• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Characterizing the Role of Ribosomal Protein L7Ae in Archaeal RNase P Catalysis and Exploring the Use of Archaeal RNase P as a Functional Genomics Tool

Cho, I-Ming 16 December 2010 (has links)
No description available.
2

Études des aspects structuraux et dynamiques liés à l'activité des particules ribonucléoprotéiques sRNP à boîtes H/ACA catalysant chez les archées l'isomérisation de résidus uridines en pseudouridines / Study of structural and dynamic aspects linked to the box H/ACA ribonucleoprotein sRNP activity catalyzing the isomerization of uridine into pseudouridine in Archaea

Tillault, Anne-Sophie 15 November 2013 (has links)
La pseudouridylation, l'isomérisation du résidu urine (U) en pseudouridine ([PSI]) est la modification post-transcriptionnelle la plus fréquemment retrouvée dans les ARN. Elle est catalysée par une enzyme ARN:PSI-synthase. Chez les archées et les eucaryotes, cette activité est également portée par des particules ribonucléoprotéiques à boîtes H/ACA (RNP H/ACA). Chez les archées, le complexe comprend quatre protéines invariables dont l'ARN:PSI-synthase aCBF5 et trois protéines partenaires L7Ae, aNOP10 et aGAR1, ainsi qu'un ARN guide qui cible par appariement de bases la position de l'uridine à modifier de l'ARN substrat. Le rôle des partenaires a pu être identifié par des analyses structure-fonction basées sur des approches biochimiques, biophysiques et radiocristallographiques. Au cours de ce travail, nous avons démontré l'existence de disparités fonctionnelles entre les ARN guides d'un même organisme, et l'importance de l'interaction entre L7Ae et aNOP10 pour le positionnement correct de l'ARN substrat. Nous avons testé in vitro l'assemblage et l'activité de particules reconstituées en présence d'ARN guides non conventionnels. L'étude sur la dynamique de l'ARN substrat lors de la pseudouridylation a également été abordée et a permis de déterminer que aGAR1 n'était pas nécessaire pour le mécanisme de turnover de la particule, que la température jouait un rôle crucial pour cette activité, et que la nature du nucléotide cible ainsi que la longueur de l'ARN substrat étaient des éléments importants pour la sélection de cet ARN. Nous avons également mis au point une nouvelle technique basée sur le phénomène de FRET permettant de suivre l'association de l'ARN substrat à la RNP H/ACA / Pseudouridylation reaction that consists in the isomerization of uridines (U) into pseudouridines (PSI) is the most frequent post-transcriptional modification found in RNAs. It is catalyzed by enzymes with RNA:PSI-synthase activity. In Archaea and Eukarya, ribonucleoprotein particles, the so-called box H/ACA RNPs, possess such activity. In Archaea, the box H/ACA complex comprises four invariable proteins namely the RNA:PSI-synthase aCBF5 and three protein partners L7Ae, aNOP10 and aGAR1, and specific to each RNP, an RNA acting as a guide to secure by base pairing the RNA substrate and define the position to be modify. During these last years, several crystal structures of components of archaeal H/ACA RNP and fully assembled RNP have been resolved. Complementary biochemical and biophysical studies allowed detailed structure-function analyses to identify the role of the different components. During this work we identified functional differences between two RNA guides expressed in the same archaea, and demonstrated that the interaction between L7Ae and aNOP10 is important for a correct positioning of substrate RNA. We also tested in vitro the assembly and activity of RNP reconstituted on H/ACA-like guide RNAs. We investigated dynamics of substrate RNA during the pseudouridylation. We found that aGAR1 was not necessary for the turnover of the particle, that the temperature was crucial for such activity, and that the chemical structure of the targeted residue and length of the substrate RNA were important determinants for substrate selectivity. Finally, we have also developed a new technic based on FRET adapted to monitor binding of the susbtrate RNA to the box H/ACA RNP enzyme
3

Interactions ARN-protéines dans le mécanisme de biosynthèse des sélénoprotéines

Takeuchi, Akiko 01 July 2009 (has links) (PDF)
La sélénocystéine est incorporée co-traductionnellement dans les sélénoprotéines en réponse à un codon UGA habituellement l'un des 3 codons stop. La protéine SBP2 joue un rôle majeur dans ce mécanisme de recodage en se liant à une structure en tige-boucle (SECIS) située dans la région 3'UTR de l'ARNm des sélénoprotéines. Nous avons isolé et caractérisé fonctionnellement SBP2 de Drosophila melanogaster. Par comparison avec SBP2 humaine, nous avons identifié un domaine de liaison à l'ARN additionnel essentiel à la liaison au SECIS et à la sous-unité ribosomique 60S et permettant une sélectivité structurale du SECIS. Des prédictions structurales et des analyses biophysiques ont établi que SBP2 était une protéine globalement désordonnée ou “Intrinsically Disordered Protein” qui ne se replie qu'en présence de partenaires. Enfin, nous avons établi que l'assemblage des mRNP de sélénoprotéines faisait appel à des facteurs communs et présentait de multiples similarités avec celui des sn/snoRNP.
4

Étude des processus de biogenèse des petites particules ribonucléoprotéiques nucléolaires à boîtes C/D (snoRNP C/D) chez la levure Saccharomyces cerevisiae : caractérisation fonctionnelle et structurale d'une machinerie dédiée à l'assemblage de ces RNP / Study of the biogenesis process of box C/D small nucleolar ribonucleoparticles (C/D snoRNPs) in the yeast Saccharomyces cerevisiae : functional and structural characterization of a machinery dedicated to assembly of these RNPs

Rothé, Benjamin 30 March 2012 (has links)
Les protéines de la famille L7Ae sont les constituants de nombreuses RNP essentielles. Chez les vertébrés, les particules snoRNP C/D et H/ACA sont impliquées dans la biogenèse des ribosomes, la UsnRNP U4 dans l'épissage des pré-ARNm, le complexe télomérase dans la réplication des télomères, et les mRNP SECIS dans la traduction des sélénoprotéines. Comme c'est le cas pour la majorité des RNP eucaryotes, leur assemblage, sous forme d'entités fonctionnelles, ne constitue pas un processus autonome et requiert l'intervention de facteurs spécialisés. En basant notre étude sur l'assemblage des snoRNP C/D, dans l'organisme modèle Saccharomyces cerevisiae, et en utilisant des approches de biologie moléculaire, de biochimie et de génétique, nous avons entrepris de caractériser ces événements. Nos travaux ont contribué à identifier un ensemble de protéines, agissant de façon coordonnée au sein d'une machinerie conservée entre la levure et l'homme. Cette dernière est composée de deux principales sous-unités : (i) Rsa1p/NUFIP, une protéine plate-forme, qui interagit avec certaines protéines de la famille L7Ae et facilite l'assemblage des RNP, (ii) le complexe R2TP (Rvb1p/TIP49, Rvb2p/TIP48, Pih1p/PIH1, Tah1p/SPAGH), qui pourrait opérer des remodelages conformationnels nécessaires à la formation des RNP matures. En plus de ces acteurs centraux, d'autres facteurs sont apparus intimement liés à ce mécanisme. La protéine Hit1p/TRIP3, interagit notamment avec Rsa1p/NUFIP et s'est avéré requise pour assurer sa stabilité chez la levure. La chaperonne HSP90, dont le rôle est prédominant chez l'homme, exerce son activité sur certains constituants des RNP. Enfin, la protéine Bcd1p/BCD1 pourrait être associée à cette machinerie dans le cadre spécifique de l'assemblage des snoRNP C/D / The L7Ae family proteins are essential components of many RNPs. In vertebrates, C/D and H/ACA snoRNPs are involved in ribosome biogenesis, the U4 snRNP in pre-mRNA splicing, the telomerase complex in telomeres replication, and mRNP SECIS in selenoproteins translation. Like most eukaryotic RNPs, assembly in functional entities is not an autonomous process and requires the intervention of specialized factors. Basing our study on the assembly of C/D snoRNP in the model organism Saccharomyces cerevisiae, and using approaches of molecular biology, biochemistry and genetics, we undertook to decipher these mechanisms. Our work has helped to identify a set of proteins, acting in a coordinated manner within a machinery conserved between yeast and human. This machinery consists of two major subunits: (i) Rsa1p/NUFIP, a platform protein that interacts with some proteins of the L7Ae family and facilitates the RNPs assembly, (ii) the R2TP complex (Rvb1p/TIP49, Rvb2p/TIP48, Pih1p/PIH1, Tah1p/SPAGH), which could induce conformational remodeling necessary for the formation of mature RNPs. In addition to these key players, other factors appeared closely linked to this mechanism. The Hit1p/TRIP3 protein interacts with Rsa1p/NUFIP and is required to ensure its stability in yeast. HSP90 chaperone, whose role is predominant in human, operates on some components of the RNPs. Finally, the Bcd1p/BCD1 protein is associated specifically with this machinery during C/D snoRNPs assembly

Page generated in 0.049 seconds