relevante Moleküle wie beispielsweise Peptide oder Proteine (Antikörper oder Antikörperfragmente) kovalent zu binden und damit eine spezifische Anreicherung im Tumorgewebe zu ermöglichen.
Allerdings erfordert das Maßschneidern der Eigenschaften von neuen bifunktionellen Chelatoren Kenntnisse über den Einfluss der Substituten auf die Stabilität der gebildeten Kupfer(II)-Komplexe. Die thermodynamische Stabilität lässt keine Aussagen über das Verhalten in vivo zu. Die Ursache für die kinetische Labilität in Säugetieren ist noch nicht vollständig verstanden, wird aber u. a. auf kupferbindende Enzyme bzw. Proteine zurückgeführt. Die Bioverteilung der Radiokupferkomplexe wird aber auch von weiteren Parameter, wie Hydrophilie, Ladung und Polarisierbarkeit beeinflusst.
Mit dieser Arbeit wurde ein wesentlicher Beitrag zur Entwicklung von 64Cu Chelaten auf Basis von Cyclam-Propionsäure-Liganden geleistet. Diese Stoffklasse ist bisher synthetisch wenig erschlossen und Radiokupfer-markierte Komplexe zudem bisher gar nicht beschrieben. Daher ist es von besonderem Interesse die kinetische Stabilität Radiokupfer-markierter Cyclam-Propionsäure-Derivate zu untersuchen und mit einer Reihe bekannter Radiokupfer-markierter Cyclam-Essigsäure-Komplexe zu vergleichen.
Es wurden vier N-funktionalisierte Cyclam-Derivate 13, 14b, 15 und 16, die eine unterschiedliche Anzahl an Propionsäuregruppen tragen, erfolgreich synthetisiert und in sehr hoher Reinheit (>99%) isoliert. Besonders hervorzuheben ist die erstmalige Synthese des trans-N,N´´-funktionalisierten Cyclam-Propionsäure-Derivates 14b in hoher Ausbeute (gesamt = 32%). Von den Verbindungen 13, 14b, 15 und 16 sind entsprechende Kupfer(II)-Komplexe hergestellt worden. Zur Aufklärung relevanter Fragestellungen bezüglich der chemischen und geometrischen Eigenschaften sind verschiedene spektroskopische Methoden (Röntgeneinkristallstrukturanalyse, IR, UV/VIS, Elektronenspinresonanz-Spektroskopie) anhand von den isolierten Kupfer(II)-Komplexen CuII-13, CuII-14b und CuII-16 herangezogen worden.
Die röntgenkristallografischen Strukturaufklärungen der Komplexe CuII-14b und CuII-16 weisen eine verzerrt quadratisch-pyramidale Koordinationsgeometrie auf. Das Ligandenfeld wird innerhalb der Stickstoffebene mit steigendem Substitutionsgrad schwächer. Das wurde auch durch ESR-Messungen bestätigt. Nachweislich verursachen die zusätzlichen funktionellen Gruppen eine kleinere Ligandenfeldaufspaltung. Weiterhin nahm die kinetische Stabilität unter stark sauren Bedingungen mit steigendem Substitutionsgrad ab. Der Vergleich mit den bekannten oktaedrischen Kupfer(II)-Cyclam-Essigsäure-Komplexen zeigt, dass die quadratisch-pyramidalen Kupfer(II)-Cyclam-Propionsäure-Derivate unter stark sauren Bedingungen schneller dissoziieren. Als Ursache können die unterschiedlichen Konfigurationen diskutiert werden, da bei 4N+2-Geometrien die thermodynamisch bevorzugte trans III-Konfigurationen gebildet wird.
Radiochemische Untersuchungen zur Bewertung der kinetischen Stabilität in vitro und in vivo sind mit den 64Cu-markierten Liganden 13, 14b, 15 und 16 durchgeführt worden. Hierfür ist ein In-vitro-Stabilitätstest basierend auf dem kupferbindenden Enzym Superoxid-Dismutase (SOD) bzw. humanem Serum für radiomarkierte Verbindungen entwickelt worden. In humanem Serum ist Albumin (~66 kDa) in sehr hoher Konzentration enthalten und eines der wichtigsten Transportproteine für extrazelluläre Kupfer-Ionen. Aufgrund seiner Abundanz im Blutplasma ist im Serum-Assay jeweils nur eine stark ausgeprägte Bande bei ca. 66 kDa detektiert worden. Dieser etablierte In-vitro-Stabilitätstest beruht im Gegensatz zu anderen herkömmlichen Analysemethoden (Radio-HPLC oder Radio-DC) auf dem Prinzip der Gelelektrophorese. Von großem Vorteil ist, dass mehrere Proben simultan untersucht werden können und die Ergebnisse zuverlässig und reproduzierbar sind.
Die In-vitro-Ergebnisse zeigen einen ähnlichen Trend wie bei der säure-assoziierten Dissoziation, wobei die höchste Stabilität bemerkenswerterweise bei dem [64Cu]Cu-14b Komplex bestimmt wurde. Allerdings beruht der Mechanismus hier nicht auf einer Dissoziation sondern auf einer Transchelatisierung. Die Ergebnisse der Bioverteilungen in Wistar-Ratten korrelieren mit den In-vitro-Studien in humanem Serum. Der Komplex [64Cu]Cu 14b zeigte sowohl eine schnelle renale Blut-Clearence als auch eine sehr geringe Anreicherung in der Leber und stellt damit eine Alternative zu den kommerziell erwerblichen Liganden dar. Als geeignete Chelatoren bieten Cyclam-Monopropionsäure 13 und Cyclam-Dipropionsäure 14b die Möglichkeit, Radiokupfernuklide stabil zu binden und erlauben die mehrfache Einführung von EGFR-spezifischen Peptiden an das Grundgerüst. Als Grundgerüst wurde der Ligand 13 ausgewählt.
Durch die Multifunktionalisierung sollen höhere Affinitäten zum Rezeptor und verbesserte metabolische Stabilitäten hervorgerufen werden. Für diese Verbindung liegen erste vielversprechende Ergebnisse vor, wobei hohe Affinitäten zu zwei EGFR-positiven Zelllinien bestimmt wurden.
|
239 |
3D-Wafer Level Packaging approaches for MEMS by using Cu-based High Aspect Ratio Through Silicon ViasHofmann, Lutz 29 November 2017 (has links)
For mobile electronics such as Smartphones, Smartcards or wearable devices there is a trend towards an increasing functionality as well as miniaturisation. In this development Micro Electro- Mechanical Systems (MEMS) are an important key element for the realisation of functions such as motion detection. The specifications given by such devices together with the limited available space demand advanced packaging technologies. The 3D-Wafer Level Packaging (3D-WLP) enables one solution for a miniaturised MEMS package by using techniques such as Wafer Level Bonding (WLB) and Through Silicon Vias (TSV). This technology increases the effective area of the MEMS device by elimination dead space, which is typically required for other approaches based on wire bond assembly. Within this thesis, different TSV technology concepts with respect to a 3D-WLP for MEMS have been developed. Thereby, the focus was on a copper based technology as well as on two major TSV implementation methods. This comprises a Via Middle approach based on the separated TSV fabrication in the cap wafer as well as a Via Last approach with a TSV implementation in either the MEMS or cap wafer, respectively. For each option with its particular challenges, corresponding process modules have been developed. In the Via Middle approach, the wafer-related etch rate homogeneity determines the TSV reveal from the wafer backside Here, a reduction of the TSV depth down to 80 μm is favourable as long as the desired Cu-thermo-compression bonding (Cu-TCB) is performed before the thinning. For the TSV metallisation, a Cu electrochemical deposition method was developed, which allows the deposition of one redistribution layer as well as the bonding patterns for Cu-TCB at the same time. In the Via Last approach, the TSV isolation represents one challenge. Chemical Vapour Deposition processes have been investigated, for which a combination of PE-TEOS and SA-TEOS as well as a Parylene deposition yield the most promising results. Moreover, a method for the realisation of a suitable bonding surface for the Silicon Direct Bonding method has been developed, which does not require any wet pre treatment of the fabricated MEMS patterns. A functional MEMS acceleration sensor as well as Dummy devices serve as demonstrators for the overall integration technology as well as for the characterisation of electrical parameters.:Bibliographische Beschreibung 3
Vorwort 13
List of symbols and abbreviations 15
1 Introduction 23
2 Fundamentals on MEMS and TSV based 3D integration 25
2.1 Micro Electro-Mechanical systems 25
2.1.1 Basic Definition 25
2.1.2 Silicon technologies for MEMS 26
2.1.3 MEMS packaging 29
2.2 3D integration based on TSVs 33
2.2.1 Overview 33
2.2.2 Basic processes for TSVs 34
2.2.3 Stacking and Bonding 47
2.2.4 Wafer thinning 48
2.3 TSV based MEMS packaging 50
2.3.1 MEMS-TSVs 50
2.3.2 3D-WLP for MEMS 52
3 Technology development for a 3D-WLP based MEMS 57
3.1 Target integration approach for 3D-WLP based MEMS 57
3.1.1 MEMS modules using 3D-WLP based MEMS 57
3.1.2 Integration concepts 58
3.2 Objective and requirements for the proposed 3D-WLP of MEMS 60
3.2.1 Boundary conditions 60
3.2.2 Technology concepts 63
3.3 Selected approaches for TSV implementation in MEMS 64
3.3.1 Via Last Technology 64
3.3.2 Via Middle technology 69
4 Development of process modules 75
4.1 Characterisation 75
4.2 TSV related etch processes 77
4.2.1 Equipment 77
4.2.2 Deep silicon etching 78
4.2.3 Etching of the buried dielectric layer 84
4.2.4 Patterning of TSV isolation liner – spacer etching 90
4.2.5 Summary 92
4.3 TSV isolation 93
4.3.1 Principle considerations 93
4.3.2 Experiment 95
4.3.3 Results 97
4.3.4 Summary 102
4.4 Metallisation of TSV and RDL 103
4.4.1 Plating base and experimental setup 103
4.4.2 Investigations related to the ECD process 106
4.4.3 Pattern plating 117
4.4.4 Summary 123
4.5 Wafer Level Bonding 124
4.5.1 Silicon direct bonding 124
4.5.2 Thermo-compression bonding by using ECD copper 128
4.5.3 Summary 134
4.6 Wafer thinning and TSV back side reveal 134
4.6.1 Thinning processes 134
4.6.2 TSV reveal processes 136
4.6.3 Summary 145
4.7 Under bump metallisation and solder bumps 146
5 Demonstrator design, fabrication and characterisation 149
5.1 Single wafer demonstrator for electrical test 149
5.1.1 Demonstrator design and test structure layout 149
5.1.2 Demonstrator fabrication 150
5.1.3 Electrical measurement 151
5.1.4 Summary 153
5.2 Via Last based TSV fabrication in the MEMS device wafer 153
5.2.1 Layout of the MEMS device with TSVs 153
5.2.2 Fabrication of TSVs and wafer thinning 154
5.2.3 Characterisation of the fabricated device 155
5.2.4 Summary 156
5.3 Via Last based cap-TSV for very thin MEMS devices 157
5.3.1 Design 157
5.3.2 Fabrication 158
5.3.3 Characterisation 161
5.3.4 Summary 162
5.4 Via Middle approach based on thinning after bonding 163
5.4.1 Design 163
5.4.2 Results and characterisation 164
5.4.3 Summary 166
6 Conclusion and outlook 167
Appendix A: Typical requirements on a MEMS package and its functions 171
Appendix B: Classification of packaging and system integration techniques 173
B.1 Packaging of electronic devices in general 173
B.2 Single Chip Packages 174
B.3 System integration 175
B.4 3D integration based on TSVs 180
Bibliography 183
List of figures 193
List of tables 199
Versicherung 201
Theses 203
Curriculum vitae 205
Own publications 207 / Im Bereich mobiler Elektronik, wie z.B. bei Smartphones, Smartcards oder in Kleidung integrierten Geräten ist ein Trend zu erkennen hinsichtlich steigender Funktionalität und Miniaturisierung. Bei dieser Entwicklung spielen Mikroelektromechanische Systeme (MEMS) eine entscheidende Rolle zur Realisierung neuer Funktionen, wie z.B. der Bewegungsdetektion. Die Anforderungen derartiger Bauteile zusammen mit dem begrenzten zur Verfügung stehenden Platz erfordern neuartige Technologien für die Aufbau- und Verbindungstechnick (engl. Packaging) der Bauteile. Das 3D-Wafer Level Packaging (3D-WLP) ermöglicht eine Lösung für eine miniaturisierte MEMS-Bauform unter Nutzung von Techniken wie dem Waferlevelbonden (WLB) und den Siliziumdurchkontaktierungen (TSV von engl. Through Silicon Via). Diese Technologie erhöht die effektive aktive Fläche des MEMS Bauteils durch die Reduzierung von Toträumen, welche für andere Ansätze wie der Drahtbond-Montage üblich sind. In der vorliegenden Arbeit wurden verschiedene Technologiekonzepte für den Aufbau von 3D-WLP für MEMS erarbeitet. Dabei lag der Fokus auf einer Kupfer-basierten Technologie sowie auf zwei prinzipiellen Varianten für die TSV-Implementierung. Dies umfasst den Via Middle Ansatz, welcher auf der TSV Herstellung auf einem separaten Kappenwafer beruht, sowie den Via Last Ansatz mit einer TSV Herstellung entweder im MEMS-Wafer oder im Kappenwafer. Für beide Varianten mit individuellen Herausforderungen wurden entsprechende Prozessmodule entwickelt. Beim Via Middle Ansatz ist die Wafer-bezogene Ätzratenhomogenität des Siliziumtiefenätzen entscheidend für das spätere Freilegen der TSVs von der Rückseite. Hier hat sich eine Reduzierung der TSV-Tiefe auf bis zu 80 μm vorteilhaft erwiesen insofern, das Kupfer-Thermokompressionsbonden (Cu-TKB) vor dem Abdünnen erfolgt. Zur Metallisierung der TSVs wurde ein Cu Galvanikprozess erarbeitet, welcher es ermöglicht gleichzeitig eine Umverdrahtungsebene sowie die Bondstrukturen für das Cu-TKB zu erzeugen. Beim Via Last Ansatz ist die TSV Isolation eine Herausforderung. Es wurden CVD (Chemische Dampfphasenabscheidung) Prozesse untersucht, wobei eine Kombination aus PE-TEOS und SA-TEOS sowie eine Parylene Beschichtung erfolgversprechende Ergebnisse liefern. Des Weiteren wurde eine Methode zur Erzeugung bondfähiger Oberflächen für das Siliziumdirektbonden erarbeitet, welche eine Nass-Vorbehandlung des MEMS umgeht. Ein realer MEMS-Beschleunigungssensor sowie Testaufbauten dienen zur Demonstration der Gesamtintegrationstechnologie sowie zur Charakterisierung elektrischer Parameter.:Bibliographische Beschreibung 3
Vorwort 13
List of symbols and abbreviations 15
1 Introduction 23
2 Fundamentals on MEMS and TSV based 3D integration 25
2.1 Micro Electro-Mechanical systems 25
2.1.1 Basic Definition 25
2.1.2 Silicon technologies for MEMS 26
2.1.3 MEMS packaging 29
2.2 3D integration based on TSVs 33
2.2.1 Overview 33
2.2.2 Basic processes for TSVs 34
2.2.3 Stacking and Bonding 47
2.2.4 Wafer thinning 48
2.3 TSV based MEMS packaging 50
2.3.1 MEMS-TSVs 50
2.3.2 3D-WLP for MEMS 52
3 Technology development for a 3D-WLP based MEMS 57
3.1 Target integration approach for 3D-WLP based MEMS 57
3.1.1 MEMS modules using 3D-WLP based MEMS 57
3.1.2 Integration concepts 58
3.2 Objective and requirements for the proposed 3D-WLP of MEMS 60
3.2.1 Boundary conditions 60
3.2.2 Technology concepts 63
3.3 Selected approaches for TSV implementation in MEMS 64
3.3.1 Via Last Technology 64
3.3.2 Via Middle technology 69
4 Development of process modules 75
4.1 Characterisation 75
4.2 TSV related etch processes 77
4.2.1 Equipment 77
4.2.2 Deep silicon etching 78
4.2.3 Etching of the buried dielectric layer 84
4.2.4 Patterning of TSV isolation liner – spacer etching 90
4.2.5 Summary 92
4.3 TSV isolation 93
4.3.1 Principle considerations 93
4.3.2 Experiment 95
4.3.3 Results 97
4.3.4 Summary 102
4.4 Metallisation of TSV and RDL 103
4.4.1 Plating base and experimental setup 103
4.4.2 Investigations related to the ECD process 106
4.4.3 Pattern plating 117
4.4.4 Summary 123
4.5 Wafer Level Bonding 124
4.5.1 Silicon direct bonding 124
4.5.2 Thermo-compression bonding by using ECD copper 128
4.5.3 Summary 134
4.6 Wafer thinning and TSV back side reveal 134
4.6.1 Thinning processes 134
4.6.2 TSV reveal processes 136
4.6.3 Summary 145
4.7 Under bump metallisation and solder bumps 146
5 Demonstrator design, fabrication and characterisation 149
5.1 Single wafer demonstrator for electrical test 149
5.1.1 Demonstrator design and test structure layout 149
5.1.2 Demonstrator fabrication 150
5.1.3 Electrical measurement 151
5.1.4 Summary 153
5.2 Via Last based TSV fabrication in the MEMS device wafer 153
5.2.1 Layout of the MEMS device with TSVs 153
5.2.2 Fabrication of TSVs and wafer thinning 154
5.2.3 Characterisation of the fabricated device 155
5.2.4 Summary 156
5.3 Via Last based cap-TSV for very thin MEMS devices 157
5.3.1 Design 157
5.3.2 Fabrication 158
5.3.3 Characterisation 161
5.3.4 Summary 162
5.4 Via Middle approach based on thinning after bonding 163
5.4.1 Design 163
5.4.2 Results and characterisation 164
5.4.3 Summary 166
6 Conclusion and outlook 167
Appendix A: Typical requirements on a MEMS package and its functions 171
Appendix B: Classification of packaging and system integration techniques 173
B.1 Packaging of electronic devices in general 173
B.2 Single Chip Packages 174
B.3 System integration 175
B.4 3D integration based on TSVs 180
Bibliography 183
List of figures 193
List of tables 199
Versicherung 201
Theses 203
Curriculum vitae 205
Own publications 207
|
240 |
Dünne tantalbasierte Diffusionsbarrieren für die Kupfer-Leitbahntechnologie: Thermische Stabilität, Ausfallmechanismen und Einfluss auf die Mikrostruktur des MetallisierungsmaterialsHübner, René 25 November 2004 (has links)
Aufgrund der höheren elektrischen Leitfähigkeit und des größeren Widerstandes gegen Elektromigration im Vergleich zum Aluminium wird seit einigen Jahren Kupfer als Leitbahnmaterial in der Mikroelektronik eingesetzt. Da Kupfer jedoch eine hohe Beweglichkeit in den für die Halbleitertechnologie relevanten Werkstoffen aufweist, sind zur Verhinderung einer Diffusion effektive Barrieren notwendig. Dabei muss die u. a. geforderte hohe thermische Stabilität der Barrierematerialien auch im Zuge der fortschreitenden Miniaturisierung der mikroelektronischen Bauelemente und damit der Reduzierung der Barriereschichtdicken sichergestellt sein. Im Rahmen der Arbeit wurden mittels Magnetron-Sputtern neben Ta- und TaN-Einfachschichten sowie Ta-TaN-Mehrfachschichten auch Ta-Si-N-Einfachschichten jeweils mit und ohne Cu-Metallisierung sowohl auf blanke als auch auf thermisch oxidierte Si-Scheiben abgeschieden. Die Dicken der Barriereeinzelschichten und die der Cu-Schichten betrugen 10 nm bzw. 50 nm. Die Beurteilung der Barrierestabilität sowie die Charakterisierung der Ausfallmechanismen erfolgten nach Wärmebehandlungen durch den kombinierten Einsatz von Röntgenstreumethoden, spektroskopischen sowie mikroskopischen Analyseverfahren. In Abhängigkeit von ihrer Zusammensetzung und damit von der Mikrostruktur im Ausgangszustand finden für die zwischen Kupfer und SiO2 abgeschiedenen Diffusionsbarrieren unterschiedliche Prozesse während thermischer Belastungen statt. Bei den mehrstufigen Ta-TaN-Barrieren setzt bereits bei T = 300 °C eine Umverteilung von Stickstoff ein, die bei T = 500 °C in der Bildung von Ta2N-Kristalliten resultiert. Im Fall der Ta-Si-N-Barrieren führt die vorhandene Cu-Metallisierung zu einer an der Cu/Barriere-Grenzfläche beginnenden Kristallisation. Dabei hängen sowohl deren Einsatzzeitpunkt während einer bei konstanter Temperatur durchgeführten Wärmebehandlung als auch das entstehende Kristallisationsprodukt von der Barrierezusammensetzung ab. Im Zuge der Kristallisation erfolgt die vollständige Zerstörung der ursprünglichen Schichtintegrität, so dass Kupfer in unmittelbaren Kontakt zum SiO2-Substrat gelangt. Der sensitive Nachweis einer Cu-Diffusion durch die Barriere erfolgte einerseits durch die Charakterisierung von Cu/Barriere/SiO2/Si-Systemen mit Hilfe spurenanalytischer Methoden und andererseits durch die Untersuchung von Proben mit geändertem Aufbau. Durch Abscheidung der Barrieren zwischen Kupfer und Silizium ist mittels Röntgenbeugung die nach Diffusion von Cu-Atomen ins Substrat einsetzende Bildung von Cu3Si detektierbar. Mit den kritischen Temperaturen für die Bildung dieses Kupfersilizids erfolgte die vergleichende Bewertung der thermischen Stabilitäten der Barrieren. Werden die dünnen Ta-basierten Schichten zusätzlich bezüglich ihres spezifischen elektrischen Widerstandes beurteilt, so stellt sich eine Ta56Si19N25-Diffusionsbarriere als am geeignetsten für den Einsatz in Cu-Metallisierungssystemen heraus. Die mikrostrukturellen Untersuchungen gestatten Aussagen zu den Versagensmechanismen der einzelnen Barrieren. Für die Ta-TaN-Mehrfachschichten wird durch die einsetzende Stickstoffumverteilung und die sich anschließende Ta2N-Bildung bereits frühzeitig die stabile Mikrostruktur der TaN-Schicht zerstört. Während für Ta-Si-N-Schichten mit einem N-Gehalt von bis zu 25 at.% eine Cu-Diffusion ins Substrat erst nach vorzeitiger Barrierekristallisation beobachtet wird, erfolgt sie im Fall der stickstoffreichen Ta-Si-N-Barrieren in einem Zustand, für den mittels Röntgenbeugung eine Kristallisation noch nicht nachweisbar ist. Die Untersuchung der Abhängigkeit der sich während des Cu-Schichtwachstums bzw. einer nachträglichen Wärmebehandlung ausbildenden Cu-Texturkomponenten von der chemischen Zusammensetzung der Unterlage erfolgte mittels röntgenographischer Texturanalyse. Zur Diskussion der beobachteten Vorzugsorientierungen wurde das Modell des zweidimensionalen Kornwachstums in dünnen Schichten herangezogen.
|
Page generated in 0.0397 seconds