• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 259
  • 176
  • 47
  • 33
  • 30
  • 30
  • 8
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • Tagged with
  • 691
  • 691
  • 325
  • 129
  • 89
  • 71
  • 63
  • 59
  • 59
  • 52
  • 51
  • 47
  • 43
  • 41
  • 39
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
311

Produção de ácido lático a partir do bagaço da cana de açúcar / Production of lactic acid from sugar cane bagasse

Rodrigues, Giselle de Arruda, 1978- 21 August 2018 (has links)
Orientador: Telma Teixeira Franco / Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Química / Made available in DSpace on 2018-08-21T04:20:39Z (GMT). No. of bitstreams: 1 Rodrigues_GiselledeArruda_D.pdf: 30208000 bytes, checksum: b1ed6a1c43dab6cee435816103c4f562 (MD5) Previous issue date: 2012 / Resumo: A produção de comppostos químicos a partir de resíduos lignocelulósicos tem atraído bastante a atenção da sociedade atual. A busca por alternativas produtivas não dependentes de combustíveis fósseis, o uso de fontes renováveis e a sustentabilidade são os principais motivos. Neste trabalho, a produção do ácido lático por fermentação dos açúcares obtidos dos bagaço da cana de açúcar, essencialmente glicose e xilose, foi estudada. Partindo de várias cepas de bactérias ácido láticas e utilizando-se metodologia qualitativa, 26 linhagens foram selecionadas para testes em frascos agitados e em biorreator. Os melhores resultados foram obtidos em fermentações utilizando-se B. coagulans 162, alcançando rendimento de 0,95 e produtividade volumétrica de 2,13 g L-1 h-1 em regime de batelada simples e meio de cultivo contendo glicose, xilose e arabinose. Em alimentação contínua, o meio de cultivo alcançou 105 g de ácido lático por litro de meio fermentado. Os efeitos dos tratamentos de hidrólise térmica e explosão a vapor do bagaço da cana de açúcar também foram estudados. Verificou-se a formação de ácido acético, furfural e hidroximetilfurfural (HMF) e liberação dos açúcares glicose, xilose e arabinose. As fibras do bagaço foram fotografadas utilizando-se microscopia eletrônica de varredura (MEV), antes e após tratamentos térmicos, para observação das modificações no arranjo da estrutura original. O bagaço in natura, contendo aproximadamente 43% de celulose, 28% de hemicelulose e 14% de lignina, foi submetido a tratamento hidrotérmico (220°C/5min) seguido de hidrólise pelas enzimas Celulase, Celobiase e Xilanase. O hidrolisado obtido pela degradação das frações celulósica e hemicelulósica continha basicamente glicose e xilose, e foi utilizado como fonte de carbono no meio de cultivo. Na fermentação foi obtido rendimento de 0,96 e produtividade volumétrica igual a 4,11 g L-1. Hidrolisado obtido do bagaço explodido a vapor também foi testado. Constituído basicamente pela fração hemicelulósica, o hidrolisado continha essencialmente xilose. Nesta fermentação alcançou-se rendimento de 0,90 e produtividade volumétrica igual a 0,225 g L-1 h-1. Posteriores estudos mostraram que a adaptação da cepa a meios de cultivo contendo apenas pentoses (xilose e arabinose) reduzem a fase lag tendo como consequência o aumento da produtividade. Estudos de inibição em meio sintético permitiram avaliar o efeito que cada composto causou individualmente na multiplicação celular e na produção do ácido lático. O ácido acético foi o componente que mostrou maior efeito inibitório. Dentro da faixa estudada, furfural e HMF provocaram comportamentos semelhantes, tornando-se inibitórios em concentrações acima de 1,5 g L-1 na produção de biomassa, mas não na produção de ácido lático. Inibição por xilose também foi investigada. Rendimento máximo igual a 0,95 foi obtido quando 140 g L-1 de açúcar inicial foram utilizados. Concentrações acima de 150 g L-1 mostram-se inibitórias ao crescimento microbiano. Foi possível observar que o bagaço da cana de açúcar é um substrato promissor para produção biotecnológica de ácido lático, um produto químico com alto valor agregado e com versatilidade em aplicações. O microrganismo selecionado, a bactéria Bacillus coagulans 162, mostrou-se uma cepa robusta, com relativa tolerância a inibidores e capaz de converter homofermentativamente as pentoses presentes no meio de cultura, característica desejável do ponto de vista produtivo e econômico / Abstract: Production of chemical compounds from lignocellulose residues has attracted attention of actual world society. The search for productive alternatives fossil fuels non-dependent, the use of renewable resources and sustainability are the main reasons. In this work, lactic acid production by fermentation of sugars obtained from sugarcane bagasse, essentially glucose and xylose, was studied. From several strains of lactic acid bactéria and using a qualitative methodology, 26 microorganisms were selected for shaking flasks and bioreactor tests. The best results were obtained in fermentations using B. coagulans 162, reaching yield of 0,95 and volumetric productivity of 2,13 g L-1 h-1 in simple batch and medium containing glucose, xylose and arabinose. In continuous feeding, the cultivation medium reached 105 g of lactic acid per liter. The treatment effects of hydrotermal hydrolysis and steam explosion of sugarcane bagasse were also studied. It was verified acetic acid, furfural and hydroxymethylfurfural (HMF) formation and glucose, xylose and arabinose release. Bagasse fibers were photographed using Scanning Electron Microscopy (SEM), before and after termal treatment for visualization of modification in the arrangement of the original structure. Bagasse in natura, containing approximately 43% of cellulose, 28% of hemicellulose and 14% of lignina, was submitted to hydroythermal treatment (220°C/5min) followed by hydrolysis with the enzymes Cellulase, Cellobiase and Xylanase. The obtained hydrolysate of cellulose and hemicellulose fractions contained mainly glucose and xylose, and was used as Catbon source in the cultivation medium. In the fermentation was obtained yield of 0,96 and volumetric productivity equal to 4,11 g L-1. The hydrolysate obtained from steam exploded bagasse was tested. Constituted basically by hemicellulose fraction, the hydrolysate contained mainly xylose. It was reached yield of 0,90 and volumetric productivity equal to 0,225 g L-1 h-1. Later studies have showed that strains adaptation in cultivation medium containing only pentose (xylose and arabinose) reduces the lag phase resulting in increase of productivity. Inhibition studies on synthetic medium allowed to evaluate the effect that each compound caused individually on cell replication and on lactic acid production. Acetic acid was the compound that showed the higher inhibitory effect. In the studied range, furfural and HMF showed similar behaviour becoming inhibitory in concentrations above 1,5 g L-1 on biomass production. The same effect was not observed on lactic acid production. Inhibition by xylose was also investigated. Maximum yield, equal to 0,95, was obtained when 140 g L-1 of initial sugar were used. Concentrations above 150 g L-1 showed to be inhibitory to the microbial growth. Sugarcane bagasse showed to be a promissor substrate to biotechnologic production of lactic acid, a chemical with high added value and versatile applications. The selected microorganism, the bacteria Bacillus coagulans 162, showed to be a robust strain, with relative tolerance against inhibitors and able to convert homofermentatively the pentose present in hemicellulose hydrolysate, desirable feature in productive and economic terms / Doutorado / Desenvolvimento de Processos Químicos / Doutora em Engenharia Quimica
312

Molybdenum Disulfide-Conducting Polymer Composite Structures for Electrochemical Biosensor Applications

Jia, Hongxiang 04 November 2016 (has links)
Lactic acid is widely existing in human bodies, animals and microorganisms. Recently, using biosensor to detect the concentration of lactic acid and diagnose disease have attracted great research and development interests. Nanocomposites is one of the best material used for biosensor because their wonderful conductivity, optical and electrochemical properties. In the study, MoS2 and polypyrrole (PPY) are used for the composite material electrode. To determine whether lactate oxidase (LOD) was helpful for the biosensor’s detective properties, both PPY-MoS2 film with LOD and PPY-MoS2 film without LOD are being tested. The fourier transform infrared spectroscopy (FTIR) and Raman spectroscopic techniques have been used to understand the chemical bonds in the nanocomposite film. The X-ray diffraction (XRD) technique has been performed to understand the crystallographic structure of the MoS2 -PPY film. The morphologies were confirmed by scanning electron microscopy (SEM). The UV-vis spectroscopy has been used to determine the band structure of composite film. Cyclic voltammetry (CV), chronoamperometry (CA), and electrochemical impedance spectroscopy (EIS) were used to analyze in different concentration of solution, under different scan rate to obtain stability and work efficiency. These results were compared with PPY-MoS2 film with and without lactate oxidase conditions. The chronoamperometric technique has been used to detect the concentration of lactic acid.
313

Apiculture and Bee Health in Central Sweden

Larne, Olof January 2014 (has links)
Pollination necessary for the agricultural crop production affects the functions of the ecosystems on earth. In landscapes where wild pollinators are decreasing, honey bees promote the maintenance of plant species, therefore honey bee losses are of great concern. Current honey bee colony losses (Apis mellifera) worldwide are caused by Colony collapse disorder, the mite Varroa destructor and pesticides. This results in the honey bees weakened immune defenses making them susceptible to different diseases. Studies show that long-term natural selection for coexistence, or resistance to Varroa mites by honey bees is possible, but further developments are needed for this application in managed beekeeping. Furthermore, lactic acid bacteria found in honey bees can play a crucial role by improving its immune response. At places where apicultural practices have led to decreased amounts of lactic acid bacteria in the bees, supplementary feeding is a possible treatment solution. The beekeepers' observations of mite reproduction dynamics and the overwintering of strong and healthy honey bees are needed to decrease Varroa treatment with synthetic chemicals. Based on this knowledge, a small survey of beekeepers in Örebro County, Sweden, was conducted in an attempt to determine the status of their bees during the last 5 years. The largest colony loss over the past 5 winters was predominantly in 2012-2013. Varroa mite infestations with disease symptoms were primarily found in the central region. Since the survey was small and time was limited it was only possible to make general conclusions. Deeper understanding of lactic acid bacteria in honey bee societies and their inhibition of different diseases are important for future research.
314

Evaluation of Probiotics Solutions in Shrimp Aquaculture and Their Effectiveness Against Acute Hepatopancreatic Necrosis Disease Caused By Vibrio parahaemolyticus Strain A3

Pinoargote, Gustavo, Pinoargote, Gustavo January 2017 (has links)
As the demand for farmed shrimp continues to grow worldwide, the use of probiotics to address the sustainability of aquaculture fisheries has gained much attention. Emerging diseases in shrimp aquaculture, such as acute hepatopancreatic necrosis disease (AHPND), have devastating economic impacts in countries that largely depend on this activity. The relevance of this research lies on the fact that it explores the potential of using probiotics to mitigate the negative effects of AHPND in shrimp aquaculture. The scope of these studies includes survival of probiotic microbes in typical aquaculture water conditions, the effectiveness of probiotics in vitro and in vivo against the pathogenic strain of Vibrio parahaemolyticus that causes AHPND, and the effects of probiotics on the bacterial community composition in aquaculture water and gastrointestinal tract of shrimp after an induced AHPND infection. The microorganisms chosen as probiotics for this research include a lactic acid bacterium, a yeast and a photosynthetic bacterium. Informal feedback from shrimp farmers in Thailand and Vietnam revealed positive results against AHPND when using a commercially available probiotic containing multiple species of microorganisms from these probiotic groups. This research was divided into four studies. The first study (Chapter 2) evaluated the growth of the three different probiotic microbes in two different salinity conditions commonly found in intensive shrimp production systems to determine whether they could be further considered as potential candidates. The hypothesis was that the NaCl concentrations of the media may not have an effect on acid production, growth and cell morphology of the microorganisms being evaluated due to their metabolic mechanisms of adaptation to differences in osmotic pressure. The probiotic microbes were cultured in nutrient media enriched with 1 and 2% NaCl. Microbial survival, acidity and cell morphology between treatments were compared using enumeration by serial dilutions and plating, pH measurements and scanning electron microscopy imaging, respectively. The results showed that salinity levels up to 2% NaCl did not affect the growth of lactic acid bacteria and yeast. Photosynthetic bacteria grown in media with 1% NaCl showed a 24-hour delay in comparison to the control and a prolonged lag phase that lasted 48 hours when the media contained 2% NaCl. Therefore, the hypothesis was partially supported. Based on these results, all three probiotic microbes demonstrated to be suitable for application in aquaculture ponds with up to 2% salinity. The second study (chapter 3) aimed at determining the inhibitory effects of eight different formulations of probiotic solutions against the pathogenic strain of V. parahaemolyticus in vitro. The hypothesis of this study was that probiotic solutions containing whole microbial cultures of multiple microbial types including lactic acid bacteria may have a greater inactivation of the pathogen. The probiotic formulations consisted of individual cultures, combinations of the three probiotic microbes, and a commercially available probiotic formulation. The inhibitory effects were evaluated following a disk diffusion test on solid media by comparing diameters of zones of inhibition, and a challenge test in liquid media by comparing pathogen survival after exposure to probiotic solutions. Findings revealed inhibition zones with greater diameters in disks treated with whole microbial cultures (min: 7.83 mm, max: 11.33 mm) versus disks treated with only supernatants (min: 7.00 mm, max: 8.50 mm). Results from the challenge in liquid media tests showed greater inactivation of the pathogen after 48 h (6.56±0.07 to 5.43±0.03 log10 reduction) when treated with lactic acid bacteria alone and in combination with other microbial types. From these results, the hypothesis was supported and it was concluded that probiotic solutions including a lactic acid bacterium, the combination of lactic acid bacterium and photosynthetic bacterium and the combination of lactic acid bacterium, yeast and photosynthetic bacterium may be used to effectively inhibit AHPND in shrimp aquaculture. The third study (chapter 4) explored the effects of probiotic solutions on live shrimp (Litopenaeus vannamei) pretreated with probiotics for 7 days prior to challenging them with the pathogenic V. parahaemolyticus strain causing AHPND. The hypothesis of this study was that higher shrimp survival and weight gains would be observed when shrimps are exposed to probiotics solutions with multiple microbial types in the water and feed. Water quality parameters (dissolved oxygen, temperature, acidity, salinity and total ammonia nitrogen), difference in shrimp weight increase and shrimp survival were compared between probiotic treatments and controls. Treatments included: (1) a lactic acid bacterium alone (Pro.Sol1), (2) a lactic acid bacterium and a photosynthetic bacterium (Pro.Sol2), (3) the combination of a lactic acid bacterium, a yeast, and a photosynthetic bacterium (Pro.Sol3), and (4) a commercial probiotic (Com.Pro) and the results showed shrimp survival of 11.7, 26.7, 36.7 and 73.3%, respectively. Also, treatments Pro.Sol3 and Com.Pro resulted in higher weight gains (19.7 and 31.2%, respectively) versus the negative control (11.2%). Moreover, onset of the disease was delayed in all treatments as follows: 12 h with Pro.Sol1, 20 h with Pro.Sol2, 22 h with Pro.Sol3, and 26 h with Com.Pro. From these results, the hypothesis was supported and it was concluded that probiotics have the potential to effectively mitigate the effects of AHPND in the shrimp aquaculture. Finally, the fourth study (chapter 5) evaluated the effects of probiotics on the bacterial diversity of the gastrointestinal tract of shrimp as well as variation of bacterial and fungal diversity in the water before and after challenging shrimp with the pathogenic V. parahaemolyticus strain causing AHPND. The hypothesis of this study was that probiotic solutions with multiple microbial types may be able to maintain the microbial composition of the shrimp GI tract and aquaculture water preventing an increase in relative abundance of the family Vibrionaceae. Next generation sequencing was conducted using an Illumina MiSeq™ and primers specific for bacterial V4 hypervariable region of the 16S rRNA gene. The results obtained from the GI tract of shrimp revealed that the relative abundance of the family Vibrionaceae significantly increased in treatments with high mortalities, whereas treatments with higher survivals showed no significant difference in relative abundance of Vibrionaceae family members (P>0.05) in comparison to the negative control. The Shannon diversity index values (abundance and evenness) of the bacterial communities revealed that the treatment with the highest survival had the highest Shannon index value (4.69±0.133) whereas the treatment with lowest survival had the lowest Shannon index value (0.17±0.004). The results obtained from water samples did not show a higher abundance of the family Vibrionaceae, and diversity was maintained after infection (Shannon index 4.64±0.58). Regarding fungal diversity in water samples, Shannon index values revealed no significant changes before (3.627±0.37) and after infection (3.664±0.18) except for Pro.Sol3 (2.859±0.56) and Com.Pro (1.795±0.50), which included yeast in their formulation. Thus, the hypothesis of this study was partially supported since the results revealed that while all probiotics maintained the diversity of microbial composition in the water, only those probiotic solutions with various microbial types in the formulation maintained the diversity of the microbial composition in the GI tract of shrimp providing protection against AHPND.
315

Les polysaccharides de la bactérie lactique Oenococcus oeni, de l’élucidation de leurs structures et voies de biosynthèse à leur valorisation technologique / The polysaccharides of the lactic acid bacteria Oenococcus oeni, from the elucidation of their structures and biosynthetic pathways to technological valuation

Dimopoulou, Maria 13 December 2013 (has links)
Les exopolysaccharides (EPS) produits par les bactéries lactiques ont longtemps été considérés comme des composés indésirables dans le vin. En effet, le β-glucane produit par certaines souches bactériennes est responsable d’une altération qui rend le vin impropre à la consommation. Cependant, les polysaccharides produits par Oenococcus oeni, principale espèce de la fermentation malolactique (FML) qui est une étape essentielle participant à la stabilisation et la qualité du vin, n’ont jamais été associés à un quelconque défaut. Notre premier objectif était d'identifier le matériel génétique impliqué dans la production de polysaccharides, en termes d'évolution phylogénétique et de diversité, parmi une collection de 50 souches d’O. oeni. L'analyse bioinformatique des 50 séquences génomiques a révélé la présence de deux loci organisés en opéron et potentiellement impliqués dans la production d'hétéropolysaccharides, mais aussi la présence de gènes isolés de glycosyltransférases et glycosides hydrolases impliqués dans la synthèse d’homopolysaccharides. L’ensemble des souches analysées présentent au moins une des voies de biosynthèse des EPS, suggérant un rôle essentiel chez O. oeni. Par la suite, une approche biochimique des polysaccharides produits a été mise en place et a permis de confirmer les données génomiques. Une glycosyltransférase membranaire, jouant un rôle clé dans la production d'EPS, a été caractérisée afin de mieux comprendre le mécanisme de la synthèse EPS. Par ailleurs, l’étude physiologique des polysaccharides produits a révélé l’existence de deux phénotypes (forme libérée et capsulaire), chacun jouant un rôle dans la survie et l’adaptation de la bactérie au vin et au procédé de lyophilisation industriel, forme sous laquelle les souches commerciales sont proposées pour induire la FML. / Exopolysaccharides (EPS) of lactic acid bacteria have long ago been undesirable in wine. Indeed, β-glucan produced by certain strains of bacteria provokes wine spoilage and makes the wine commercially defective. However, the polysaccharides produced by Oenococcus oeni which is the main species to drive malolactic fermentation (MLF), an essential step for wine stabilization and quality improvement, are not to be blamed for any spoilage effect. Our first aim was to identify the genetic material implicated in polysaccharides production, in terms of phylogenetic evolution and diversity among the strains of our collection. The bioinformatic analysis of 50 O. oeni genomic sequences revealed the presence of two organized loci potentially implicated in the production of heteropolysaccharides and also the presence of isolated genes of glycosyltransferases and glycoside-hydrolases implicated in the production of homopolysaccharides. The presence of at least one biosynthetic pathways in all the strains tested shows the importance of the polysaccharides genes for Oenococcus oeni. Thereafter, we reached-up a biochemical approach of the produced polysaccharides, confirming the results of the bioinformatics research. Initially we characterized a membrane glycosyltranferase, playing a key role in the EPS production. The results allow us to better understand the mechanism of the EPS synthesis. Furthermore the physiology of the produced polysaccharides showed two possible phenotypes (liberated and capsular form) each one playing his role for the bacterial survival at his natural environment (wine) as well as at industrial level (production of malolactic starters).
316

Phage-host interactions in <em>Lactobacillus delbrueckii</em>: host recognition and transcription of early phage genes

Räisänen, L. (Liisa) 24 April 2007 (has links)
Abstract The scope of this study includes aspects of phage evolution and antagonistic/mutualistic coevolution between a phage and its host. As a basic study it may provide tools for developing phage resistant starters and offer regulatory elements and factors for biotechnological applications. The LL-H anti-receptor was characterized by isolation of spontaneous LL-H host range mutants and subsequent sequencing of candidate genes. All LL-H host range mutants carried a single point mutation at the 3' end of a minor tail protein encoding gene g71. The genomic location of g71 is congruent with the other verified anti-receptor genes found in the λ supergroup. The C-terminus of Gp71 determines the adsorption specificity of phage LL-H similarly for the number of phages infecting Gram-positive and Gram-negative bacteria. A Gp71 homolog of phage JCL1032 showed 62% identity to LL-H Gp71 within the last 300 amino acids at the C-terminus. Lactobacillus delbrueckii phage receptors were investigated by the purification of different cell surface structures. Certain Lb. delbrueckii phages from homology groups a and c including LL-H, LL-H host range mutants and JCL1032, were specifically inactivated by the LTAs. In structural analyses LTAs showed differences in the degree of α-glucosyl and ᴅ-alanyl substitution. α-glucose is necessary for LL-H adsorption. A high level of ᴅ-alanine esters in LTA backbones inhibited Lb. delbrueckii phage inactivation in general. Lysogenization of strain ATCC 15808 with the temperate phage JCL1032 revealed a rarely described coexistence of phage adsorption resistance and phage immunity, which could not be explained by lysogenic conversion. In this case the role of spontaneously induced JCL1032 may be significant. The LL-H early gene region was localized between the dysfunctional lysogeny module and the terminase encoding genes. The function of five ORFs could be connected to phage DNA replication and/or homologous recombination. Transcription of LL-H genes could be divided into two, possibly three, phases in which large gene clusters were sequentially transcribed. The intensity of the late transcripts exceeded the intensity of the early transcripts by several times. Two candidate genes for transcription regulators were found. One of the two candidates is the first ORF in the LL-H early gene region.
317

Étude des propriétés thermiques et de la morphologie des nanobiopolymères à base de poly acide lactique : effet de la composition et de la nature de la nanocharge / Study of thermal properties and morphology of the nanobiopolymers based on poly lactic acid : effect of composition and nature of nanofiller

Issaadi, Kahina 14 September 2015 (has links)
La thèse porte sur l’étude de la morphologie et des différentes propriétés thermiques, mécaniques et barrières à la vapeur d’eau des nanobiocomposites à base de poly acide lactique (pla). La première partie est consacrée au greffage de l’anhydride maléique (am) sur le poly acide lactique plagma et à la mise en oeuvre de nanobiocomposites pla/cloisites, plagma/cloisites et pla/plagma/cloisites en utilisant deux cloisites® différentes (c20a et c30b), préparés par voie fondue. Au travers des différentes techniques utilisées, les résultats révèlent que les nanobiocomposites pla/cloisites élaborés se caractérisent par une morphologie mixte intercalée-exfoliée. L’ensemble des échantillons élaborés indiquent une meilleure dispersion de la cloisite apolaire c20a en présence de l’anhydride maléique et la réagrégation de la cloisite polaire c30b et par conséquent, l’amélioration à la fois des propriétés mécaniques et barrières à la vapeur d’eau des nanobiocomposites à base de la c20a. La seconde partie traite l’influence des groupements fonctionnels d’oxyde de graphène synthetisé au laboratoire et de graphène fonctionnalisé époxy commercialisé et fournit par nanovia (france) sur la dispersion des nanofeuillets de graphène au sein de la matrice pla, en présence ou en absence du compatibilisant plagma. L’étude révèle que la présence du compatibilisant améliore la dispersion de deux nanocharges étudiées. Le maximum des performances rhéologiques indiquant la meilleure dispersion de la nanocharge est enregistré pour une faible quantité d’oxyde de graphène possédant plus de groupements fonctionnels contenant l’atome d’oxygène. Les propriétés thermiques et barrières ont été considérablement améliorées avec l’incorporation des deux nanocharges et en présence de l’agent compatibilisant plagma. L’étude montre aussi que les propriétés mécaniques en traction des nanobiocomposites à base de graphène fonctionnalisé époxy (gfe) ont été améliorées en présence du plagma. / The thesis focuses on the study of the morphology and thermal, mechanical and barrier properties of the nanobiocomposites based on poly lactic acid (pla). The first part is devoted to the grafting of maleic anhydride (ma) on the poly lactic acid plagma and the elaboration of the nanobiocomposites pla/cloisites, plagma/cloisites and pla/plagma/cloisitres using two different cloisites (c20a and c30b), prepared by melt intercalation and the characterization of the main properties. The results indicate that the pla/cloisites nanobiocomposites exhibit a mixed intercalated-exfoliated morphology. All the prepared samples showed an improvement in both thermal, mechanical and barrier properties in the presence of the nanofiller. All prepared samples show better dispersion of apolar cloisite (c20a) in the presence of maleic anhydride and reaggregation of the polar cloisite (c30b) and therefore, the improvement of both the mechanical and barrier properties of the nanobiocomposites based on c20a. The second section discusses the effect of the functional groups of graphene oxide synthetized in the laboratory and the graphene fonctionnalized epoxy marketed and supplied by nanovia (france) on the dispersion of the graphene nanofillers in the pla matrix. The study reveals that the presence of compatibilizer improves the dispersion of two studied nanofillers. Maximum rheological performance indicating better dispersion of the nanofiller is registered for a small amount of graphene oxide (og) with more functional groups containing oxygen atom. The thermal and barriers properties have been considerably improved with the incorporation of two nanofillers and in the presence of plagma compatibilizer. The study also shows that the tensile properties of the pla containing graphene functionalized epoxy (gfe) were improved in the presence of plagma.
318

Optimisation of cell growth and shelf life stability of Megasphaera elsdenii NCIMB 41125

Langa, R.L.S. (Rashwahla Lesiba Sydwell) 02 November 2010 (has links)
Economic demands for milk and meat products force farmers to increase the carbohydrate content of grains fed to animals. One of the consequences of this intervention is the lactic acidosis condition in animals fed the high-concentrate diets, which is the accumulation of lactic acid in the rumen. Symptoms of the condition include lameness, bloatedness, epistaxis and dilated pupils. Methods such as ionophore antibiotics, gradual transition from high to low-concentrate diets and yeast cultures have in the past been used to avert this condition but all had their disadvantages. Microorganisms may develop resistance to the ionophore antibiotics; gradual transition time may be too long for production and yeast cultures have been reported to be ineffective when used alone. Megasphaera elsdenii, a major lactate utiliser of the rumen of animals, has been used as a direct-fed microbial in the management of lactic acid levels. Studies on M. elsdenii NCIMB 41125 have shown that the bacterium is an effective lactic acid utiliser. Megasphaera elsdenii NCIMB 41125 was cultured in a Biostat Braun B fermenter where growth yields were attempted to be optimised by using a pulse-and-shift method. A semi-defined lactate (SDL) and corn steep liquor (CSL) media, which contained reducing agents, to ensure anaerobiosis, were used in the optimisation and shelf-life studies. Culture stability studies were performed on samples from a fermenter, and subsequently in stainless-steel kegs. Samples for analysis were then taken from the kegs. Preservation of M. elsdenii NCIMB 41125 and prevention of cell settlement methods were also evaluated using a combination of sodium lactate / glycerol and pure xanthan gum / gelatin, respectively. The cultures were harvested using either continuous or fed-batch fermentations. Shelf-life was better for cultures grown on SDL medium with a lower concentration of lactic acid, a finding which related to the substrate affinity of M. elsdenii NCIMB 41125. Higher growth yields were obtained from secondary cultures which had been continuously harvested into stainless-steel kegs. Shelf-life results obtained from the use of corn steep liquor (CSL) medium were almost similar to those obtained when SDL medium was used, however, the problem with CSL data was the variability between batches. None of the preservation or prevention of cell settlement methods resulted in positive responses, although pure xanthan gum preserved cultures for the six days evaluated. In order to avert a sudden reduction of viable cells when high concentrations of lactic acid are used, it could be necessary to harvest cells during the secondary growth phase. / Dissertation (MSc)--University of Pretoria, 2010. / Microbiology and Plant Pathology / unrestricted
319

Indium complexes and their role in the ring-opening polymerization of lactide

Douglas, Amy Frances 05 1900 (has links)
The synthesis and characterization of a series of chiral indium complexes bearing a tridentate NNO ligand are reported. The ligand 2-[[[(dimethylamino)cyclohexyl]amino]methyl]- 4,6-bis(tert-butyl) phenol (H₂NNO) was synthesized via a previously published procedure and bound to indium by both a protonolysis and salt metathesis route. A dimethylated indium complex (NNO)InMe₂ (1) was isolated by reaction of InMe₃ with H₂NNO. A one-pot saltmetathesis route was used to produce a unique mixed-bridge dinuclear indium complex [(NNO)InCl] ₂(μ-OEt)(μ-Cl) (3) from a mixture of indium trichloride, potassium ethoxide and the monopotassiated salt of the ligand, KH(NNO). Direct reaction of KH(NNO) and indium trichloride resulted in the formation of (NNO)InCl₂ (4) which was carried forward to 3 by reaction with sodium ethoxide. The complex 3 is active for the ROP of β-butyrolactone ε-caprolactone and lactide and is the first reported indium-based catalyst for lactide or β-butyrolactone ROP. Kinetic studies of 3 for ROP of LA revealed that catalyst was well-behaved, and that the rate was first order with regard to lactide and catalyst. The enthalpy and entropy of activation for the ROP were experimentally determined. Polymer produced by ROP by 3 has narrow molecular weight distribution and a good correlation is seen between the observed moleular weight and monomer loading. A mechanism was proposed for 3 acting as a catalyst for the ROP of lactide; however further experiments are required to confirm this mechanism. Polymer samples isolated from the ROP of rac-lactide by rac-3 show isotactic enrichment. It is postulated that the chiral catalyst 3 is exerting stereocontrol via an enantiomorphic site control mechanism. / Science, Faculty of / Chemistry, Department of / Graduate
320

Bioconversão de xilose em ácido lático / Xylose bioconversion to lactic acid

Xavier, Michelle da Cunha Abreu, 1985- 18 August 2018 (has links)
Orientadores: Telma Teixeira Franco, Saartje Hernalsteens / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Química / Made available in DSpace on 2018-08-18T17:32:59Z (GMT). No. of bitstreams: 1 Xavier_MichelledaCunhaAbreu_M.pdf: 1925082 bytes, checksum: 338a42bb30c7bb7e769283f5557ba4e4 (MD5) Previous issue date: 2011 / Resumo: A produção do ácido lático vem recentemente aumentando devido à sua importância como precursor na fabricação de plásticos biodegradáveis, o polilactato (PLA). Devido à preocupação com a redução do custo da matéria-prima, o uso de materiais lignocelulósicos como fonte de carbono barata para a produção de ácido lático é bastante atraente. O bagaço de cana-de-açúcar, disponível em abundância no Brasil, representa grande potencial como matéria prima para fermentação, por ser fonte renovável de carbono para obtenção de blocos construtores de interesse industrial, tais como o ácido lático (AL). O Neste contexto, o presente trabalho foi delineado para estudar a produção de ácido lático a partir da xilose, principal constituinte da fração hemicelulósica presente no bagaço de cana-de-açúcar. Nosso estudo explorou o uso de duas preparações distintas de biomassa antes de seu uso no processo fermentativo: a água de lavagem de bagaço de cana (MRS) e do hidrolisado do bagaço de cana (MRSHBC). Para a bioconversão de interesse, foram selecionadas 9 cepas de Lactobacillus capazes de assimilar xilose, identificadas através de um teste screening para acidificação em placas de Agar sólido e ensaios de fermentação em incubador rotativo. O Lactobacillus pentosus ATCC 8041 foi a cepa que apresentou maior produtividade, sendo selecionado para estudos posteriores. As fermentações dos meios MRSxilose e MRS na ausência de xilose mostraram que o microrganismo produz ácido acético a partir dos componentes presentes no meio (tais como, peptona A, extrato de levedura e peptona de soja). Os resultados da fermentação em batelada em meio MRSALB indicaram que o Lactobacillus pentosus ATCC 8041 fermentou eficientemente pentoses (xilose e arabinose) também na presença de glicose, atingindo 2,37 g/L de ácido lático e 0,99 g/L de ácido acético, que representa um rendimento (YP/S) de 0,65 g/g e (YP/S) de 0,27 g/g, respectivamente. O B. coagulans 162 apresentou melhor rendimento de ácido lático (YP/S = 0,85 g/g) e produtividade (QP = 0,35 g/[L.h]) em relação ao L. pentosus ATCC 8041 quando o meio MRSALB foi utilizado como meio de fermentação. Resultados da fermentação em batelada em meio MRSHBC revelaram que a glicose foi o primeiro açúcar a ser esgotado, seguido de xilose. Nestas condições de fermentação, o L. pentosus ATCC 8041 produziu 28,99 g/L de ácido lático (YP/S = 0,78 g/g), enquanto que o ácido acético alcançou uma concentração final de 8,19 g/L (YP/S = 0,21 g/g). O D(-)-ácido lático foi a forma isomérica produzida, representando de 53 a 66% do ácido lático total sintetizado pelo L. pentosus ATCC 8041. A maior assimilação de xilose foi observada quando a peptona A foi substituída por uréia na fermentação do meio MRSxilose pelo L. pentosus ATCC 8041. Assim, a fração hemicelulósica do bagaço de cana-de-açúcar, mais difícil de ser metabolizada que a fração celulósica pode ser considerada matéria-prima promissora para processos de bioconversão, como a produção de ácido lático, representando uma fonte de menor custo, renovável e rica em açúcares fermentescíveis / Abstract: The demands for lactic acid production are increasing in the last few years due to its use as precursor for the synthesis of biodegradable plastics, also known as polylactic acid (PLA) bioplastics. In order to reduce the production costs, which are mainly dependent on the raw material employed for PLA synthesis, the use of lignocellulosic biomass as carbon source is a promising alternative, since it constitutes a large scale byproduct in several industrial sectors. Among the available biomass substrates, the sugarcane bagasse represents an attractive candidate to feed PLA demands, since it constitute a cheap and abundant raw material in Brazil. In this context, the present work was delineated to study the lactic acid production from xylose, the main constituent of the hemicellulose fraction present in sugarcane bagasse. Our study explored the use of two distinct preparations of the biomass prior its use in the fermentative process: the bagasse wash water (MRSALB) and the bagasse hydrolyzate (MRSHBC). For the bioconversion of interest, we selected 9 Lactobacillus strains ferment xylose were indentified for the acid production by screening tests for acidification on solid agar plates and fermentation assays in rotary incubator. Lactobacillus pentosus ATCC 8041 was the strain displaying the highest productivity, being selected for further studies. Fermentations using synthetic media (MRS) in the presence or absence of xylose revealed that Lactobacillus pentosus ATCC 8041 produces acetic acid from other carbon sources present in the media, such as peptone A, yeast extract and soy peptone. Results from batch fermentation in MRSALB media indicated that Lactobacillus pentosus ATCC 8041 fermented efficiently pentoses (xylose and arabinose) in the presence of glucose, reaching 2.37 gl-1 of lactic acid and 0.99 gl-1 of acetic acid, which represents a yield (YP/S) of 0.65 g/g and 0.27 g/g, respectively. This productivity was slightly minor than the observed for other lactic acid-producing strain, Bacillus coagulans 162, in similar fermentation conditions (YP/S = 0.85 g/g). Results from batch fermentation in MRSHBC media revealed that glucose was the first sugar to be depleted, followed by xylose. In this fermentation conditions, Lactobacillus pentosus ATCC 8041 produced 28.99 gl-1 of lactic acid, (YP/S = 0.78 g/g), whereas the acetic acid reached a final concentration of 8.19 gl-1 (YP/S= 0.22 g/g). D(-)- lactic acid was produced isomeric form, representing 53-66% of total lactic acid synthesized by Lactobacillus pentosus ATCC 8041, which is important since it presents the ideal characteristics for PLA production. The highest xylose assimilation was observed when the peptone A was replaced by urea. In summary, our study confirm that, despite the hemicellulose fraction of sugarcane bagasse be more difficult to be assimilated than the cellulosic fraction, it can be considered an adequate raw material for the production of polylactic acid bioplastics, representing a low cost, renewable and abundant source of fermentable sugars. The strain Lactobacillus pentosus ATCC 8041 displayed a good fermentative performance, being considered a very attractive candidate for the biosynthesis of lactic acid from sugarcane bagasse / Mestrado / Desenvolvimento de Processos Químicos / Mestre em Engenharia Química

Page generated in 0.4067 seconds