• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 3
  • 2
  • 1
  • Tagged with
  • 21
  • 21
  • 10
  • 10
  • 7
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Immunomodulatory effects of LL-37 in the epithelia

Filewod, Niall Christopher Jack 11 1900 (has links)
The cationic host defence peptide LL-37 is an immunomodulatory agent that plays an important role in epithelial innate immunity. Previously, concentrations of LL-37 thought to represent levels present during inflammation have been shown to elicit the production of cytokines and chemokines by epithelial cells. To investigate the potential of lower concentrations of LL-37 to alter epithelial cell responses, normal primary keratinocytes and bronchial epithelial cells were treated with pro-inflammatory stimuli in the presence or absence of 1 – 3 μg/ml LL-37. Low, physiologically relevant concentrations of LL-37 synergistically increased IL-8 production by both proliferating and differentiated keratinocytes in response to IL-1β and the TLR5 agonist flagellin, and synergistically increased IL-8 production by bronchial epithelial cells in response to IL-1β, flagellin, and the TLR2/1 agonist PAM3CSK4. Treatment of bronchial epithelial cells with LL-37 and the TLR3 agonist poly(I:C) resulted in synergistic increases in IL-8 release and cytotoxicity. The synergistic increase in IL-8 production observed when keratinocytes were co-stimulated with flagellin and LL-37 was suppressed by pretreatment with inhibitors of Src-family kinase signalling and NF-κB translocation. These data suggest that low concentrations of LL-37 may alter epithelial responses to microbes in vivo. Microarray analysis of keratinocyte transcriptional responses after LL-37 treatment suggest that LL-37 may alter the expression of growth factors and a number of genes important to innate immune responses. LL-37 may thus play a more important role than previously suspected in the regulation of epithelial inflammation; an improved understanding of the mechanisms by which LL-37 alters chemokine responses could lead to the development of novel anti-infective and anti-inflammatory therapeutics. / Science, Faculty of / Microbiology and Immunology, Department of / Graduate
12

Rôle du peptide LL-37 dans le cancer du sein : son interaction avec la membrane plasmique stimule l'entrée de calcium et la migration cellulaire par l'activation des canaux ioniques TRPV2 et BKCa / Role of the LL-37 peptide in breast cancer : stimulation of calcium entry and cell migration through the TRPV2 and BKCa channels by its interaction with the plasma membrane

Gambade, Audrey 18 December 2015 (has links)
Le peptide antimicrobien LL-37 a été retrouvé surexprimé dans différents types de cancer et plus particulièrement dans le cancer du sein dans lequel il est associé au développement des métastases. Nous avons observé, in vitro, que la migration de trois lignées cancéreuses mammaires est augmentée par le peptide LL-37 et son énantiomère (D)-LL-37, excluant la fixation du peptide à un récepteur protéique. Sur les cellules cancéreuses mammaires MDA-MB-435s, le peptide se fixe à la membrane plasmique et diminue sa fluidité. La microscopie électronique localise LL-37 dans les cavéoles et à la surface de structures impliquées dans la migration cellulaire, les pseudopodes. LL-37 induit une entrée de calcium via le canal TRPV2 dont l’activité est augmentée par son recrutement dans les pseudopodes. Ce recrutement est dépendant de l’activation de la voie de signalisation PI3K/AKT induite par LL-37. L’entrée de calcium via TRPV2 est potentialisée par l’activation du canal potassique BKCa, localisé aussi dans les pseudopodes. Des ARN interférents contre TRPV2 inhibent à 70% la migration induite par LL-37, donnant un rôle prépondérant à ce canal dans les effets pro-migratoire du peptide. La fixation du peptide LL-37 aux membranes des cellules cancéreuses et l’activation de canaux ioniques constituent un nouvel axe de recherche pour comprendre le rôle du peptide dans la progression tumorale. / The antimicrobial peptide LL-37 is overexpressed in several types of cancer, among which breast cancer were it is associated with metastasis development. Our experiments on three mammary cancer cell lines have shown that LL-37 increases cell migration. Both its natural (L)-form and its (D)-enantiomer are equally active, excluding a specific binding to a protein receptor. On the MDA-MB-435s cell line, LL-37 attaches to plasma membrane and reduces its fluidity. Electron microscopy localized LL-37 on the surface of pseudopodia, structures implicated in cell migration, and in caveolae. LL-37 induces calcium entry via the TRPV2 channel, which is recruited to pseudopodia. Recruitment depends on activation of PI3K/AKT signaling induced by LL-37. Calcium entry via TRPV2 is potentiated by activation of the BKCa potassium channel also located in pseudopodia. TRPV2 suppression by RNA interference results in 70% reduction of cell migration induced by LL-37, attributing a crucial role of this channel to the promigratory effects of the peptide. Binding of LL-37 to cancer cell membranes and in consequence the activation of ion channels constitutes a novel research field to understand its role in tumor progression.
13

Etude de l'impact de la protéine antimicrobienne humaine hCAP18/LL-37 sur le cancer du sein / Study on the impact of the human antimicrobial peptide hCAP18/LL-37 in the breast cancer

Zreika, Sami 15 December 2011 (has links)
Le peptide hCAP18/LL-37, une partie de la défense immunitaire innée, a maintenant été reconnu comme multifonctionnelle pour les cellules eucaryotes. Nos études démontrent sa contribution au développement du cancer, montrant qu'il est surexprimé dans la plupart des tumeurs mammaires humaines, active la signalisation la famille de ERBB et augmente le potentiel métastatique des cellules cancéreuses du sein. Notre comparaison des deux lignées du cancer du sein n'a pas révélé de récepteurs communs, mais une structure peptidique identiques mais de chiralité différente est pré requis pour le peptide dans toutes ses activités. Nous émettons l'hypothèse que LL-37 active indirectement des récepteurs transmembranaires en se liant à la membrane cellulaire. Des peptides tronqués dérivés de LL-37 inhibent ses activités et peuvent aider à concevoir une future thérapie anticancéreuse. / The peptide hCAP18/LL-37, part of the innate immune defense, has now been recognized as multifunctional for eukaryotic cells. Our studies demonstrate its contribution to cancer development, showing that it is overexpressed in most human breast tumors, activates ERBB signaling and increases the metastatic potential of breast cancer cells. Our comparison on two breast cancer lines did not reveal any common receptors but identical structural prerequisites for the peptide in all its activities. We hypothesize that LL-37 indirectly activates transmembrane receptors by attaching to the cellular membrane. Truncated derivatives inhibit its activities and may help to design a future anticancer therapy.
14

Étude de la sensibilité aux antibiotiques et aux peptides antimicrobiens humains de Legionella pneumophila / Study of the susceptibility to antibiotics and antimicrobial peptides of Legionella pneumophila

Vandewalle-Capo, Marine 16 December 2016 (has links)
Legionella pneumophila (Lp) est un pathogène accidentel de l'homme capable d'infecter les macrophages alvéolaires et les pneumocytes. Au cours de l'infection, Legionella se confronte à différents types d'agents antibactériens, dont les peptides antimicrobiens (PAMs) produit par l'hôte et les antibiotiques à activité intracellulaire administrés aux patients. Le mécanisme d'action des PAMs humains à l'encontre de Legionella, ainsi que le niveau de résistance aux antibiotiques de la bactérie sont à ce jour encore peu documentés. Mes travaux ont pour but de contribuer à une meilleure connaissance de l'activité anti-Legionella de ces molécules. La première partie de cette étude a consisté à évaluer la sensibilité d'isolats cliniques de Lp sg 1 à 8 antibiotiques, afin de déterminer le seuil épidémiologique de sensibilité de la bactérie à ces différentes molécules. Nous avons démontré que l'ensemble des isolats cliniques sont sensibles aux antibiotiques testés. Les résultats ont révélé l'existence d'une sous-population présentant une sensibilité réduite aux macrolides. L'analyse des génomes a permis de corréler cette sensibilité diminuée à la présence de la pompe à efflux LpeAB spécifique des macrolides. Cette pompe est présente uniquement dans trois complexes clonaux centrés sur le ST1, le ST701 et le ST1335.La seconde partie de cette étude a été consacrée à la caractérisation de l'activité antibactérienne des PAMs humains LL-37 et HBD-3, ainsi qu'à l'identification de leur(s) mécanisme(s) d'action contre Legionella. L'ensemble des tests réalisés montre que LL-37 et HBD-3 induisent une perte de cultivabilité des légionelles par des modes d'action différents. Les résultats suggèrent que LL-37 agit par perméabilisation des membranes de L. pneumophila. Nos résultats ont également montré que les deux peptides exercent une activité inhibitrice sur la réplication intracellulaire des légionelles, au moins en partie grâce à une collaboration avec la cellule hôte / Legionella pneumophila (Lp) is an accidental human pathogen which can infect alveolar macrophages and pneumocytes. During infection, Legionella have to deal with to various types of antibacterial agents, such as antimicrobial peptides (AMPs) produced by the host, and antibiotics with intracellular activity administered to patients. The mechanism of action of human AMPs against Legionella, and the resistance level to antibiotics of the bacterium are still poorly described. Our work aimed to contribute to a better understanding of the anti-Legionella activity of these molecules. The first part of this study consisted in the evaluation of the susceptibility of clinical Lp sg1 isolates to 8 antibiotics, to determine the epidemiological cut-off values of these different molecules. We demonstrated that all clinical isolates are susceptible to the tested antibiotics. The results revealed the presence of a subpopulation displaying a reduced susceptibility to macrolides. The analysis of the genomes allowed us to correlate this reduced susceptibility to le presence of the LpeAB macrolides efflux pump, found specifically in the sequence types ST1, ST701 and ST1335.The second part of this study was dedicated to the characterization of the antibacterial activity of the human AMPs LL-37 and HBD-3, and to the identification of their mechanism(s) of action against Legionella. All of the experiments show that LL-37 and HBD-3 induce a loss of cultivability by different mode of action. The results suggest that LL-37 is able to permeabilize the membrane of the L. pneumophila cells. Our findings also show that both peptides inhibit the intracellular replication of L. pneumophila, in part through collaboration with the host cell
15

Clostridium difficile Responds to Antimicrobial Peptides and Oxidative Stress

McQuade, Rebecca January 2015 (has links)
Clostridium difficile (CD) is the leading cause of bacterial hospital-associated infection in North America. How CD colonizes the human host, including its response to the innate immune system and other stresses, is poorly understood. This work considers CD's defenses against two stresses found in the host - the antimicrobial peptide LL-37 and reactive oxygen species (ROS). LL-37 had bactericidal activity against CD. CD strains varied in their sensitivity to the peptide, and epidemic-associated strains were more resistant to LL-37 than others. CD became more resistant to LL-37 following exposure to sub-lethal concentrations of the peptide, suggesting the presence of inducible resistance mechanisms. A quantitative proteomics analysis revealed definite alterations in CD protein expression caused by LL-37. Specific changes included increased expression of DltB, a protein previously reported to confer resistance against other antimicrobial peptides. Notably, disruption of individual LL-37-induced genes did not sensitize CD to the peptide. This suggests functional redundancy, and that LL-37 may cause global changes in protein expression, not limited to antimicrobial peptide resistance determinants. One of the proteins most strongly induced by LL-37 was a predicted superoxide reductase (SOR). As CD is considered a strict anaerobe, expression of a predicted antioxidant protein was an interesting finding. Heterologous expression of CD SOR in a superoxide dismutase-deficient E. coli strain confirmed its action as a superoxide scavenger. Insertional inactivation of SOR rendered CD more sensitive to oxygen and ROS-generating compounds, indicating that SOR contributes to antioxidant defense in CD. SOR mutants were impaired in their ability to cause disease in hamsters, indicating a role for this protein in infection.
16

Anti-HIV Activity of the Human Antimicrobial Peptide LL-37, and its Engineered Peptide, 17BIPHE2

Vera-Cruz, Ana 16 March 2022 (has links)
Unwanted pregnancies and sexually transmitted infections (STIs) are major health concerns of women worldwide. These concerns have prompted efforts to develop Multipurpose Prevention Technologies (MPTs), which simultaneously provide contraception and prevent STIs, including HIV. LL-37, the only human cathelicidin and an effective spermicide on human sperm, has broad antimicrobial activity including in vitro activity against HIV. 17BIPHE2 is a truncated LL-37 peptide, engineered to contain 5 unnatural residues, thus limiting its protease degradation within vaginal fluid. Hence, this antimicrobial peptide (AMP) represents a promising MPT agent. It was therefore hypothesized that these peptides would be inhibitors of HIV infection in cell lines, PBMC, and CD4+ T cells. In the chronically infected ACH-2 cell line, there was significant reduction in p24 production when cells were treated with 17BIPHE2, but not LL-37. When 17BIPHE2 was pre-incubated with HIV prior to infection and present during infection, viral replication decreased in the TZM-bl reporter cell line, but this result was not recapitulated in the primary activated cells, PBMCs nor isolated CD4+ T cells. Conversely, pre-incubation of 17BIPHE2 with target cells prior to infection significantly inhibited HIV infection in a dose-dependent manner. Therefore, 17BIPHE2 may act on the cell or on the virus/cell interaction rather than on the virus itself to inhibit HIV infection.
17

Immune evasion tactics and immunopathology of mixed mucoid and nonmucoid <i>Pseudomonas aeruginosa</i> populations in cystic fibrosis

Malhotra, Sankalp 27 July 2018 (has links)
No description available.
18

The production and function of cervical hCAP18/LL-37 in pregnancy

Frew, Lorraine January 2014 (has links)
Antimicrobial peptides (AMPs) are small proteins produced by epithelial surfaces, which have broad-spectrum antimicrobial and immunomodulatory activities. In the lung, skin and alimentary tract AMPs are known to be important in infectious and inflammatory conditions. Far less is known regarding the role of AMPs within the female reproductive tract, but as infection and inflammation are causes of preterm labour, AMPs may have a key function in maintain and protecting pregnancy. The major groups of human AMPs include the human beta defensins (HBDs), two antileukoproteinases (secretory leukocyte protease inhibitor (SLPI) and Trappin-2/Elafin), and the human cathelicidin hCAP18/LL-37, with several studies identifying their presence at sites throughout the reproductive tract. The cervix in pregnancy is positioned between the upper genital tract containing the developing fetus and the lower tract where infections usually arise. I hypothesise that AMPs are fundamental to mucosal immune defence of the cervix in pregnancy, preventing ascending infection and excessive inflammation that can cause preterm labour. This thesis focused on the human cathelicidin hCAP18/LL-37 and its role within the cervix and vagina. The aims of this thesis were to; investigate the inflammatory effects of LL-37 from cervical and vaginal derived epithelial cells and determine the pathways and receptors in which LL-37 may elicit its effects and how production may be regulated; investigate the role of CRAMP in a mouse model of preterm birth; and determine the production of AMPs by the pregnant cervix whilst investigating the relationship between AMP concentrations in cervicovaginal secretions and preterm labour. The inflammatory effect of LL-37 was investigated using cell lines derived from endocervical, ectocervical and vaginal epithelium. The study of these cell lines suggests divergent responses of cervical and vaginal epithelial cells. LL-37 mediated induction of IL-8 and IL-6 production from endocervical epithelial cells was observed in a dose-dependent and time-dependent manner, whilst ectocervical and vaginal cells also respond to treatment with LL-37 through IL-8 and IL-6 production. To determine a possible mechanism of action of LL-37 on IL-8 and IL-6 in the three cell lines, inhibitors against MAPK cascades, ERK, p38 MAPK and JNK, and known LL-37 receptors were investigated. In endocervical cells LL-37 mediated IL-8 occurs via activation of unidentified GPCRs, whilst in ectocervical cells this effect on IL‐8 and IL-6 is via the activation of ERK and p38 MAPK cascades. The mechanism by which LL-37 induces IL-8 secretion in vaginal epithelial cells remains unknown. Expression of LL-37 was shown to be mediated by vitamin D3 in vitro in cervical and vaginal epithelial cells. However when this relationship was investigated in vivo, using matched serum and cervicovaginal secretions from woman at early pregnancy, no correlation was observed between circulating vitamin D and cervicovaginal or circulating hCAP18/LL-37. However, the majority of women in this study reported with insufficient levels of vitamin D, which may effect the relationship observed with hCAP18/LL-37. Using a mouse model of LPS-induced preterm labour, to mimic the presence of intrauterine infection bacterial infection, I aimed to characterise the role of CRAMP, the mouse orthologue of hCAP18/LL-37, in the lower inflammatory and immune response that results in preterm labour. Wild type C57Bl/6J mice receiving an intrauterine injection of LPS deliver prematurely, within 24 hours of injection. However mice deficient in CRAMP (Camp -/-) receiving an intrauterine injection of LPS deliver significantly later and have a non-significant increase in pup survival compared to wild type C57Bl/6J mice. Cervical tissue collected post partum showed no difference in inflammatory markers between wild type C57Bl/6J and Camp -/- mice, however there was increased expression of the neutrophil chemoattractant marker, Cxcl5, and the neutrophil marker, Ngp in Camp -/- mice. In the lower genital tract, levels of antimicrobial peptides were determined in samples of cervicovaginal secretions collected from pregnant women. AMPs, hCAP18/LL-37, HBD-2 and SLPI were found in cervicovaginal secretions, and levels of hCAP18/LL-37 were increased in women with the common vaginal infection bacterial vaginosis. However no relationship was identified between the concentration of AMPs and preterm birth in this study. This work has shown that the lower genital tract, where infections that are associated with preterm labour originate, expresses the human cathelicidin hCAP18/LL-37. It may play an important role in modulating the immune response to invading infection associated with preterm labour. Further investigation of these responses may increase understanding of the physiology and pathophysiology of labour, and lead to strategies for the prevention of premature delivery.
19

Avaliação do peptídeo LL-37 em contato com células-tronco da polpa dentária / Evaluation of LL-37 Peptide in contact with stem cells from dental pulp

Milhan, Noala Vicensoto Moreira [UNESP] 16 January 2017 (has links)
Submitted by NOALA VICENSOTO MOREIRA MILHAN null (noalinha@gmail.com) on 2017-03-14T15:32:19Z No. of bitstreams: 1 TESE_FINAL_biblioteca_pdf_com ficha..pdf: 9569489 bytes, checksum: 1675ea8facc1f735605660b0b01b8cad (MD5) / Approved for entry into archive by Juliano Benedito Ferreira (julianoferreira@reitoria.unesp.br) on 2017-03-20T22:29:35Z (GMT) No. of bitstreams: 1 milhan_nvm_dr_sjc.pdf: 9569489 bytes, checksum: 1675ea8facc1f735605660b0b01b8cad (MD5) / Made available in DSpace on 2017-03-20T22:29:36Z (GMT). No. of bitstreams: 1 milhan_nvm_dr_sjc.pdf: 9569489 bytes, checksum: 1675ea8facc1f735605660b0b01b8cad (MD5) Previous issue date: 2017-01-16 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / O peptídeo LL-37 (catelicidina derivada de humano), é liberado por algumas células humanas e capaz de neutralizar os tecidos com lipopolissacarídeo (LPS), além de atrair células da polpa, e induzir a angiogênese, características que o tornam um possível adjunto para a regeneração do complexo dentino-pulpar. O objetivo desse trabalho foi avaliar in vitro a biocompatibilidade do peptídeo LL-37 nas concentrações de 5 e 10 μg/mL, e sua possível atuação na diferenciação de células-tronco da polpa dentária (DPSC) para odontoblastos- like. Com esse propósito, foram avaliados: (a) a citotoxicidade, pelo teste MTT; (b) a genotoxicidade, através do ensaio do micronúcleo; (c) a produção e quantificação de óxido nítrico; (d) as fases do ciclo celular, por citometria; (e) a expressão de alguns genes associados à formação de tecido mineralizado, através do teste qRT-PCR; (f) o conteúdo de proteína total; (g) a atividade de fosfatase alcalina (ALP); e (h) a produção de sialofosfoproteína dentinária (DSPP), pelo ensaio imunoenzimático ELISA. Foi observado que as concentrações de 5 e 10 μg/mL de LL-37 não foram citotóxicas e ainda aumentaram, em geral, a viabilidade celular (p<0,05), sendo que os maiores valores de absorbância foram observados no 3° dia de contato. As concentrações testadas também não induziram genotoxicidade, após 7 dias de contato, tendo sido genotóxico apenas o grupo controle positivo (EMS) (p<0,05). Ainda, não foi observado diferença estatisticamente significativa na produção de nitrito, pelas células expostas ao LL-37 após 7 dias, em ambas as concentrações. A análise do ciclo celular, evidenciou maior porcentual de células na fase G0/G1, em todos os grupos (p<0,05). Quando estes foram comparados, foi observado maior quantidade de células na fase G0/G1 na concentração de 10 μg/mL de LL- 37 comparada ao grupo controle (p<0,05). Por outro lado, o grupo controle exibiu mais células na fase G2 e em mitose (M) que os grupos tratados com 5 e 10 μg/mL de LL-37 (p<0,05), e mais células na interfase (S) que o grupo tratado com 10 μg/mL de LL-37 (p<0,05). A análise da expressão gênica demonstrou que não houve aumento de expressão dos genes fosfatase alcalina, osteocalcina, osteopontina e Runx2 após tratamento com ambas as concentrações do peptídeo, no 3° dia. Além disso, não foi observado diferença estatisticamente significativa na ALP nos grupos tratados e controle, após 3 e 14 dias, enquanto o conteúdo de proteína total foi maior aos 14 dias nos grupos tratados com LL-37 (p<0,05). Ainda, aos 3 dias, a produção da proteína DSPP foi maior no grupo tratado com 10 μg/mL de LL-37 (p<0,05). Com base nesses resultados, pode-se concluir que o LL-37 é biocompatível nas concentrações testadas nesse trabalho, e ainda aumenta o número de células viáveis, principalmente em período inicial. Além disso, aos 3 dias, na concentração de 10 μg/mL, ele retarda o ciclo celular e aumenta a expressão da proteína DSPP, além de aumentar a síntese proteica aos 14 dias, o que indica que esse peptídeo pode desempenhar algum tipo de função na diferenciação odontoblástica. / The LL-37 peptide (human derived cathelicidin) is released by some human cells and able of neutralizing the tissues that present lipopolysaccharide (LPS), as well as, attracts pulp cells and induces angiogenesis; characteristics that makes it a possible adjunct for regeneration of the dentin-pulp complex. The aim of this study was evaluate in vitro the biocompatibility of LL-37 in the concentrations of 5 and 10 μg/mL, and its possible performance in the differentiation of dental pulp stem cells (DPSC) into odontoblasts-like cells. For this purpose, it was evaluated: (a) the cytotoxicity by MTT assay; (b) the genotoxicity by the micronucleus test; (c) the production and quantification of nitric oxide; (d) the cell cycle, by flow cytometry; (e) the expression of genes associated with the mineralization by qRT-PCR; (f) the total protein content; (g) the alkaline phosphatase activity (ALP); and (h) the production of dentine sialofosfoprotein (DSPP) by indirect enzyme-linked immunosorbent assay (ELISA). It was observed that the concentrations of 5 and 10 μg/ml of LL-37 were not cytotoxic, in addition to they increased, in general, the cell viability (p<0,05). Moreover, higher absorbance values were observed on 3rd day of contact. After 7 days, the tested concentrations also did not induce genotoxicity, (p<0,05); only the positive control group (EMS) was genotoxic (p<0.05). Furthermore, there was not statistical significance in the nitrite production by the cells exposed to LL-37 for 7 days, in both concentrations. The cell cycle test showed higher percentage of cells in the phase G0/G1 in all groups (p<0.05). When they were compared, it was noticied that concentration of 10 ug/ml of LL-37 arrested the cells in G0/G1 compared to the control group (p<0.05). On the other hand, the control group, exhibited higher amount of cells in G2 and mitosis (M) than the others (p<0.05) and also higher number of cells in interfase (S) than the group treated with 10 μg/mL of LL-37 (p<0.05). On the 3rd day, the analysis of gene expression demonstrated no increase in the expression of the genes alkaline phosphatase, osteocalcin, osteopontin and Runx2, after treatment with both peptide concentrations. Furthermore, it was not observed statistical significance in the ALP in the treated and control groups after 3 and 14 days, while total protein content was higher in the groups treated with LL-37, at 14 days (p<0.05). On the 3rd day, the production of DSPP protein was higher in the group treated with 10 μg/mL of LL-37 (p<0.05). Based on these results, it can be concluded that LL-37 is biocompatible at these concentrations and increases the number of viable cells, especially in the initial period. Moreover, on the 3rd day, the concentration of 10 μg/mL arrests the cell cycle, and increases the expression of DSPP protein, in addition to raising the protein content at 14 days, which indicates that this peptide may present some kind of function in the odontoblastic differentiation.
20

Mechanisms and Biological Costs of Bacterial Resistance to Antimicrobial Peptides

Lofton Tomenius, Hava January 2016 (has links)
The global increasing problem of antibiotic resistance necessarily drives the pursuit and discovery of new antimicrobial agents. Antimicrobial peptides (AMPs) initially seemed like promising new drug candidates. Already members of the innate immune system, it was assumed that they would be bioactive and non-toxic. Their common trait for fundamental, non-specific mode of action also seemed likely to reduce resistance development. In this thesis, we demonstrate the ease with which two species of pathogenic bacteria, the gram-negative Salmonella typhimurium (S. typhimurium), and the gram-positive Staphylococcus aureus (S. aureus), can gain increased tolerance and stable resistance to various AMPs. By serially passaging each bacterial species separately under increasing AMP selection pressure we observed increasing AMP tolerance. Resulting in independent bacterial lineages exposed to four different AMPs (including a two-AMP combination) that exhibited 2 to 16-fold increases in MIC. Substantial cross-resistance between the AMPs was observed. Additionally, the S. aureus mutants were found to be cross-resistant to human beta-defensins 1, 2, 3, and 4. The LPS molecule, with mutations in the waaY, pmrB and phoP genes, was the principal target for S. typhimurium resistance development. The main target for S. aureus remained elusive. Reduced membrane potential was a common change for two of the mutants, but not for the others. All sequenced mutants had one or more mutations in various stress response pathways. Fitness of the resistant mutants was assayed by growth rate analysis and in vitro virulence factor testing (e.g. survival response to bile, superoxide, acidic pH). Furthermore an in vivo survival/virulence test involving a mouse competition experiment (S. typhimurium) and sepsis model (S. aureus) was performed. In the absence of AMPs there was often little or no fitness reduction in the mutants. Our results suggest that AMP resistance mechanisms do not irrevocably weaken either species with regard to virulence characteristics or survival within the host. In light of these findings, we suggest that the progression of therapeutic use of AMPs should proceed with great caution since otherwise we might select for AMP resistant mutants that are more resistant to our innate host defenses and thereby potentially more virulent.

Page generated in 0.0226 seconds