• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 81
  • 20
  • 19
  • 8
  • 6
  • 5
  • 3
  • 3
  • 3
  • 2
  • 1
  • Tagged with
  • 167
  • 79
  • 26
  • 24
  • 23
  • 22
  • 22
  • 19
  • 19
  • 18
  • 17
  • 17
  • 16
  • 15
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
131

Expression and functional analysis of the germ cell specific genes ADAM 27 and Testase 2 / Expressions- und Funktionsanalyse der Keimzell-specifischen Gene für ADAM 27 und Testase 2

Bolcun-Filas, Ewelina 21 January 2004 (has links)
No description available.
132

To Knock the Eye Out of a Friend : Assessment of an Orthographic Reform Upon the English Language

Andersson, Matilda January 2014 (has links)
This essay is a theoretical qualitative study, which examines the possibility for a spelling reform into English. The history of orthographical changes into British English, as well as Brown’s categorisation of spelling reforms, is reviewed. Four spelling reform proposals are analysed and compared.  Additionally, the social discourses of Eira, which are relevant to a spelling reform, are analysed and discussed with regard to English. There is only speculation as to why no modern day spelling reform has been implemented in British English, but it is connected to its historical events, the social discourses and the implementation process. Spelling reform into English is theoretically feasible, but it depends on the implementation strategies and support from those who wish to perform such a change.
133

Génération de lignées de poissons-zèbres par génie génétique dans le cadre de l'étude du gène C9orf72

Emond, Alexandre 01 1900 (has links)
No description available.
134

<strong>PRE-CHAMBER JET IGNITION IN AN OPTICALLY-ACCESSIBLE CONSTANT-VOLUME GASOLINE ENGINE</strong>

Dong Eun Lee (16637403) 08 August 2023 (has links)
<p>In Chapter 2, an experiment has been developed to investigate the passive pre-chamber jet ignition process in gasoline engine configurations and low-load operating conditions. The apparatus adopted a modified 4-cylinder 2.0L gasoline engine to enable single-cylinder operation. To reduce the complexity, the piston position was fixed at a predefined position relative to the top dead center (TDC) to simulate thermodynamic conditions at ignition and injection timings. High-speed Infrared (IR) imaging was applied to visualize the jet penetration and ignition process inside the main cylinder and to investigate the cyclic spatial variability. Two passive pre-chambers with different total nozzle areas and numbers of nozzles were used. In addition, the pre-chamber volume and pressure at ignition timing were varied to examine their effect on jet ignition performance. Misfire behavior was observed in the main chamber of all test cases, and the results suggested that the main cause is a high Residual Mass Fraction (RMF) in the pre-chamber affecting the subsequent cycle. A larger total nozzle area, smaller volume, higher pressure, and fuel-lean operation tended to mitigate the misfire behavior. For a test case with a spark pressure of 6 bar, a reduced cyclic variability in terms of coefficient of variation peak cylinder pressure (COVPmax) from 10.03% to 7.38% and combustion phasing variation from 81 crank angle degree (CAD) to 12 CAD were observed with increasing pre-chamber volume-to-area (V/A) ratio from 59.37 m to 103.11 m, but slightly higher misfire frequency was observed, from 46.67% to 50.00%, suggesting an accurate combination of pre-chamber design parameters is needed to improve overall performance at low-load operation.</p> <p>In Chapter 3, it examines the influence of passive pre-chamber nozzle diameter and dilution level on jet formation and engine performance. Utilizing a modified constant-volume gasoline direct injection engine with an optically-accessible piston, we tested three passive pre-chambers with nozzle diameters of 1.2, 1.4, and 1.6 mm, while nitrogen dilution varied from 0 to 20%. With the help of high-speed imaging, we captured pre-chamber jet formations and subsequent flame propagation within the main chamber. Our novel findings reveal that asymmetric temporal and spatial jet formation patterns arising from pre-chambers significantly impact engine performance. The larger nozzle diameter pre-chambers exhibited the least variation in jet formation due to their improved scavenging and main mixture filling processes, but had the slowest jet velocity and lowest jet penetration depth. At no dilution condition, the 1.2 mm-PC demonstrated superior performance attributed to higher pressure build-up in the pre-chamber, resulting in accelerated jet velocity and increased jet penetration depth. However, at high dilution condition, the 1.6 mm-PC performed better, highlighting the importance of scavenging and symmetry jet formation. This study emphasizes the importance of carefully selecting the pre-chamber nozzle diameter, based on the engine's operating conditions, to achieve an optimal and balanced configuration that can improve both jet formation and jet characteristics, as well as scavenging.</p> <p>In Chapter 4, it investigates the influence of passive pre-chamber nozzle diameter on jet ignition and subsequent main chamber combustion under varying load conditions and dilution levels using a constant-volume optical gasoline direct injection engine. The results reveal that as the load decreases, both fuel availability and flow conditions deteriorate, leading to delayed and inferior jet characteristics that affect main chamber ignition and combustion processes. In high and medium load conditions without dilution, the smallest nozzle diameter pre-chamber (1.2mm-PC) shows improved jet ignition and main combustion due to earlier jet ejection, enhanced penetration, and intensified jet. This is facilitated by the smaller nozzle diameter enabling faster and higher pre-chamber pressurization. Conversely, under low load conditions, the largest nozzle diameter pre-chamber (1.6mm-PC) performs better, likely due to improved scavenging and reduced residual levels, resulting in less compromised pre-chamber combustion and subsequent jet characteristics. The nozzle diameter also has a significant impact on cycle-to-cycle variations, with smaller diameters enhancing jet ignition performance but increasing variability. The effect of external residuals (dilution) on jet ignition performance varies depending on the nozzle diameter, with the 1.6mm-PC exhibiting less degradation and demonstrating earlier jet ejection and CA50 timing compared to smaller nozzle diameter pre-chambers at higher dilution conditions. The improved scavenging and relatively lower residual levels in the larger nozzle diameter pre-chamber contribute to its increased resistance to dilution and potential extension of dilution tolerance.</p> <p>In Chapter 5, it presents an analysis of the effects of pre-chamber nozzle orientation on dilution tolerance in a constant-volume optical engine. Using a combination of experimental and numerical methodologies, we provide novel insights into how variations in nozzle number, orientation, and size influence combustion performance under different dilution conditions. The findings reveal that an increase in the number of nozzles, for a fixed A/V ratio, tends to enhance ignition performance and stability across a range of dilution scenarios, primarily due to an increase in ignition points and a larger ignition surface area. Meanwhile, swirling pre-chambers, despite their potential to boost initial combustion performance at no dilution condition, may limit dilution tolerance due to the complexity of their internal flow dynamics and increased heat loss through nozzle surfaces. Furthermore, pre-chambers combining swirling and straight nozzle orientations fail to synergize the benefits of each type, and instead, exacerbate challenges such as heat loss, flame quenching, and unfavorable flow dynamics. These findings emphasize the complexity and nuanced trade-offs involved in optimizing pre-chamber design for improved dilution tolerance and suggest potential directions for future research in this area.</p> <p>In Chapter 6, it investigates the behavior of pre-chamber knock in comparison to traditional spark ignition engine knock, using a modified constant-volume gasoline engine with an optically-accessible piston. The aim is to provide a deeper understanding of pre-chamber knock combustion and its potential for mitigating knock. Five passive pre-chambers with different nozzle diameters, volumes, and nozzle numbers were tested, and nitrogen dilution was varied from 0 to 10%. The stochastic nature of knock behavior necessitates the use of statistical methods, leading to the proposal of a high-frequency band-pass filter (37-43 kHz) as an alternative pre-chamber knock metric. Pre-chamber knock combustion was found to exhibit fewer strong knock cycles compared to SI engines, indicating its potential for mitigating knock intensity. High-speed images revealed pre-chamber knock primarily occurs near the liner, where end-gas knock is typically exhibited. The study identified that increasing pre-chamber nozzle diameter resulted in a larger dispersion of knock cycles and more severe knock intensity, likely due to shorter jet penetration depth requiring more time for end-gas consumption. Strategies for mitigating knock in pre-chamber combustion systems include reducing the pre-chamber volume for a fixed A/V ratio and increasing dilution level. The results of this study offer valuable insights for developing effective knock mitigation approaches in pre-chamber combustion systems, contributing to the advancement of more efficient and reliable engines.</p> <p>In Chapter 7, a numerical investigation of different premixed gaseous injection strategies was performed to understand their impact on the scavenging and mixture formation of an air-fuel premixed pre-chamber with high exhaust gas recirculation (EGR) operations. EGR dilution is effective for reducing coolant heat loss, pumping work at throttled conditions, and mitigates knock at high-load conditions, thus increasing engine efficiency. To further extend the EGR limit of an air-fuel premixed pre-chamber engine, the effects of different injection strategies (including timing, duration, pressure, pre-chamber volume, and hardware) on the EGR level, trap efficiency, and parasitic loss were determined. Regardless of injection duration and upstream pressure, injecting too early not only increased the amount of the injected premixed gas leaking into the main chamber but also was inefficient in reducing the EGR level in the pre-chamber. To reduce the EGR level in the pre-chamber to a level where successful ignition and combustion of the pre-chamber mixture is possible, the injection timing should be delayed to be close to the ignition timing. A premixed air-fuel injection is thus proposed to reduce the time required for air-fuel mixing in the pre-chamber. With a delayed end of injection (EOI), both leakage amount and EGR level were reduced compared to the cases with earlier injection timings. The results show that an injection with 15 bar upstream pressure, 20 CA duration, EOI of −20 CAD aTDC (ignition timing), and with guided injection hardware for the base pre-chamber volume resulted in about 0.17% air compression parasitic loss, over a 94% trap efficiency, at the same time maintaining the mean EGR level in the pre-chamber below 20%, ensuring good pre-chamber combustion. With a 50% increase in pre-chamber volume from the base case, the parasitic loss increased by 65% (from 0.17% to 0.28% loss), indicating a problem with a larger pre-chamber with a separate air valve and injector.</p>
135

An Optimized Polymerase Chain Reaction to Verify the Presence or Absence of the Growth Hormone Receptor Gene

Zhang, Han 17 June 2013 (has links)
No description available.
136

Experimental Study of the Role of Intermediate-Temperature Heat Release on Octane Sensitivity

Peterson, Jonathan 07 1900 (has links)
Increasing the efficiency of the spark-ignition engine can help to reduce the environmental impact of the transportation sector. Engine knock obstructs the increased efficiency that could be gained by increasing the compression ratio in a spark-ignition (SI) engine. A fuel’s propensity to knock is measured by the research octane number (RON) and the motor octane number (MON) in a co-operative fuel research (CFR) engine. A fuel’s octane sensitivity (OS) is the difference between the RON and MON. Modern downsized and turbocharged engines operate at what is considered to be beyond-RON conditions. Studies have shown that having a fuel with higher OS improves knock resistance at beyond-RON conditions. This study aims to gain a better understanding of the role of intermediate-temperature heat release (ITHR) in defining OS and its subsequent impact on SI operation through the experimental framework. The ITHR of toluene primary reference fuels (TPRFs) fuels with matching RON and varying OS was studied at RON-like and MON-like homogeneous charge compression ignition (HCCI) conditions for two different matching criteria. The first criterion was to control the combustion phasing by matching half of the heat release (CA50) to 3 crank angle degrees after top dead center. The second criterion was to match the compression ratios. Results showed that at RON-like HCCI conditions, TPRF fuels display decreasing ITHR with increasing OS. Furthermore, it was shown that TPRF fuels with low sensitivity displayed a greater increase in ITHR from MON-like conditions to RON-like conditions. Thus, the sensitivity of ITHR to changes in operating conditions was found to be a contributing factor to OS. In the beyond-RON conditions (relevant to current modern engines), there is a potential for improved engine efficiency by using fuels with high OS to allow for higher compression ratios. The experimental results of this work show that OS is negatively correlated with ITHR. Thus, high-sensitivity fuels can be designed by choosing components and additives that reduce the amount of ITHR.
137

Animal Models of Drug Addiction and Autism Spectrum Disorders

Thirtamara Rajamani, Keerthi Krishnan January 2013 (has links)
No description available.
138

Experimental Investigation of Octane Requirement Relaxation in a Turbocharged Spark-Ignition Engine

Baranski, Jacob A. 30 August 2013 (has links)
No description available.
139

„Ex vivo” Replikation des pathogenen Prion Proteins / „Ex vivo” replication of the pathogenic prion protein

Heinig, Lars 02 November 2006 (has links)
No description available.
140

Funktionelle Charakterisierung des Ferredoxin Redoxsystems von Toxoplasma gondii

Frohnecke, Nora 05 April 2018 (has links)
Toxoplasmose ist weltweit eine der am häufigsten auftretenden parasitären Zoonosen mit einer geschätzten Infektionsrate von über 30%. Toxoplasma gondii (Phylum: Apicomplexa) besitzt ein Plastid ähnliches Organell, den Apicoplasten. In diesem befindet sich das einzig bekannte Redoxsystem, welches aus der Ferredoxin-NADP+-Reduktase und Ferredoxin (Fd) besteht. Fd als Elektonendonator liefert Elektronen an verschiedene essentielle Stoffwechselwege, wie der Isoprenoidvorstufen- und Liponsäuresynthese. Um die bei einem Elektronentransfer benötigte direkte Protein-Protein-Interaktion eingehend zu analysieren, wurde ein bakterielles Reverse Two Hybrid System verwendet, womit die Interaktion von TgFd und TgLipA gezeigt werden konnte. Da angenommen wird, dass Fd eine zentrale Rolle in verschiedenen Stoffwechselwegen übernimmt, ist für einen Fd Knockout ein komplexer biochemischer Phänotyp zu erwarten, der möglicherweise zum Absterben der Parasiten führt. Zur Untersuchung dessen wurden zwei komplementäre Wege verfolgt. Eine der Strategien basierte auf dem grundsätzlichen Nachweis, dass Fd unerlässlich für das Überleben von T. gondii ist. Mit Hilfe des DiCre Systems sollte ein definierter genetischer Fd Knockout hergestellt werden, welcher jedoch nicht zweifelsfrei generiert werden konnte. Bei der zweiten Strategie kam ein konditionales Knockdown System zur Anwendung, bei welchem die Expression des Fd Gens nach Induktion herabreguliert wird. Mit Hilfe dessen konnten weitreichende Auswirkungen der Fd Defizienz auf T. gondii gezeigt werden: die Fettsäuresynthese der im Apicoplasten synthetisierten Fettsäuren ist reduziert sowie die Motilität durch eine beeinträchtigte Isoprenoidsynthese verringert, wodurch insgesamt drastische Auswirkungen auf das Parasitenwachstum gezeigt werden konnten. Beide Stoffwechsel sind vom Elektronendonator Fd abhängig und durch die Fd Herabregulation betroffen. Die Ergebnisse unterstreichen die essentielle Rolle des Fd-Redoxsystems von T. gondii. / Toxoplasmosis is one of the most common parasitic zoonoses world-wide, around 30% of human beings are infected. Toxoplasma gondii (phylum: Apicomplexa) contains a unique intracellular organelle derived from plastids, called apicoplast. The only known redox system in the apicoplast consists of the ferredoxin NADP+-reductase and its redox partner, ferredoxin (Fd). The latter donates electrons to different essential metabolic pathways in the apicoplast like the last two enzymes of the isoprenoid precursor biosynthesis and the lipoic acid synthesis. To dissect protein protein interactions for an electron transfer a bacterial reverse two hybrid system was used. The physical interaction of both proteins TgFd and TgLipA could be shown. Fd is supposed to play an important role in diverse metabolic pathways, hence a knock-out of the Fd gene is expected to generate a complex biochemical phenotype and be lethal to the parasite. Therefore two complementary approaches were used to analyze the role of TgFd in this context. The first strategy shall verify the essentiality of TgFd for the survival of T. gondii. It is based on the DiCre system whereby a defined genetic knock out of TgFd is produced. Respectives parasites have been generated, but at the end no genetic Fd knock out could be produced. In the second approach a conditional knock-down was generated, where the expression of the TgFd gene is repressed after induction. The Fd deficiency has wide ranging effects on T. gondii: The fatty acid synthesis of the apicoplast-synthesized fatty acids is reduced as well as the motility is decreased due to an affected isoprenoid synthesis. In total this leads to a dramatic inhibition of parasite growth. Both metabolic pathways depend upon the electron carrier Fd and thus are affected by Fd deficiency. The results underline the essential role of the ferredoxin redoxsystem of T. gondii.

Page generated in 0.0293 seconds