• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 152
  • 93
  • 20
  • 14
  • 13
  • 9
  • 9
  • 7
  • 7
  • 4
  • 2
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 351
  • 90
  • 78
  • 70
  • 69
  • 55
  • 55
  • 52
  • 52
  • 50
  • 50
  • 41
  • 37
  • 34
  • 31
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
321

Effect of phytoestrogens on low-density- lipoprotein receptor and apolipoprotein A-I expression in HepG2 cells.

January 2005 (has links)
Yuen Yee Man. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2005. / Includes bibliographical references (leaves 108-125). / Abstracts in English and Chinese. / TITLE PAGE --- p.1 / ACKNOWLEGDEMENTS --- p.2 / ABSTRACT --- p.3 / 摘要 --- p.5 / table of contents --- p.7 / list of figures and tables --- p.13 / CHAPTER 1 GENERAL INTRODUCTION --- p.16 / Chapter 1.1 --- role of PHYTOESTROGENS in soy and red WINE the PREVENTION OF CARDIOVASCULAR DISEASES (CVD) --- p.17 / Chapter 1.1.1 --- INTRoduction and Classification of Phytoestrogens --- p.17 / Chapter 1.1.2 --- estrogenic1ty of phytoestrogens and theIr abundancesin Plasma --- p.18 / Chapter 1.1.3 --- phytoestrogens as one of the active components In cvd Protection --- p.21 / Chapter 1.1.4 --- effects of Phytoestrogens on LDL Receptor and Apolipoprotein A-1 --- p.22 / Chapter 1.2 --- role of estrogen receptors (ers) in gene regulation --- p.24 / Chapter 1.2.1 --- "structure, Classification and tissue distribution of ERS" --- p.24 / Chapter 1.2.2 --- ligands for ERS --- p.25 / Chapter 1.2.3 --- mechaniSMS OF LIgands-ERS complex in GENE regulation --- p.27 / Chapter 1.2.4 --- ligand-independent ER activation --- p.28 / Chapter 1.3 --- aims and scopes of investigation --- p.29 / Chapter CHAPTER 2 --- MATERIALS AND METHODS --- p.30 / Chapter 2.1 --- chemicals and materials --- p.30 / Chapter 2.1.1 --- Chemicals --- p.30 / Chapter 2.1.2 --- Plasmids --- p.30 / Chapter 2.2 --- mammalian cell culture maintainence --- p.30 / Chapter 2.2.1 --- Maintenance of Cells --- p.31 / Chapter 2.2.2 --- Preparation of Cell Stock --- p.31 / Chapter 2.2.3 --- Cell Recovery from Liquid Nitrogen Stock --- p.31 / Chapter 2.3 --- manipulation of dna --- p.31 / Chapter 2.3.1 --- isolation of HEPG2 cells genonmic DNA --- p.31 / Chapter 2.3.2 --- separation and purification of dna from agarose gel --- p.31 / Chapter 2.3.3 --- Restriction digestionof DNA --- p.32 / Chapter 2.3.4 --- Ligation of DNA Fragments --- p.32 / Chapter 2.3.5 --- Transformation of --- p.32 / Chapter 2.3.6 --- Small Scale Plasmids Purification from DH5a --- p.32 / Chapter 2.4 --- construction of expression and reporter plasmids --- p.33 / Chapter 2.4.1 --- Construction of Estrogen Receptorα (Erα) Expression Vectors --- p.33 / Chapter 2.4.2 --- construction of reporter vectors of LDLR promoter and the Respective Mutants --- p.33 / Chapter 2.4.3 --- Construction of Reporter Vectors of APOAI Promoter and the Respective Mutants --- p.33 / Chapter 2.5 --- determination of promoter transcrtiption activities --- p.34 / Chapter 2.5.1 --- Transient Transfection of Cell with ERa Expression Vector and Promoter Reporter using Lipofectamine PLUS Reagent --- p.34 / Chapter 2.5.2 --- Dual Luciferase Assay --- p.34 / Chapter 2.6 --- semi-quantitative and quantitative rt-pcr assay --- p.34 / Chapter 2.6.1 --- Transient transfection of Cell with ERa Expression Vector Using Lipofectamine PLUS Reagent --- p.34 / Chapter 2.6.2 --- "Isolation of RNA using TRIzol® Reagent (Life Technology, USA)" --- p.35 / Chapter 2.6.3 --- Quantitation of RNA --- p.35 / Chapter 2.6.4 --- First Strand cDNA Synthesis --- p.35 / Chapter 2.6.5 --- Sem卜Quantitative PCR Reactions --- p.35 / Chapter 2.6.6 --- Quantitative PCR Reactions --- p.36 / Chapter 2.7 --- western blotting analysis --- p.36 / Chapter 2.8 --- statistical methods --- p.36 / Chapter CHAPTER 3 --- REGULATION BY PHYSIOLOGICAL LEVEL OF 17B-ESTRADIOL ON APOLIPOPROTEIN A-I AND LOW-DENSITY- LIPOPROTEIN RECEPTOR IN HEPG2 CELLS --- p.37 / Chapter 3.1 --- introduction --- p.37 / Chapter 3.2 --- results --- p.39 / Chapter 3.2.1 --- Determination of transient transfection functionality of estrogen receptors in hepg2 cells --- p.39 / Chapter 3.2.2 --- Effect of 17β-Estradiolon LDLR promoter transcription activity --- p.39 / Chapter 3.2.3 --- Effect of 17β-Estradiol on apoai promoter transcription activity --- p.40 / Chapter 3.2 --- discussion --- p.47 / Chapter CHAPTER 4 --- SOY ISOFLAVONES AND RESVERATROL DISPLAY DIFFERENT MECHANISM IN THE UP-REGULATION OF LOVV-DENSITY-LIPOPROTEIN RECEPTOR IN HEPG2 CELLS --- p.49 / Chapter 4.1 --- introduction --- p.49 / Chapter 4.2 --- results --- p.54 / Chapter 4.2.1 --- Association of ERα and isoflavones or resveratrol on LDLR promoter transcription activity --- p.54 / Chapter 4.2.2 --- Association of ERβ and isoflavones or resveratrol on LDLR promoter transcription activity --- p.54 / Chapter 4.2.3 --- "Role of MAP Kinase, PKA and PKC in isoflavones and resveratrol induced LDLR promoter transcription" --- p.55 / Chapter 4.2.4 --- Identification of promoter regions responsible for induction of LDLR transcription by isoflavones in the presence OF ERα --- p.55 / Chapter 4.2.5 --- Identification of promoter regions responsible for induction of LDLR TRANSCRIPTION BY resveratrol IN THE ABSENCE OF ERα --- p.56 / Chapter 4.3 --- DISCUSSION --- p.75 / Chapter CHAPTER 5 --- SOY ISOFLAVONES AND RESVERATROL UP-REGULATE APOLIPOPROTEIN A-I SIMILAR TO 17B-ESTRADIOL IN HEPG2 CELLS --- p.80 / Chapter 5.1 --- INTRODUCTION --- p.80 / Chapter 5.2 --- RESULTS --- p.84 / Chapter 5.2.1 --- Association of ERα phytoestrogens on APCAI gene expression --- p.84 / Chapter 5.2.2 --- Association of ERβ and isoflavones or resveratrol on APOAI promoter transcription activity --- p.85 / Chapter 5.2.3 --- "Role of MAP Kinase, PKA and PKC in isoflavones and resveratrol in APOAI promoter transcription in the presence of ERα" --- p.85 / Chapter 5.2.4 --- Identification of promoter regions responsible for induction of APOAI transcription by isoflavones and resveratrol in the presence of ERα --- p.85 / Chapter 5.3 --- DISCUSSION --- p.100 / Chapter CHAPTER 6 --- GENERAL DISCUSSION --- p.103 / Chapter CHAPTER 7 --- SUMMARY --- p.106 / BIBLIOGRAPHY --- p.108 / APPENDIX 1 ABBREVIATIONS --- p.126 / APPENDIX 2 MATERIALS AND METHODS --- p.129 / APPENDIX 3 PRIMER LISTS --- p.145 / APPENDIX 4 REAGENTS AND BUFFERS --- p.147
322

The impact of clinical pharmacy services on the low-density lipoprotein goal attainment with lipid lowering therapies.

January 2008 (has links)
Chung, Jennifer Siu Toye. / "June 2008." / Thesis (M.Phil.)--Chinese University of Hong Kong, 2008. / Includes bibliographical references (leaves 145-157). / Abstracts in English and Chinese, some text in appendix also in Chinese. / Abstract of Thesis in English --- p.i / Abstract of Thesis in Chinese --- p.iii / Acknowledgments --- p.v / List of Tables --- p.xi / List of Figures --- p.xiii / List of Abbreviations --- p.xiv / List of Publications and Presentations related to Thesis --- p.xvi / Contributions related to Thesis --- p.xvii / Chapter Chapter 1 --- Introduction --- p.1 / Chapter 1.1 --- Introduction of the Thesis --- p.1 / Chapter 1.2 --- Review on Coronary Heart Disease --- p.3 / Chapter 1.2.1 --- Definition of Coronary Heart Disease --- p.3 / Chapter 1.2.2 --- Risk factors for the development of Coronary Heart Disease --- p.3 / Chapter 1.2.3 --- Worldwide Figures for Coronary Heart Disease --- p.9 / Chapter 1.2.4 --- Coronary Heart Disease in Asia Pacific --- p.10 / Chapter 1.2.5 --- Coronary Heart Disease in Hong Kong --- p.11 / Chapter 1.3 --- Dyslipidaemia --- p.14 / Chapter 1.3.1 --- Lipid Transport and Lipoprotein Metabolism --- p.14 / Chapter 1.3.2 --- Definition and Classification of Dyslipidaemia --- p.16 / Chapter 1.3.3 --- Coronary Heart Disease and Dyslipidaemia --- p.17 / Chapter 1.3.4 --- Lifestyle Modifications for the Management of Dyslipidaemia --- p.19 / Chapter 1.3.4.1 --- Dietary Measures --- p.20 / Chapter 1.3.4.2 --- Cigarette Smoking --- p.23 / Chapter 1.3.4.3 --- Physical Activity --- p.24 / Chapter 1.3.4.4 --- Weight Control --- p.25 / Chapter 1.3.5 --- Lipid-lowering Drug Therapy for Dyslipidaemia --- p.29 / Chapter 1.3.5.1 --- Statins --- p.31 / Chapter 1.3.5.2 --- Bile Acid Sequestrants --- p.35 / Chapter 1.3.5.3 --- Fibrates --- p.36 / Chapter 1.3.5.4 --- Ezetimibe --- p.37 / Chapter 1.3.5.5 --- Nicotinic Acid Group --- p.38 / Chapter 1.4 --- International Guidelines for Dyslipidaemic Management --- p.39 / Chapter 1.4.1 --- National Service Framework for Coronary Heart Disease (UK) --- p.39 / Chapter 1.4.1.1 --- National Service Framework Lipid-lowering Goals --- p.40 / Chapter 1.4.1.2 --- The Joint British Societies' Guidelines --- p.41 / Chapter 1.4.1.3 --- Achievement of the NSF Lipid Profile Targets --- p.42 / Chapter 1.4.2 --- National Cholesterol Education Program (United States) --- p.43 / Chapter 1.4.2.1 --- The Third Report of the National Cholesterol Education Program --- p.43 / Chapter 1.4.2.2 --- Review of Clinical Trials --- p.43 / Chapter 1.4.2.3 --- Low-Density Lipoprotein Cholesterol Goal Targets --- p.46 / Chapter 1.4.2.4 --- Compliance with the NCEP ATP III Guidelines --- p.48 / Chapter 1.4.3 --- Dyslipidaemic Guidelines for Study --- p.51 / Chapter 1.5 --- Clinical Pharmacy Services --- p.52 / Chapter 1.5.1 --- The Healthcare System in Hong Kong --- p.52 / Chapter 1.5.2 --- Clinical Pharmacy Services in Hong Kong --- p.54 / Chapter 1.5.3 --- Examples of successful Clinical Pharmacy Services --- p.55 / Chapter 1.5.3.1 --- Hypertension Clinic --- p.55 / Chapter 1.5.3.2 --- Diabetes Mellitus Clinic --- p.56 / Chapter 1.5.3.3 --- Smoking Cessation Clinic --- p.57 / Chapter 1.5.3.4 --- Anticoagulation Clinic --- p.57 / Chapter 1.5.3.5 --- Haematology-oncology Clinic --- p.57 / Chapter 1.5.4 --- Pharmacist-managed Lipid Clinics --- p.58 / Chapter 1.6 --- Objective & General Aims of the Study --- p.60 / Chapter 1.6.1 --- Objectives --- p.60 / Chapter 1.6.2 --- Study Hypothesis --- p.60 / Chapter 1.6.3 --- General Aims of the Study --- p.60 / Chapter Chapter 2 --- Methodology of Study --- p.62 / Chapter 2.1 --- Background Setting --- p.62 / Chapter 2.2 --- Subject Selection and Recruitment --- p.62 / Chapter 2.3 --- Intervention and Control Groups --- p.63 / Chapter 2.4 --- Validation of Survey --- p.67 / Chapter 2.5 --- Data Collection --- p.67 / Chapter 2.6 --- Outcome Measures --- p.68 / Chapter 2.6.1 --- Lipid value changes --- p.68 / Chapter 2.6.2 --- Compliance rate with medications --- p.68 / Chapter 2.6.3 --- Patient satisfaction survey assessment --- p.69 / Chapter 2.6.4 --- Time spent and Cost of clinical pharmacist --- p.69 / Chapter 2.7 --- Statistical Analysis --- p.70 / Chapter 2.7.1 --- Sample Size Calculation --- p.70 / Chapter 2.7.2 --- Methods of Statistical Analysis --- p.71 / Chapter Chapter 3 --- Results of Study --- p.72 / Chapter 3.1 --- Recruitment Details --- p.72 / Chapter 3.2 --- Demographic Characteristics of Patients --- p.73 / Chapter 3.3 --- Drug Therapy of Patients during Study Period --- p.75 / Chapter 3.4 --- LDL-C Lowering Potency of Statin Doses Prescribed --- p.80 / Chapter 3.5 --- Coronary Heart Disease Risk Category of Patients --- p.84 / Chapter 3.6 --- Lipid Profile Changes --- p.85 / Chapter 3.7 --- NCEP ATP III LDL-C Goal Attainment --- p.87 / Chapter 3.8 --- Relationship between Patient Characteristics and LDL-C Goal Attainment --- p.91 / Chapter 3.9 --- Compliance with Medications --- p.94 / Chapter 3.10 --- Pharmacist Intervention --- p.98 / Chapter 3.10.1 --- Range of Pharmacist Intervention --- p.98 / Chapter 3.10.2 --- Time spent by Pharmacist --- p.100 / Chapter 3.10.2.1 --- Time spent on Documentation --- p.100 / Chapter 3.10.2.2 --- Time spent on Direct Communication with Patients --- p.101 / Chapter 3.10.3 --- Cost of Clinical Pharmacy Service at the Lipid Clinic --- p.102 / Chapter 3.10.3.1 --- Cost of Pharmacist Involvement --- p.102 / Chapter 3.10.3.2 --- Potential Healthcare Cost Saving --- p.103 / Chapter 3.11 --- Clinical Pharmacy Service Satisfaction Survey --- p.105 / Chapter 3.11.1 --- Validation of Survey --- p.105 / Chapter 3.11.2 --- Questionnaire Survey for Intervention and Control Groups --- p.107 / Chapter 3.11.3 --- Physician Questionnaire Survey on Clinical Pharmacy Service --- p.110 / Chapter Chapter 4 --- Discussion --- p.111 / Chapter 4.1 --- Clinical Outcomes of Study --- p.111 / Chapter 4.1.1 --- Changes in Lipid Parameters --- p.111 / Chapter 4.1.2 --- Reduction in CHD risk --- p.113 / Chapter 4.1.3 --- Attainment in NCEP ATP III LDL-C goals --- p.114 / Chapter 4.1.4 --- Predictors for LDL-C Goal Attainment --- p.117 / Chapter 4.2 --- Drug-related Problems --- p.119 / Chapter 4.2.1 --- Statin Dosing and LDL-C Lowering Potency --- p.119 / Chapter 4.2.2 --- Adherence to Drug Therapy --- p.121 / Chapter 4.2.3 --- Polypharmacy --- p.126 / Chapter 4.2.4 --- Adverse Drug Events and Drug Interactions --- p.129 / Chapter 4.2.5 --- Patient Busy Lifestyle --- p.131 / Chapter 4.3 --- Role of Clinical Pharmacist --- p.133 / Chapter 4.3.1 --- Role of Pharmacist --- p.133 / Chapter 4.3.2 --- Multidisciplinary Team --- p.135 / Chapter 4.3.3 --- Healthcare Cost Saving --- p.137 / Chapter 4.4 --- Limitations of Study --- p.139 / Chapter 4.5 --- Further Study --- p.142 / Chapter Chapter 5 --- Conclusion --- p.144 / Chapter 5.1 --- Conclusion of Study --- p.144 / Bibliography --- p.145 / Appendices --- p.158 / Appendix I Data collection form --- p.158 / Appendix II Information sheet on study protocol to patient --- p.160 / Appendix III Patient consent form for study --- p.164 / Appendix IV Framingham risk scoring system for male --- p.165 / Appendix V Framingham risk scoring system for female --- p.166 / Appendix VI Patient educational leaflet --- p.167 / Appendix VII Physician-pharmacist communication sheet --- p.169 / Appendix VIII Telephone checklist --- p.170 / Appendix IX Questionnaire survey provided to Intervention Group --- p.172 / Appendix X Questionnaire survey provided to Control Group --- p.174 / Appendix XI Questionnaire survey provided to Physicians --- p.176
323

Role of PFOA and PFOS on Serum Apolipoprotein B, NHANES, 2005-2006

Maisonet, Mildred, Yadav, Ruby, Leinaar, Edward 01 September 2015 (has links)
Background: Exposure to perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) have been associated with higher circulating concentrations of total cholesterol (TC) and low density lipoprotein cholesterol (LDL-C). ApoB is the primary apolipoprotein component of LDL-C, and acts as a ligand for LDL-C receptors in various cells throughout the body. Circulating concentrations of ApoB are considered to be a better indicator of heart disease risk than TC or LDL-C. Objectives: Explore associations of concentrations of PFOA and PFOS with serum ApoB in adults. Methods: We analyzed data from 2744, 20-80 years old participants in the 2005–2006 National Health and Nutrition Examination Survey (NHANES). Linear regression models were used to estimate adjusted predicted means of serum ApoB (in g/L) for quartiles of PFOA and PFOS (in ng/mL) to describe patterns of associations. Results: Adjusted predicted mean concentrations of serum ApoB did not appear to vary meaningfully with increasing concentrations of PFOA (Q1 1.11, Q2 1.02, Q3 1.01, Q4 1.02) or increasing concentrations of PFOS (Q1 1.06, Q2 1.05, Q3 1.07, Q4 0.99) in study participants. Conclusions: Exposure to PFOA or PFOS does not appear to alter Apo B concentrations in adults.
324

Lipids and Endothelium-Dependent Vasodilation / Lipider och endotelberoende vasodilatation

Steer, Peter January 2003 (has links)
<p>Impaired endothelium-dependent vasodilation (EDV) is associated with atherosclerotic cardiovascular disease as well as several of its risk factors.</p><p>The aim of the present thesis was to investigate how lipids influence EDV in the vascular bed of the human forearm.</p><p>Apolipoprotein B was inversely associated with both EDV and endothelium-independent vasodilation (EIDV) in healthy subjects aged 20-69 years. HDL cholesterol was associated with the EDV to EIDV ratio (EFI). Small LDL particles and antibodies against oxidized LDL were not associated with endothelial vasodilatory function.</p><p>The EFI in young, healthy subjects was positively associated with alpha-linolenic acid proportion, but inversely associated with myristic acid in men only. Eicosapentaenoic acid was positively associated with EDV, whereas dihomo-gamma-linolenic acid was inversely associated with both EDV and EIDV in men. </p><p>Acute elevation of long-chain fatty acids with Intralipid<sup>®</sup>/heparin infusion in young, healthy subjects impaired EDV after 2 h. This impairment could be prevented by co-infusing vitamin C, diclophenac or L-arginine. Acute elevation of both medium-chain and long-chain fatty acids during Structolipid<sup>®</sup>/heparin infusion did not impair EDV.</p><p>An ordinary meal (34 E% fat) transiently attenuated EDV at 1 hour. No attenuation in EDV was observed after meals containing 20 and 3 E% fat. </p><p>These findings show that the endothelial vasodilatory function is associated with fatty acid profile in serum in the fasting state and during acute fatty acid elevation, as well as with apolipoprotein B and HDL cholesterol. Furthermore, lowering dietary fat content to 20 E% or less preserves endothelial vasodilatory function and might therefore protect against atherosclerosis.</p>
325

Studies on Cell Injury Induced by Hypoxia-Reoxygenation and Oxidized Low Density Lipoprotein : With Special Reference to the Protectiove Effect of Mixed Tocopherols, Omega-3 Fatty Acids and Transforming Growth Factor-beta1

Chen, Hongjiang January 2003 (has links)
<p>Hypoxia-reoxygenation (H-R) injury is an important clinical phenomenon in patients with coronary artery disease (CAD). Endothelial injury is a critical step in the initiation and progression of atherosclerosis. Therefore, endothelial and cardiomyocyte protection has been considered an effective step in prevention and treatment of CAD.</p><p>To investigate the cardioprotective effect of tocopherols, omega-3 fatty acid [eicosapentaenoic acid (EPA)] and transforming growth factor-β<sub>1</sub> (TGF-β<sub>1</sub>) during H-R, calcium tolerant myocytes isolated from adult rats were cultured and subjected to hypoxia for 24 hrs followed by reoxygenation of 3 hrs. All strategies, including tocopherol preparations, EPA and TGF-β<sub>1</sub>, showed attenuation of H-R-induced myocyte injury indicated by reduction of lactate dehydrogenase (LDH) release. Both a-tocopherol and a mixed- tocopherols (α-, γ-, and δ-) decreased the effects of H-R on iNOS expression and SOD activity in cultured myocytes. The mixed-tocopherols was more potent than a-tocopherol alone. EPA inhibited H-R-induced lipid peroxidation, MMP-1 expression and p38MAPK phosphorylation. TGF-β<sub>1</sub> blocked the increase in iNOS and PKB phosphorylation as well as the decrease in eNOS expression in cultured myocytes exposed to H-R.</p><p> To further investigate the protective effect of omega-3 fatty acids [docosahexaenoic acid (DHA) and EPA] and TGF-β<sub>1</sub>, the cultured endothelial cells were exposed to oxidant injury mediated by oxidized low-density lipoprotein (ox-LDL). Ox-LDL markedly reduced TGF-β<sub>1</sub> release, increased the expression of TGF-β<sub>1</sub> receptors, upregulated the expression of adhesion molecules, P-selectin and ICAM-1, enhanced the adhesion of monocytes to endothelial cells, and decreased protein kinase B (PKB) activation. Both DHA and EPA blocked these effects of ox-LDL on endothelial cells. Exogenous recombinant TGF-β<sub>1</sub> also ameliorated ox-LDL-induced expression of adhesion molecules and monocytes adhesion, which were blocked by antibodies to the TGF-β<sub>1</sub> type 2, but not to the type 3 receptor.</p><p>These observations provide mechanistic insights into H-R and oxidant injury and tissue protection by three different strategies.</p>
326

Studies on Cell Injury Induced by Hypoxia-Reoxygenation and Oxidized Low Density Lipoprotein : With Special Reference to the Protectiove Effect of Mixed Tocopherols, Omega-3 Fatty Acids and Transforming Growth Factor-beta1

Chen, Hongjiang January 2003 (has links)
Hypoxia-reoxygenation (H-R) injury is an important clinical phenomenon in patients with coronary artery disease (CAD). Endothelial injury is a critical step in the initiation and progression of atherosclerosis. Therefore, endothelial and cardiomyocyte protection has been considered an effective step in prevention and treatment of CAD. To investigate the cardioprotective effect of tocopherols, omega-3 fatty acid [eicosapentaenoic acid (EPA)] and transforming growth factor-β1 (TGF-β1) during H-R, calcium tolerant myocytes isolated from adult rats were cultured and subjected to hypoxia for 24 hrs followed by reoxygenation of 3 hrs. All strategies, including tocopherol preparations, EPA and TGF-β1, showed attenuation of H-R-induced myocyte injury indicated by reduction of lactate dehydrogenase (LDH) release. Both a-tocopherol and a mixed- tocopherols (α-, γ-, and δ-) decreased the effects of H-R on iNOS expression and SOD activity in cultured myocytes. The mixed-tocopherols was more potent than a-tocopherol alone. EPA inhibited H-R-induced lipid peroxidation, MMP-1 expression and p38MAPK phosphorylation. TGF-β1 blocked the increase in iNOS and PKB phosphorylation as well as the decrease in eNOS expression in cultured myocytes exposed to H-R. To further investigate the protective effect of omega-3 fatty acids [docosahexaenoic acid (DHA) and EPA] and TGF-β1, the cultured endothelial cells were exposed to oxidant injury mediated by oxidized low-density lipoprotein (ox-LDL). Ox-LDL markedly reduced TGF-β1 release, increased the expression of TGF-β1 receptors, upregulated the expression of adhesion molecules, P-selectin and ICAM-1, enhanced the adhesion of monocytes to endothelial cells, and decreased protein kinase B (PKB) activation. Both DHA and EPA blocked these effects of ox-LDL on endothelial cells. Exogenous recombinant TGF-β1 also ameliorated ox-LDL-induced expression of adhesion molecules and monocytes adhesion, which were blocked by antibodies to the TGF-β1 type 2, but not to the type 3 receptor. These observations provide mechanistic insights into H-R and oxidant injury and tissue protection by three different strategies.
327

Lipids and Endothelium-Dependent Vasodilation / Lipider och endotelberoende vasodilatation

Steer, Peter January 2003 (has links)
Impaired endothelium-dependent vasodilation (EDV) is associated with atherosclerotic cardiovascular disease as well as several of its risk factors. The aim of the present thesis was to investigate how lipids influence EDV in the vascular bed of the human forearm. Apolipoprotein B was inversely associated with both EDV and endothelium-independent vasodilation (EIDV) in healthy subjects aged 20-69 years. HDL cholesterol was associated with the EDV to EIDV ratio (EFI). Small LDL particles and antibodies against oxidized LDL were not associated with endothelial vasodilatory function. The EFI in young, healthy subjects was positively associated with alpha-linolenic acid proportion, but inversely associated with myristic acid in men only. Eicosapentaenoic acid was positively associated with EDV, whereas dihomo-gamma-linolenic acid was inversely associated with both EDV and EIDV in men. Acute elevation of long-chain fatty acids with Intralipid®/heparin infusion in young, healthy subjects impaired EDV after 2 h. This impairment could be prevented by co-infusing vitamin C, diclophenac or L-arginine. Acute elevation of both medium-chain and long-chain fatty acids during Structolipid®/heparin infusion did not impair EDV. An ordinary meal (34 E% fat) transiently attenuated EDV at 1 hour. No attenuation in EDV was observed after meals containing 20 and 3 E% fat. These findings show that the endothelial vasodilatory function is associated with fatty acid profile in serum in the fasting state and during acute fatty acid elevation, as well as with apolipoprotein B and HDL cholesterol. Furthermore, lowering dietary fat content to 20 E% or less preserves endothelial vasodilatory function and might therefore protect against atherosclerosis.
328

Effects of weight loss and phenotype traits on changes in body composition and cholesterol metabolism in overweight individuals

Mintarno, Melinda 11 April 2011 (has links)
Global obesity is linked to chronic diseases including hypercholesterolemia, a cardiovascular disease risk factor, thus weight reduction in obesity is a key priority for combatting obesity. The cholesterol transporters ABCG5, ABCG8 and NPC1L1 mediate cholesterol trafficking across the intestinal wall, thus are important in regulating cholesterol metabolism and circulating levels. The objective of this study was to examine if single nucleotide polymorphisms (SNP) of cholesterol transporters ABCG5, ABCG8 and NPC1L1 are associated with changes in cholesterol synthesis and absorption and lipid parameters (LP) subsequent to weight loss (WtL) in overweight individuals. Eighty-nine individuals from two WtL trials (Trial A (n = 54) and Trial B (n = 35)) completed a 20-wk WtL period. After 10% WtL, lipid parameters excluding LDL-C were improved in Trial A, while all lipid parameters were ameliorated after 12% of WtL when Trial A and B were combined. Post-WtL, cholesterol synthesis (CS) was reduced; however, cholesterol absorption was not changed in either Trial A or the combined trials. Polymorphisms in ABCG8 V632A were associated with changes in TC and TG levels after WtL in both trial A and the combined data. SNPs in ABCG5 Q604E, ABCG8 T400K, were associated with changes in CS because of WtL in Trial A; however, the association is no longer seen in combined analysis. In conclusion, cardio-protective changes in LP due to weight loss were mediated by reductions in CS. Additionally, polymorphisms in ABCG8 were associated with amelioration in LP after WtL. Thus, the benefits in CVD risk subsequent to weight loss vary across individuals due to genetic factors associated with cholesterol trafficking.
329

Effects of weight loss and phenotype traits on changes in body composition and cholesterol metabolism in overweight individuals

Mintarno, Melinda 11 April 2011 (has links)
Global obesity is linked to chronic diseases including hypercholesterolemia, a cardiovascular disease risk factor, thus weight reduction in obesity is a key priority for combatting obesity. The cholesterol transporters ABCG5, ABCG8 and NPC1L1 mediate cholesterol trafficking across the intestinal wall, thus are important in regulating cholesterol metabolism and circulating levels. The objective of this study was to examine if single nucleotide polymorphisms (SNP) of cholesterol transporters ABCG5, ABCG8 and NPC1L1 are associated with changes in cholesterol synthesis and absorption and lipid parameters (LP) subsequent to weight loss (WtL) in overweight individuals. Eighty-nine individuals from two WtL trials (Trial A (n = 54) and Trial B (n = 35)) completed a 20-wk WtL period. After 10% WtL, lipid parameters excluding LDL-C were improved in Trial A, while all lipid parameters were ameliorated after 12% of WtL when Trial A and B were combined. Post-WtL, cholesterol synthesis (CS) was reduced; however, cholesterol absorption was not changed in either Trial A or the combined trials. Polymorphisms in ABCG8 V632A were associated with changes in TC and TG levels after WtL in both trial A and the combined data. SNPs in ABCG5 Q604E, ABCG8 T400K, were associated with changes in CS because of WtL in Trial A; however, the association is no longer seen in combined analysis. In conclusion, cardio-protective changes in LP due to weight loss were mediated by reductions in CS. Additionally, polymorphisms in ABCG8 were associated with amelioration in LP after WtL. Thus, the benefits in CVD risk subsequent to weight loss vary across individuals due to genetic factors associated with cholesterol trafficking.
330

Exposure of endothelial cells to physiological levels of myeloperoxidase modified LDL delays pericellular fibrinolysis and reduces cell motility

Daher, Jalil 10 March 2014 (has links)
Cardiovascular diseases are considered the first cause of death in westernized societies. They are directly linked to atherosclerosis, a clinical condition characterized by a thickening of the arterial wall. Atherosclerosis is in his turn linked to various genetic and environmental factors; among those factors are high oxidized LDL levels and endothelial dysfunction. In the present study, we have analyzed in vitro the effect of myeloperoxidase oxidized LDL on endothelial cells at the level of fibrinolysis and cell motility.<p>In the first part of the work, we measured fibrinolysis in real time at the surface of endothelial cells. Our results suggest that myeloperoxidase oxidized LDL interferes with the regulation of fibrinolysis by endothelial cells by decreasing their pro-fibrinolytic activity. This effect was not related to a modification in expression of major regulators of fibrinolysis such as PAI-1 and t-PA. Our data link the current favorite hypothesis that oxidized LDL has a causal role in atheroma plaque formation with an old suggestion that fibrin may also play a causal role. A model that best explains our results would be as follows: oxidized LDL increases fibrin deposition on endothelial cells which will increase their permeability resulting in more oxidized LDL infiltration into the subendothelial space of the arterial wall initiating atherogenesis. <p>In the second part of the work, we investigated the effect of myeloperoxidase oxidized LDL at the level of endothelial cell motility. We have shown that oxidized LDL is able to decrease cell migration, wound healing and tubulogenesis in endothelial cells. Those effects were not associated with any alteration at the level of neither cell viability nor proliferation. Subsequent gene expression analyses enabled us to link the oxidized LDL induced phenotypical changes in the cells to a change in expression of both microRNA-22 and Heme Oxygenase 1 genes. Our observations suggest a novel role of oxidized LDL not only as an important factor in the initiation of atheromatous lesions, but also as a potential player in the progression of the atherosclerosis disease by impeding blood vessel repair and wound healing at the sites of lesions.<p> / Doctorat en Sciences / info:eu-repo/semantics/nonPublished

Page generated in 0.0437 seconds