• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • Tagged with
  • 4
  • 4
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Steenrod Algebra is a Prime Ring and the Krull Dimensions of the Steenrod Algebra

Stephens, Robert P. 19 September 2011 (has links)
No description available.
2

Álgebra de Rees de ideais

Santana, Jeocástria Rezende dos Santos 25 February 2014 (has links)
Fundação de Apoio a Pesquisa e à Inovação Tecnológica do Estado de Sergipe - FAPITEC/SE / The Rees algebra of an ideal is an algebraic construction that takes place in commutative algebra and algebraic geometry. Currently, the study of arithmetic and homological properties of this object is cause for diverse research in commutative algebra. Our main goal in this work is to address aspects such as dimension and defining equations of the Rees algebra and other algebras that relate to it. / A álgebra de Rees de um ideal é uma construção algébrica que ocupa lugar de destaque na álgebra comutativa e na geometria algébrica. Atualmente, o estudo de propriedades aritméticas e homológicas desse objeto é motivo de diversas pesquisas em álgebra comutativa. Nosso principal objetivo nesse trabalho é tratar de aspectos como dimensão e equações de definição da álgebra de Rees e de outras álgebras que relacionam-se com ela.
3

Ideals generated by 2-minors: binomial edge ideals and polyomino ideals

Mascia, Carla 11 February 2020 (has links)
Since the early 1990s, a classical object in commutative algebra has been the study of binomial ideals. A widely-investigated class of binomial ideals is the one containing those generated by a subset of 2-minors of an (m x n)-matrix of indeterminates. This thesis is devoted to illustrate some algebraic and homological properties of two classes of ideals of 2-minors: binomial edge ideals and polyomino ideals. Binomial edge ideals arise from finite graphs and their appeal results from the fact that their homological properties reflect nicely the combinatorics of the underlying graph. First, we focus on the binomial edge ideals of block graphs. We give a lower bound for their Castelnuovo-Mumford regularity by computing the two distinguished extremal Betti numbers of a new family of block graphs, called flower graphs. Moreover, we present a linear time algorithm to compute Castelnuovo-Mumford regularity and Krull dimension of binomial edge ideals of block graphs. Secondly, we consider some classes of Cohen-Macaulay binomial edge ideals. We provide the regularity and the Cohen-Macaulay type of binomial edge ideals of Cohen-Macaulay cones, and we show the extremal Betti numbers of Cohen-Macaulay bipartite and fan graphs. In addition, we compute the Hilbert-Poincaré series of the binomial edge ideals of some Cohen-Macaulay bipartite graphs. Polyomino ideals arise from polyominoes, plane figures formed by joining one or more equal squares edge to edge. It is known that the polyomino ideal of simple polyominoes is prime. We consider multiply connected polyominoes, namely polyominoes with holes, and observe that the non-existence of a certain sequence of inner intervals of the polyomino, called zig-zag walk, gives a necessary condition for the primality of the polyomino ideal. Moreover, by computational approach, we prove that for all polyominoes with rank less than or equal to 14 the above condition is also sufficient. Lastly, we present an infinite class of prime polyomino ideals.
4

Profondeur, dimension et résolutions en algèbre commutative : quelques aspects effectifs / Depth, dimension and resolutions in commutative algebra : some effective aspects

Tête, Claire 21 October 2014 (has links)
Cette thèse d'algèbre commutative porte principalement sur la théorie de la profondeur. Nous nous efforçons d'en fournir une approche épurée d'hypothèse noethérienne dans l'espoir d'échapper aux idéaux premiers et ceci afin de manier des objets élémentaires et explicites. Parmi ces objets, figurent les complexes algébriques de Koszul et de Cech dont nous étudions les propriétés cohomologiques grâce à des résultats simples portant sur la cohomologie du totalisé d'un bicomplexe. Dans le cadre de la cohomologie de Cech, nous avons établi la longue suite exacte de Mayer-Vietoris avec un traitement reposant uniquement sur le maniement des éléments. Une autre notion importante est celle de dimension de Krull. Sa caractérisation en termes de monoïdes bords permet de montrer de manière expéditive le théorème d'annulation de Grothendieck en cohomologie de Cech. Nous fournissons également un algorithme permettant de compléter un polynôme homogène en un h.s.o.p.. La profondeur est intimement liée à la théorie des résolutions libres/projectives finies, en témoigne le théorème de Ferrand-Vasconcelos dont nous rapportons une généralisation due à Jouanolou. Par ailleurs, nous revenons sur des résultats faisant intervenir la profondeur des idéaux caractéristiques d'une résolution libre finie. Nous revisitons, dans un cas particulier, une construction due à Tate permettant d'expliciter une résolution projective totalement effective de l'idéal d'un point lisse d'une hypersurface. Enfin, nous abordons la théorie de la régularité en dimension 1 via l'étude des idéaux inversibles et fournissons un algorithme implémenté en Magma calculant l'anneau des entiers d'un corps de nombres. / This Commutative Algebra thesis focuses mainly on the depth theory. We try to provide an approach without noetherian hypothesis in order to escape prime ideals and to handle only basic and explicit concepts. We study the algebraic complexes of Koszul and Cech and their cohomological properties by using simple results on the cohomology of the totalization of a bicomplex. In the Cech cohomology context we established the long exact sequence of Mayer-Vietoris only with a treatment based on the elements. Another important concept is that of Krull dimension. Its characterization in terms of monoids allows us to show expeditiously the vanishing Grothendieck theorem in Cech cohomology.We also provide an algorithm to complete a omogeneous polynomial in a h.s.o.p.. The depth is closely related to the theory of finite free/projective resolutions. We report a generalization of the Ferrand-Vasconcelos theorem due to Jouanolou. In addition, we review some results involving the depth of the ideals of expected ranks in a finite free resolution.We revisit, in a particular case, a construction due to Tate. This allows us to give an effective projective resolution of the ideal of a point of a smooth hypersurface. Finally, we discuss the regularity theory in dimension 1 by studying invertible ideals and provide an algorithm implemented in Magma computing the ring of integers of a number field.

Page generated in 0.0134 seconds