• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 37
  • 3
  • 2
  • 1
  • Tagged with
  • 48
  • 48
  • 13
  • 10
  • 9
  • 9
  • 9
  • 7
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Varved lake sediments and diagenetic processes

Gälman, Veronika January 2009 (has links)
Varved (annually laminated) sediments are of great interest for inference of past environmental conditions, as they provide dated records with high time resolution. After deposition, the sediment varves are affected by diagenesis; i.e., chemical, physical and biological changes that occur within the sediment. An important premise when reconstructing past environmental conditions using lake sediments is that the signal of interest is preserved in the sediment. In this thesis I have used a unique collection of ten stored freeze cores of varved lake sediment from Nylandssjön in northern Sweden, collected from 1979 to 2007. The suite of cores made it possible to follow long-term (up to 27 years) changes in iron (Fe), sulfur (S), carbon (C), nitrogen (N), δ13C and δ15N in the sediment caused by processes that occur in the lake bottom as the sediment ages. The sediment geochemistry and resulting changes were followed in years for which there are surface varves in the core series. Fe and S concentrations analyzed by X-ray fluorescence spectroscopy showed no diagenetic front in the sediment and the data do not suggest a substantial vertical transport of Fe and S in the sediment. A model based on thermodynamic, limnological, and sediment data from the lake, showed that there are pe (redox) ranges within which either FeS (reduced specie) or Fe(OH)3/FeOOH oxidized species) is the only solid phase present and there are pe ranges within which the two solid phases co-exist. This supports the hypothesis that blackish and grey-brownish Fe-layers that occur in the varves were formed at the time of deposition. C and N analyzed with an elemental analyzer showed that within the first five years after deposition the C concentration of the sediment decreased by 20% and N by 30%, and after 27 yr in the sediment, there was a 23% loss of C and 35% loss of N. The C:N ratio increased with increasing age of the sediment; from ~ 10 in the surface varves to ~12 after 27 years of aging. δ13C and δ15N analyzed on a mass spectrometer showed that δ13C increased by 0.4-1.5‰ units during the first five years, after that only minor fluctuations in δ13C were recorded. Another pattern was seen for δ15N, with a gradual decrease of 0.3-0.7‰ units over the entire 27-year-period. The diagenetic changes in the stable isotope values that occur in Nylandssjön are minor, but they are of about the same magnitude as the variation in the isotopic signal in the varves deposited between 1950-2006. My results show that diagenesis does not change the visual appearance of the varves, except for varve thickness; the varves get thinner as the sediment ages. As the color of Fe in the varves likely reflects the environmental conditions at the time of deposition this creates possibilities for deciphering high-temporal-resolution information of past hypolimnetic oxygen conditions from varves. My findings on C, N, δ13C and δ15N will have implications for interpretations of paleolimnological data. The diagenetic effects should be carefully taken into consideration when C, N, δ13C and δ15N in sediment cores are used to study organic matter sources or paleoproductivity, in particular when dealing with relatively small and recent changes. In addition to the significance of diagenetic effects on sediment parameters, a comparison of the varves in Nylandssjön and the adjacent lake Koltjärnen, and the two deep basins of Nylandssjön show that subtle features in the lakes and their catchments affect the appearance of the varves, which make interpretation of varves complicated.
42

Assessment of 220 Years of Anthropogenic Impacts to Wyoga Lake, Summit County, Ohio

Rechenberg, Matthew S. 29 April 2023 (has links)
No description available.
43

Mercury accumulation in lake sediments on different time scales – the influence of algal primary production / Kvicksilverackumulation i sjösediment över olika tidsskalor – effekten av primärproduktionen av alger

Rebotzke, Anne January 2023 (has links)
The aim of this work is to test the proposed approach of algal scavenging as a driver of sediment mercury (Hg) on different time scales and to gain a better understanding of the mechanisms of Hg accumulation in lake sediments. A 3000-year sediment record from Nylandssjön in northern Sweden was analysed for this purpose, as well as a 20-year sediment record from the seasonal sediment traps of this lake. The diatom proxy biogenic silica (bSi) was determined by Fourier transform infrared spectroscopy (FTIRS) and chlorophyll-a (Chl-a) as a proxy for primary productivity by non-destructive visible near-infrared reflectance spectroscopy (VNIRS). Silica, normalised to minerogenic matter by aluminium (Si/Al) as an indirect diatom proxy and other geochemical parameters were analysed by the non-destructive method of X-ray fluorescence spectroscopy (XRF). The Hg content in the sediment was determined using the the thermal decomposition atomic absorption spectrophotometers (TD-AAS) method. Over the different time scales, organic matter (OM) is an important control factor for Hg, which in turn was strongly associated with primary productivity. Hg was normalised against OM by determining the Hg/LOI or Hg/C ratios. No positive correlation was found between the normalised Hg ratios and the proxies of primary productivity (bSi, Chl-a and Si/Al). Negative correlations between OM and minerogenic elements coinciding with human-induced erosion events and increasing Hg levels in the sediment were found. This is true, both for the long-term record in the sediment cores and the high-resolution data from the sediment traps. Furthermore, in the seasonal sediment record of the sediment traps, in-lake processes like lake turnover in spring and autumn could be linked to precipitation of iron oxyhydroxides (FeOOH) and increasing sedimentary Hg. This may be supported by the parallel sediment accumulation of other metals like nickel (Ni) and zinc (Zn) at the time of the lake turnover.
44

Acceleration of Phosphorus Flux from Anoxic Sediments in a Warming Lake Erie

Swan, Zachary January 2021 (has links)
No description available.
45

Late Holocene Environmental Variability as Recorded in the Sediment of a Northeastern Ohio Kettle Lake

Grochocki, Julian Lucian 27 June 2017 (has links)
No description available.
46

A History of Place: Using Phytolith Analysis to Discern Holocene Vegetation Change on Sanak Island, Western Gulf of Alaska

Wilbur, Cricket C. January 2013 (has links)
No description available.
47

The Effects of Retrogressive Thaw Slump Development on Persistent Organic Pollutants in Lake Sediments of the Mackenzie River Delta Uplands, NT, Canada

Eickmeyer, David 03 September 2013 (has links)
Using a comparative spatial and temporal analysis on sediment cores from 8 lakes in the Mackenzie River Delta uplands region, NT, Canada, this study assessed how persistent organic pollutant (POP) deposition to lake sediments was affected by: (1) the presence of retrogressive thaw slumps on lake shores; and (2) changes occurring with increased autochthonous primary productivity. POPs examined included polychlorinated biphenyls (PCBs), penta- and hexachlorobenzenes (CBzs), and dichlorodiphenyltrichloroethane and metabolites (DDTs). Surface sediments of slump-affected lakes contained higher total organic carbon (TOC)-normalized POP concentrations than nearby reference lakes unaffected by thaw slumps. Inorganic sedimentation rates were positively related to contaminant concentrations, suggesting that the influx of siliciclastic material reducing organic carbon in slump-affected lake water indirectly results in higher concentrations of POPs on sedimentary organic matter. This explanation was corroborated by an inverse relationship between sedimentary POP concentrations and TOC content of the lake water. Deposition proxies of autochthonous carbon were not significantly correlated to POP fluxes of surface sediments, and historical profile fluctuations did not coincide with variation in POP deposition. Thus this study does not support the contention that algal-derived organic carbon increases the delivery of organic pollutants to sediments (the algal-scavenging hypothesis), as previously proposed for mercury. Higher POP concentrations observed in surface sediments of slump-affected lakes are best explained by simple solvent switching processes of hydrophobic contaminants onto a lower pool of available organic carbon when compared to neighbouring lakes unaffected by thaw slump development.
48

The Effects of Retrogressive Thaw Slump Development on Persistent Organic Pollutants in Lake Sediments of the Mackenzie River Delta Uplands, NT, Canada

Eickmeyer, David January 2013 (has links)
Using a comparative spatial and temporal analysis on sediment cores from 8 lakes in the Mackenzie River Delta uplands region, NT, Canada, this study assessed how persistent organic pollutant (POP) deposition to lake sediments was affected by: (1) the presence of retrogressive thaw slumps on lake shores; and (2) changes occurring with increased autochthonous primary productivity. POPs examined included polychlorinated biphenyls (PCBs), penta- and hexachlorobenzenes (CBzs), and dichlorodiphenyltrichloroethane and metabolites (DDTs). Surface sediments of slump-affected lakes contained higher total organic carbon (TOC)-normalized POP concentrations than nearby reference lakes unaffected by thaw slumps. Inorganic sedimentation rates were positively related to contaminant concentrations, suggesting that the influx of siliciclastic material reducing organic carbon in slump-affected lake water indirectly results in higher concentrations of POPs on sedimentary organic matter. This explanation was corroborated by an inverse relationship between sedimentary POP concentrations and TOC content of the lake water. Deposition proxies of autochthonous carbon were not significantly correlated to POP fluxes of surface sediments, and historical profile fluctuations did not coincide with variation in POP deposition. Thus this study does not support the contention that algal-derived organic carbon increases the delivery of organic pollutants to sediments (the algal-scavenging hypothesis), as previously proposed for mercury. Higher POP concentrations observed in surface sediments of slump-affected lakes are best explained by simple solvent switching processes of hydrophobic contaminants onto a lower pool of available organic carbon when compared to neighbouring lakes unaffected by thaw slump development.

Page generated in 0.7045 seconds