Spelling suggestions: "subject:"ladungsträgertransport"" "subject:"ladungsträgertransports""
1 |
Charge Transport in Organic Light-Emitting DiodesSchober, Matthias 29 November 2012 (has links) (PDF)
This thesis is about the development and validation of a numerical model for the simulation of the current-voltage characteristics of organic thin-film devices. The focus is on the analysis of a white organic light-emitting diode (OLED) with fluorescent blue and phosphorescent red and green emitters. The simulation model describes the charge transport as a one-dimensional drift-diffusion current and is developed on the basis of the Scharfetter-Gummel method. It incorporates modern theories for the charge transport in disordered organic materials, which are considered by means of special functions for the diffusion coefficient and the charge-carrier mobility. The algorithm is designed such that it can switch between different models for mobility and calculates both transient and steady-state solutions. In the analysis of the OLED, electron and hole transport are investigated separately in series of single-carrier devices. These test devices incorporate parts of the layers in the OLED between symmetrically arranged injection layers that are electrically doped. Thereby, the OLED layer sequence is reconstructed step by step. The analysis of the test devices allows to obtain the numerous parameters which are required for the simulation of the complete OLED and reveals many interesting features of the OLED.
For instance, it is shown how the accumulation of charge carriers in front of an interface barrier increases the mobility and the transfer rate across the interface. Furthermore, it is demonstrated how to identify charge-trapping states. This leads to the detection of deep trap states in the emission zone of the OLED -- an interesting aspect, since these states can function as recombination centers and may cause non-radiative losses. Moreover, various other effects such as interface dipoles and a slight freeze-out of active electric dopants in the injection layers are observed. In the simulations of the numerous test devices, the parameters are consistently applied. Thereby, the agreement between simulation and experiment is excellent, which demonstrates the correctness and applicability of the developed model. Finally, the complete OLED is successfully simulated on the basis of the parameters that have been obtained in the analysis of the single-carrier devices. The simulation of the OLED illustrates the transport levels of electrons and holes, and proofs that the OLED efficiency is low because of non-radiative recombination in the interlayer between the phosphorescent and fluorescent emission zones. In this context, many interesting issues are discussed, e.g. the applicability of the Langevin model in combination with the mobility models for the description of recombination and the relevance of interactions between free charge carriers and excitons.
|
2 |
Charge Transport in Organic Light-Emitting Diodes: Experiments & SimulationsSchober, Matthias 01 November 2012 (has links)
This thesis is about the development and validation of a numerical model for the simulation of the current-voltage characteristics of organic thin-film devices. The focus is on the analysis of a white organic light-emitting diode (OLED) with fluorescent blue and phosphorescent red and green emitters. The simulation model describes the charge transport as a one-dimensional drift-diffusion current and is developed on the basis of the Scharfetter-Gummel method. It incorporates modern theories for the charge transport in disordered organic materials, which are considered by means of special functions for the diffusion coefficient and the charge-carrier mobility. The algorithm is designed such that it can switch between different models for mobility and calculates both transient and steady-state solutions. In the analysis of the OLED, electron and hole transport are investigated separately in series of single-carrier devices. These test devices incorporate parts of the layers in the OLED between symmetrically arranged injection layers that are electrically doped. Thereby, the OLED layer sequence is reconstructed step by step. The analysis of the test devices allows to obtain the numerous parameters which are required for the simulation of the complete OLED and reveals many interesting features of the OLED.
For instance, it is shown how the accumulation of charge carriers in front of an interface barrier increases the mobility and the transfer rate across the interface. Furthermore, it is demonstrated how to identify charge-trapping states. This leads to the detection of deep trap states in the emission zone of the OLED -- an interesting aspect, since these states can function as recombination centers and may cause non-radiative losses. Moreover, various other effects such as interface dipoles and a slight freeze-out of active electric dopants in the injection layers are observed. In the simulations of the numerous test devices, the parameters are consistently applied. Thereby, the agreement between simulation and experiment is excellent, which demonstrates the correctness and applicability of the developed model. Finally, the complete OLED is successfully simulated on the basis of the parameters that have been obtained in the analysis of the single-carrier devices. The simulation of the OLED illustrates the transport levels of electrons and holes, and proofs that the OLED efficiency is low because of non-radiative recombination in the interlayer between the phosphorescent and fluorescent emission zones. In this context, many interesting issues are discussed, e.g. the applicability of the Langevin model in combination with the mobility models for the description of recombination and the relevance of interactions between free charge carriers and excitons.
|
3 |
Nonlinear THz spectroscopy on n-type GaAsGaal, Peter 20 November 2008 (has links)
In dieser Arbeit wird die ultraschnelle Dynamik von Leitungsbandelektronen in Halbleitermaterialien mit Hilfe nichtlinearer Terahertz-Spektroskopie erforscht. Insbesondere wird n-dotiertes Galliumarsenid bei mittleren Dotierdichten zwischen 10^(16) cm^(-3) und 10^(17) cm^(-3) untersucht. Für die Erzeugung intensiever THz Strahlung wurde eine neuartige Quelle entwickelt, die THz Transienten mit nur einer Oszillationsperiode und maximalen Feldamplituden von mehr als 400 kV/cm liefert. Diese THz-Quelle benutzt ultrakurze optische Laserpulse aus einem Ti:Saphir Oszillator. Zusätzlich wurde ein neuartiger zwei-Farben Anrege-Abtast Experimentierplatz aufgebaut, der zweidimensionale, zeitaufgelöste Messungen im mittleren und fernen Infrarotbereich ermöglicht. Feldionisation flacher, neutraler Störstellen im Galliumarsenid-Gitter mittels intensiver, ultrakurzer THz Impulse und die anschliessende kohärente, strahlende Rekombination von Elektronen in die Störstellen-Grundzustände bei Raumtemperatur wird gezeigt. Der superradiante Zerfall der nichtlinearen Polarisation führt zur Abstrahlung eines kohärenten Signals mit Lebensdauern von über einer Pikosekunde. Solche nichtlinearen Signale, die 10-fache Lebensdauern im Vergleich zum linearen Fall aufweisen, wurden in dieser Arbeit zum ersten Mal gemessen. Bei niedrigen Temperaturen und THz Feldstärken unter 5 kV/cm werden Rabi-Oszillationen an Übergängen in flachen Störstellen demonstriert. Zum ersten Mal konnte die polare Elektron-LO-Phonon Wechselwirkung im quantenkinetischen Regime direkt gemessen werden. Die quasi-instantane Beschleunigung von Leitungsbandelektronen im polaren Galliumarsenid-Gitter und die anschließende Messung der Transmission im mittleren Infrarot-Bereich, zeigen eine Modulation der Transmission entlang der Anrege-Abtast Verzögerung mit der Frequenz des LO Phonons. Diese Oszillation ist ein direktes Maß der relativen Phase zwischen der Elektronenbewegung und der umgebenden Phonon Wolke. Quantenkinetische Modellrechnungen reproduzieren vollständig die beobachteten Effekte. / In this thesis, the ultrafast dynamics of conduction band electrons in semiconductors are investigated by nonlinear terahertz (THz) spectroscopy. In particular, n-doped gallium arsenide samples with doping concentrations in the range of 10^16cm^(-3) to 10^17 cm^(-3) are studied. A novel source for the generation of intense THz radiation is developed which yields single-cycle THz transients with field amplitudes of more then 400 kV/cm. The THz source uses ultrashort optical laser pulses provided by a Ti:sapphire oscillator. In addition, a two-color THz-pump mid-infrared-probe setup is implemented, which allows for two-dimensional time-resolved experiments in the far-infrared wavelength range. Field ionization of neutral shallow donors in gallium arsenide with intense, ultrashort THz pulses and subsequent coherent radiative recombination of electrons to impurity ground states is observed at room temperature. The superradiant decay of the nonlinear polarization results in the emission of a coherent signal with picosecond lifetimes. Such nonlinear signals, which exhibit a lifetime ten times longer than in the linear regime are observed for the first time. At low temperatures and THz field strengths below 5 kV/cm, Rabi flopping on shallow donor transitions is demonstrated. For the first time, the polar electron-LO phonon interaction is directly measured in the quantum kinetic transport regime. Quasi-instantaneous acceleration of conduction band electrons in the polar gallium arsenide lattice by the electric field of intense THz pulses and subsequent probing of the mid-infrared transmission reveals a modulation of the transmission along the THz-mid-infrared delay coordinate with the frequency of the LO phonon. These modulations directly display the relative phase between the electron motion and its surrounding virtual phonon cloud. Quantum kinetic model calculations fully account for the observed phenomena.
|
4 |
Charge Carrier Trap Spectroscopy on Organic Hole Transport MaterialsPahner, Paul 25 January 2017 (has links) (PDF)
Electronic circuits comprising organic semiconductor thin-films are part of promising technologies for a renewable power generation and an energy-efficient information technology. Whereas TV and mobile phone applications of organic light emitting diodes (OLEDs) got ready for the market awhile ago, organic photovoltaics still lack in power conversion efficiencies, especially in relation to their current fabrication costs. A major reason for the low efficiencies are losses due to the large number of charge carrier traps in organic semiconductors as compared to silicon. It is the aim of this thesis to identify and quantify charge carrier traps in vacuum-deposited organic semiconductor thin-films and comprehend the reasons for the trap formation. For that, the techniques impedance spectroscopy (IS), thermally stimulated currents (TSC), and photoelectron spectroscopy are utilized.
In order to assess the absolute energy of charge carrier traps, the charge carrier transport levels are computed for various hole transport materials such as MeO-TPD, pentacene, and ZnPc. Unlike inorganics, organic semiconductors possess in first-order approximation Gaussian distributed densities of states and temperaturedependent transport levels. The latter shift by up to 300 meV towards the energy gap-mid when changing from room temperature to 10 K as it is done for TSC examinations.
The frequency-dependent capacitance response of charge carrier traps in organic Schottky diodes of pentacene and ZnPc are studied via impedance spectroscopy. In undoped systems, deep traps with depths of approx. 0.6 eV and densities in the order of 1016...1017 cm−3 are prevailing. For pentacene, the deep trap density is reduced when the material undergoes an additional purification step. Utilizing p-doping, the Fermi level is tuned in a way that deep traps are saturated. Vice versa, the freeze-out of p-doped ZnPc provides further insight into the influence of trap-filling, impurity saturation and reserve on the Fermi level position in organic semiconductors. Furthermore, charge carrier traps are investigated via thermally stimulated currents. It is shown that the trap depths are obtained correctly only if the dispersive transport of the released charge carriers until their extraction is considered.
For the first time, the polarity of charge carrier traps in MeO-TPD, ZnPc, and m-MTDATA is identified from TSC’s differences in release time when spacer layers are introduced in the TSC samples. Simultaneously, tiny hole mobilities in the order of 10−13 cm2 Vs−1 are detected for low-temperature thin-films of the hole transporter material Spiro-TTB. It is shown for Spiro-TTB co-evaporated with the acceptor molecule F6-TCNNQ and a p-doped ZnPc:C60 absorber blend that the doping process creates shallow trap levels. Finally, various organic hole transport materials are examined upon their stability in water and oxygen atmosphere during sample fabrication and storage of the organic electronics. In case of pentacene, ZnPc, MeO-TPD, and m-MTDATA, hole traps are already present in unexposed thin-films, which increase in trap density upon oxygen exposure. A global trap level caused by oxygen impurities is found at energies of 4.7...4.8 eV that is detrimental to hole transport in organic semiconductors. / Elektronische Bauelemente aus Dünnschichten organischer Halbleiter sind Teil möglicher Schlüsseltechnologien zur regenerativen Energiegewinnung und energieeffizienten Informationstechnik. Während Fernseh- und Mobilfunkanwendungen organischer Leuchtdioden (OLEDs) bereits vor einiger Zeit Marktreife erlangt haben, ist die organische Photovoltaik (OPV) noch durch zu hohe Fertigungskosten in Relation zu unzureichenden Effizienzen unrentabel. Ein wesentlicher Grund für die niedrigen Wirkungsgrade sind Verluste durch die im Vergleich zu Silizium hohe Zahl an Ladungsträgerfallen in organischen Halbleitern. Ziel dieser Arbeit ist es, mittels Impedanz-Spektroskopie (IS), thermisch stimulierten Strömen (TSC) und Photoelektronenspektroskopie methodenübergreifend Ladungsträgerfallen in vakuumverdampften organischen Dünnschichten zu identifizieren, zu quantifizieren und ihre Ursachen zu ergründen.
Um die Energie von Ladungsträgerfallen absolut beziffern zu können, wird zunächst für verschiedene Lochtransportmaterialien wie z.B. MeO-TPD, Pentazen und ZnPc die Transportenergie aus den in erster Ordnung gaußförmigen Zustandsdichten berechnet. Im Gegensatz zu anorganischen Halbleitern ist die Transportenergie in organischen Halbleitern temperaturabhängig. Sie verschiebt sich beim Übergang von Raumtemperatur zu 10 K, wie für TSC Untersuchungen bedeutsam, um bis zu 300 meV in Richtung der Bandlückenmitte.
Mittels Impedanz-Spektroskopie wird die frequenzabhängige Kapazitätsantwort von Ladungsträgerfallen in organischen Schottky-Dioden aus Pentazen und ZnPc untersucht. In undotierten Systemen dominieren Defekte mit Tiefen um 0.6 eV, deren Dichte in der Größenordnung von 1016...1017 cm−3 liegt, sich aber im Fall von Pentazen durch einen zusätzlichen Materialaufreinigungsschritt halbieren lässt. Über p-Dotierung wird das Fermi-Level so eingestellt, dass tiefe Fallen abgesättigt werden können. Umgekehrt liefert das Ausfrieren von p-dotiertem ZnPc weitere Belege für den Einfluss von Fallenzuständen, Störstellen-Erschöpfung und Reserve auf das Fermi-Level in dotierten organischen Halbleitern.
Im Weiteren werden Ladungsträgerfallen über thermisch stimulierte Ströme untersucht. Es wird gezeigt, dass die Fallentiefen nur dann konsistent bestimmt werden, wenn der dispersive Transport von freigesetzten Ladungsträgern zur Extraktionsstelle berücksichtigt wird. Durch Einführung von ’Abstandshalterschichten’ werden erstmalig über TSC die Polaritäten von Ladungsträgerfallen in MeO-TPD, ZnPc und m-MTDATA per Laufzeitunterschied bestimmt.
Gleichzeitig werden geringste Löcherbeweglichkeiten in der Größenordnung von 10−13 cm2 Vs−1 für stark gekühlte Dünnschichten des Lochtransporters Spiro-TTB gemessen. Wie für Spiro-TTB koverdampft mit dem Akzeptormolekül F6-TCNNQ und p-dotierte Mischschichten der Absorbermaterialien ZnPc und C60 gezeigt, erzeugt Dotierung relativ flache Störstellen. Abschließend werden verschiedene organische Lochtransporter-Materialien auf ihre Stabilität in Wasser- und Sauerstoffatmosphären während der Prozessierung und der Lagerung fertiger elektronischer Bauelemente untersucht. Für Pentazen, ZnPc, MeO-TPD und m-MTDATA werden Löcherfallen in intrinsischen Dünnschichten nachgewiesen. Bei Kontakt mit Sauerstoff nimmt deren Defektdichte zu. Es findet sich ein universales Fallenniveau bei rund 4.7...4.8 eV, verursacht durch Sauerstoffverunreinigungen, welches den Lochtransport in organischen Halbleitern limitiert.
|
5 |
Charge Carrier Trap Spectroscopy on Organic Hole Transport MaterialsPahner, Paul 16 September 2016 (has links)
Electronic circuits comprising organic semiconductor thin-films are part of promising technologies for a renewable power generation and an energy-efficient information technology. Whereas TV and mobile phone applications of organic light emitting diodes (OLEDs) got ready for the market awhile ago, organic photovoltaics still lack in power conversion efficiencies, especially in relation to their current fabrication costs. A major reason for the low efficiencies are losses due to the large number of charge carrier traps in organic semiconductors as compared to silicon. It is the aim of this thesis to identify and quantify charge carrier traps in vacuum-deposited organic semiconductor thin-films and comprehend the reasons for the trap formation. For that, the techniques impedance spectroscopy (IS), thermally stimulated currents (TSC), and photoelectron spectroscopy are utilized.
In order to assess the absolute energy of charge carrier traps, the charge carrier transport levels are computed for various hole transport materials such as MeO-TPD, pentacene, and ZnPc. Unlike inorganics, organic semiconductors possess in first-order approximation Gaussian distributed densities of states and temperaturedependent transport levels. The latter shift by up to 300 meV towards the energy gap-mid when changing from room temperature to 10 K as it is done for TSC examinations.
The frequency-dependent capacitance response of charge carrier traps in organic Schottky diodes of pentacene and ZnPc are studied via impedance spectroscopy. In undoped systems, deep traps with depths of approx. 0.6 eV and densities in the order of 1016...1017 cm−3 are prevailing. For pentacene, the deep trap density is reduced when the material undergoes an additional purification step. Utilizing p-doping, the Fermi level is tuned in a way that deep traps are saturated. Vice versa, the freeze-out of p-doped ZnPc provides further insight into the influence of trap-filling, impurity saturation and reserve on the Fermi level position in organic semiconductors. Furthermore, charge carrier traps are investigated via thermally stimulated currents. It is shown that the trap depths are obtained correctly only if the dispersive transport of the released charge carriers until their extraction is considered.
For the first time, the polarity of charge carrier traps in MeO-TPD, ZnPc, and m-MTDATA is identified from TSC’s differences in release time when spacer layers are introduced in the TSC samples. Simultaneously, tiny hole mobilities in the order of 10−13 cm2 Vs−1 are detected for low-temperature thin-films of the hole transporter material Spiro-TTB. It is shown for Spiro-TTB co-evaporated with the acceptor molecule F6-TCNNQ and a p-doped ZnPc:C60 absorber blend that the doping process creates shallow trap levels. Finally, various organic hole transport materials are examined upon their stability in water and oxygen atmosphere during sample fabrication and storage of the organic electronics. In case of pentacene, ZnPc, MeO-TPD, and m-MTDATA, hole traps are already present in unexposed thin-films, which increase in trap density upon oxygen exposure. A global trap level caused by oxygen impurities is found at energies of 4.7...4.8 eV that is detrimental to hole transport in organic semiconductors. / Elektronische Bauelemente aus Dünnschichten organischer Halbleiter sind Teil möglicher Schlüsseltechnologien zur regenerativen Energiegewinnung und energieeffizienten Informationstechnik. Während Fernseh- und Mobilfunkanwendungen organischer Leuchtdioden (OLEDs) bereits vor einiger Zeit Marktreife erlangt haben, ist die organische Photovoltaik (OPV) noch durch zu hohe Fertigungskosten in Relation zu unzureichenden Effizienzen unrentabel. Ein wesentlicher Grund für die niedrigen Wirkungsgrade sind Verluste durch die im Vergleich zu Silizium hohe Zahl an Ladungsträgerfallen in organischen Halbleitern. Ziel dieser Arbeit ist es, mittels Impedanz-Spektroskopie (IS), thermisch stimulierten Strömen (TSC) und Photoelektronenspektroskopie methodenübergreifend Ladungsträgerfallen in vakuumverdampften organischen Dünnschichten zu identifizieren, zu quantifizieren und ihre Ursachen zu ergründen.
Um die Energie von Ladungsträgerfallen absolut beziffern zu können, wird zunächst für verschiedene Lochtransportmaterialien wie z.B. MeO-TPD, Pentazen und ZnPc die Transportenergie aus den in erster Ordnung gaußförmigen Zustandsdichten berechnet. Im Gegensatz zu anorganischen Halbleitern ist die Transportenergie in organischen Halbleitern temperaturabhängig. Sie verschiebt sich beim Übergang von Raumtemperatur zu 10 K, wie für TSC Untersuchungen bedeutsam, um bis zu 300 meV in Richtung der Bandlückenmitte.
Mittels Impedanz-Spektroskopie wird die frequenzabhängige Kapazitätsantwort von Ladungsträgerfallen in organischen Schottky-Dioden aus Pentazen und ZnPc untersucht. In undotierten Systemen dominieren Defekte mit Tiefen um 0.6 eV, deren Dichte in der Größenordnung von 1016...1017 cm−3 liegt, sich aber im Fall von Pentazen durch einen zusätzlichen Materialaufreinigungsschritt halbieren lässt. Über p-Dotierung wird das Fermi-Level so eingestellt, dass tiefe Fallen abgesättigt werden können. Umgekehrt liefert das Ausfrieren von p-dotiertem ZnPc weitere Belege für den Einfluss von Fallenzuständen, Störstellen-Erschöpfung und Reserve auf das Fermi-Level in dotierten organischen Halbleitern.
Im Weiteren werden Ladungsträgerfallen über thermisch stimulierte Ströme untersucht. Es wird gezeigt, dass die Fallentiefen nur dann konsistent bestimmt werden, wenn der dispersive Transport von freigesetzten Ladungsträgern zur Extraktionsstelle berücksichtigt wird. Durch Einführung von ’Abstandshalterschichten’ werden erstmalig über TSC die Polaritäten von Ladungsträgerfallen in MeO-TPD, ZnPc und m-MTDATA per Laufzeitunterschied bestimmt.
Gleichzeitig werden geringste Löcherbeweglichkeiten in der Größenordnung von 10−13 cm2 Vs−1 für stark gekühlte Dünnschichten des Lochtransporters Spiro-TTB gemessen. Wie für Spiro-TTB koverdampft mit dem Akzeptormolekül F6-TCNNQ und p-dotierte Mischschichten der Absorbermaterialien ZnPc und C60 gezeigt, erzeugt Dotierung relativ flache Störstellen. Abschließend werden verschiedene organische Lochtransporter-Materialien auf ihre Stabilität in Wasser- und Sauerstoffatmosphären während der Prozessierung und der Lagerung fertiger elektronischer Bauelemente untersucht. Für Pentazen, ZnPc, MeO-TPD und m-MTDATA werden Löcherfallen in intrinsischen Dünnschichten nachgewiesen. Bei Kontakt mit Sauerstoff nimmt deren Defektdichte zu. Es findet sich ein universales Fallenniveau bei rund 4.7...4.8 eV, verursacht durch Sauerstoffverunreinigungen, welches den Lochtransport in organischen Halbleitern limitiert.
|
Page generated in 0.0941 seconds