Spelling suggestions: "subject:"large deformations"" "subject:"large reformations""
21 |
Nonlinear mechanics and finite element with material damping for the static and dynamic analysis of composite wind turbine blades / Ανάπτυξη μη-γραμμικού προτύπου πεπερασμένου στοιχείου με απόσβεση για τη στατική και δυναμική ανάλυση πτερυγίων ανεμογεννητριώνΧόρτης, Δημήτριος 31 August 2012 (has links)
The aim of the current dissertation is the development of finite element models capable of predicting the damping and the damped structural dynamic response of laminated composite blades and beams. The present thesis is divided into two main parts, of which the first one studies the material coupling effect on the static and modal characteristics of composite structures. New damping coupling terms are formulated and incorporated into a linear beam finite element to better capture the composite material and structural coupling effects.
The second part describes the theoretical framework for predicting the nonlinear damping and damped vibration of laminated composite structures due to large in-plane tensile and compressive forces. A nonlinear beam finite element for composite strips is developed capable of capturing the effects of geometric nonlinearity on the damping of composite laminates. The damping mechanics consider a strain based Kelvin viscoelastic model and Green-Lagrange nonlinear strain expressions, which introduce geometric nonlinearity into the formulation. Incorporation of first-order shear deformation theory into the equations of motion provides the linear and new nonlinear cross-section stiffness and damping terms. Within each element, the stain field is approximated by linear interpolation shape functions. An incremental-iterative methodology is formulated into the finite element solver, based on the Newton-Raphson technique in order to obtain the system solution at each iteration, till the final convergence is achieved. For the sake of completeness, a series of experimental measurements were carried out for the composite strip, subject to tensile and buckling loads. Correlations with theoretical predictions gave credence to the ability of the nonlinear finite element to predict damping of composite structures undergoing large displacements and rotations in the nonlinear regime. The finite element was further extended to include the nonlinear analysis of large-scale hollow composite structures. New first- and second-order stiffness and damping terms were developed and incorporated into an updated nonlinear beam finite element, capable of capturing the effect of rotational stresses on the static and modal characteristics of composite beams and blades. / Σκοπός της παρούσας διδακτορικής διατριβής με τίτλο: "Ανάπτυξη Μη-Γραμμικού Προτύπου Πεπερασμένου Στοιχείου με Απόσβεση για τη Στατική και Δυναμική Ανάλυση Πτερυγίων Ανεμογεννητριών" είναι η ανάπτυξη προτύπων πεπερασμένων στοιχείων με απόσβεση ικανών να προβλέπουν τη στατική και δυναμική απόκριση δοκών και πτερυγίων από σύνθετα υλικά. Η εργασία επικεντρώνεται σε δύο κύριες κατευθύνσεις, που αφορούν τόσο την εισαγωγή νέων όρων στο μητρώο απόσβεσης ενός πεπερασμένου στοιχείου δοκού, όσο και την ανάπτυξη ενός μη-γραμμικού κώδικα πεπερασμένου στοιχείου για τη μελέτη της μη-γραμμικής συμπεριφοράς δοκών και πτερυγίων από σύνθετα υλικά που υπόκεινται σε μεγάλες μετατοπίσεις και περιστροφές.
Στο πρώτο μέρος της διατριβής μελετάται η επίδραση της σύζευξης, λόγω της ανισοτροπίας του σύνθετου υλικού, τόσο στη στατική απόκριση όσο και στα μορφικά χαρακτηριστικά κατασκευών από σύνθετα υλικά, διαφόρων διατομών και γεωμετριών. Διατυπώνονται νέοι όροι απόσβεσης που εκφράζουν την εν λόγω σύζευξη και οι οποίοι καθιστούν το γραμμικό πεπερασμένο στοιχείο δοκού πιο πλήρες στην επίλυση προβλημάτων όπου η σύζευξη υλικού επηρεάζει τη συμπεριφορά της κατασκευής.
Στο δεύτερο και πλέον σημαντικό μέρος της παρούσας διατριβής αρχικά περιγράφεται το θεωρητικό υπόβαθρο για την πρόβλεψη της μη-γραμμικής δυναμικής απόσβεσης λεπτών δοκών κατασκευασμένα από σύνθετα υλικά οι οποίες υπόκεινται σε μεγάλα συν-επίπεδα εφελκυστικά φορτία ή φορτία λυγισμού. Αναπτύσσεται νέο πεπερασμένο στοιχείο ικανό να περιγράψει την επίδραση της γεωμετρικής μη-γραμμικότητας στην απόσβεση και τη δυσκαμψία της δοκού. Εφαλτήριο για την ανάπτυξη αυτής της μεθοδολογίας ήταν η ανάγκη της πρόβλεψης της δυναμικής απόσβεσης σε κατασκευές από σύνθετα υλικά με πιο πολύπλοκη και εύκαμπτη γεωμετρία, όπως αυτή των πτερυγίων ανεμογεννητριών.
Η ανάπτυξη του μη-γραμμικού πεπερασμένου στοιχείου ξεκινά από το επίπεδο της στρώσης του υλικού, όπου διατυπώνονται οι καταστατικές εξισώσεις θεωρώντας το ιξωδοελαστικό πρότυπο του Kelvin για το υλικό της κατασκευής. Στη συνέχεια εισάγονται οι Green-Lagrange εξισώσεις συμβιβαστού οι οποίες εκφράζουν τη γεωμετρική μη-γραμμικότητα καθώς και οι εξισώσεις κίνησης. Σε επίπεδο διατομής, οι κινηματικές υποθέσεις βασίζονται στις παραδοχές της διατμητικής θεωρίας δοκού πρώτης τάξης.
Η πρόβλεψη της μη-γραμμικής απόκρισης μιας κατασκευής από σύνθετα υλικά επιτυγχάνεται μέσω της προσομοίωσης της με έναν επαρκή αριθμό πεπερασμένων στοιχείων. Στο εσωτερικό κάθε στοιχείου οι παραμορφώσεις προσεγγίζονται από γραμμικές συναρτήσεις μορφής, οι οποίες οδηγούν στη μητρωική μορφή των μη-γραμμικών εξισώσεων του συστήματος. Λόγω του γεγονότος ότι οι εξισώσεις αυτές εξαρτώνται από τη λύση, δεν μπορούν να λυθούν απευθείας κάτι που καθιστά αναγκαία τη χρήση μιας σταδιακής-επαναληπτικής τεχνικής. Στην παρούσα διατριβή εισάγεται στο λύτη του μη-γραμμικού κώδικα η Newton-Raphson τεχνική. Το επόμενο βήμα αφορά τη σύνθεση των ολικών δομικών μητρών του συστήματος και την εφαρμογή των συνοριακών συνθηκών. Σε κάθε επανάληψη λαμβάνει χώρα η επίλυση των γραμμικοποιημένων εξισώσεων και ο υπολογισμός των πραγματικών και εφαπτομενικών μη-γραμμικών μητρώων δυσκαμψίας και απόσβεσης της κατασκευής, τα οποία τελικώς επιλύονται με τη μέθοδο της αριθμητικής ολοκλήρωσης κατά Gauss.
Το πεπερασμένο στοιχείο δοκού εξελίχθηκε περαιτέρω ώστε να συμπεριλάβει τη μη-γραμμική ανάλυση μεγάλων λεπτότοιχων κατασκευών από σύνθετα υλικά, όπως αυτά των πτερυγίων ελικοπτέρων και ανεμογεννητριών. Η εισαγωγή της πλήρους έκφρασης της αξονικής μη-γραμμικής Green-Lagrange παραμόρφωσης στη διατύπωση των κινηματικών υποθέσεων οδηγεί στην πλήρη έκφραση των πραγματικών και εφαπτομενικών δομικών μητρών της κατασκευής. Οι νέοι μη-γραμμικοί όροι δυσκαμψίας και απόσβεσης πρώτης και δεύτερης τάξης μπορούν να περιγράψουν την επίδραση των εσωτερικών εφελκυστικών τάσεων στα μορφικά χαρακτηριστικά δοκών και πτερυγίων. Το μη-γραμμικό πεπερασμένο στοιχείο είναι ικανό να χαρακτηρίσει τη στατική συμπεριφορά και την αποσβενυμένη ταλάντωση δοκών από σύνθετα υλικά. Η επαλήθευση του μη-γραμμικού κώδικα πραγματοποιήθηκε μέσω μιας σειράς πειραματικών μετρήσεων που αφορούσαν τη μέτρηση της φυσικής συχνότητας και της μορφικής απόσβεσης σε λεπτές δοκούς από σύνθετα υλικά τόσο σε εφελκυσμό όσο και σε συνθήκες λυγισμού. Τα πειραματικά αποτελέσματα έρχονται σε πολύ καλή συμφωνία με τις θεωρητικές προβλέψεις του κώδικα κάτι που εξασφαλίζει την αξιοπιστία του μη-γραμμικού πεπερασμένου στοιχείου.
|
22 |
FEM-basierte Modellierung stark anisotroper Hybridcord-Elastomer-Verbunde / FE-based modeling of strongly anisotropic hybrid cord-rubber compositesDonner, Hendrik 27 September 2017 (has links) (PDF)
Zur Analyse der Beanspruchungen in textilverstärkten Elastomerbauteilen wie Luftfedern, Reifen, Riemen und Schläuchen sind Berechnungsmodelle mit einer feinen Balance zwischen Genauigkeit und Effizienz erforderlich. Die großen Deformationen, stark anisotropen Struktureigenschaften und kleinen Abmessungen der Festigkeitsträger gegenüber denen des Bauteils bedürfen einerseits einer detaillierten Modellierung, andererseits sind die kritischen Bereiche in diesen Bauteilen räumlich stark begrenzt, sodass eine Reduktion des Berechnungsaufwands erstrebenswert ist. Diese Modellreduktion führt zu Simulationen mit geringer Rechenzeit, die für eine praxistaugliche Optimierung von Hybridcord-Elastomer-Verbunden unerlässlich sind.
Die beiden Hauptschwerpunkte der vorliegenden Arbeit bilden die kontinuumsmechanische Modellierung von Hybridcorden und die Erstellung repräsentativer Volumenelemente hochbeanspruchter Hybridcord-Elastomer-Verbunde. Aufbauend auf einem anisotropen Plastizitätsmodell zur Erfassung der Reibung in Multifilamentgarnen stellt ein Finite-Elemente-Modell zur Simulation der Verzwirnung von Hybridcorden das Fundament der Arbeit dar. Anhand experimenteller Ergebnisse aus Zug- und Torsionsversuchen sowie einem Vergleich mit Querschnittsaufnahmen wird gezeigt, dass das Modell die komplexen Eigenschaften eines Hybridcords abbilden kann. Die Grundlage der repräsentativen Volumenelemente stellt eine Erweiterung der klassischen periodischen Randbedingungen dar, die eine Berücksichtigung von Krümmungen und Drucklasten ermöglicht. Das Modell eignet sich daher, die Beanspruchungen in den hochbelasteten Bereichen textilverstärkter Elastomerbauteile wie der Rollfalte einer Luftfeder effizient zu analysieren. Mittels Parameterstudien werden abschließend Hybridcorde und Hybridcord-Elastomer-Verbunde untersucht und einige Hinweise für eine optimale Gestaltung hinsichtlich minimaler Beanspruchungen des Elastomers, des Hybridcords sowie der Grenzfläche gegeben. / The analysis of stresses and strains within textile-reinforced rubber components like air springs, tyres, driving belts, and tubes requires accurate as well as efficient computational models. On the one hand, the large deformations, the composite's strongly anisotropic properties, and the large ratio between the size of the cords and the composite necessitate a precise modeling. On the other hand, the highly loaded parts of the components are spatially confined and thus a reduction of the computational effort is desirable. These reduced models are efficient enough for performing engineering-oriented optimizations.
The two main priorities of this work are the continuum mechanical modeling of hybrid cords and the development of representative volume elements of highly loaded hybrid cord-rubber composites. Based on an anisotropic plasticity model, which takes the frictional sliding between the filaments within multifilament yarns into account, a finite element model for the simulation of the twisting process of a hybrid cord is the fundament of this work. A comparison with experimental results from tensile and torsional tests as well as images of cross sections validate the proposed hybrid cord model. The basis of the representative volume element is the extension of the classical periodic boundary conditions, which now enable to take the curvature and pressure load into account. Thus, the model is suitable to analyze the highly loaded parts of hybrid cord-rubber composites like the rolling lobe of an air spring. Finally, the set-ups of hybrid cords and hybrid cord-rubber composites are analyzed by means of parameter studies to obtain a minimized loading of the rubber, yarns, and their interface.
|
23 |
FEM-basierte Modellierung stark anisotroper Hybridcord-Elastomer-VerbundeDonner, Hendrik 08 September 2017 (has links)
Zur Analyse der Beanspruchungen in textilverstärkten Elastomerbauteilen wie Luftfedern, Reifen, Riemen und Schläuchen sind Berechnungsmodelle mit einer feinen Balance zwischen Genauigkeit und Effizienz erforderlich. Die großen Deformationen, stark anisotropen Struktureigenschaften und kleinen Abmessungen der Festigkeitsträger gegenüber denen des Bauteils bedürfen einerseits einer detaillierten Modellierung, andererseits sind die kritischen Bereiche in diesen Bauteilen räumlich stark begrenzt, sodass eine Reduktion des Berechnungsaufwands erstrebenswert ist. Diese Modellreduktion führt zu Simulationen mit geringer Rechenzeit, die für eine praxistaugliche Optimierung von Hybridcord-Elastomer-Verbunden unerlässlich sind.
Die beiden Hauptschwerpunkte der vorliegenden Arbeit bilden die kontinuumsmechanische Modellierung von Hybridcorden und die Erstellung repräsentativer Volumenelemente hochbeanspruchter Hybridcord-Elastomer-Verbunde. Aufbauend auf einem anisotropen Plastizitätsmodell zur Erfassung der Reibung in Multifilamentgarnen stellt ein Finite-Elemente-Modell zur Simulation der Verzwirnung von Hybridcorden das Fundament der Arbeit dar. Anhand experimenteller Ergebnisse aus Zug- und Torsionsversuchen sowie einem Vergleich mit Querschnittsaufnahmen wird gezeigt, dass das Modell die komplexen Eigenschaften eines Hybridcords abbilden kann. Die Grundlage der repräsentativen Volumenelemente stellt eine Erweiterung der klassischen periodischen Randbedingungen dar, die eine Berücksichtigung von Krümmungen und Drucklasten ermöglicht. Das Modell eignet sich daher, die Beanspruchungen in den hochbelasteten Bereichen textilverstärkter Elastomerbauteile wie der Rollfalte einer Luftfeder effizient zu analysieren. Mittels Parameterstudien werden abschließend Hybridcorde und Hybridcord-Elastomer-Verbunde untersucht und einige Hinweise für eine optimale Gestaltung hinsichtlich minimaler Beanspruchungen des Elastomers, des Hybridcords sowie der Grenzfläche gegeben.:Inhaltsverzeichnis
Abkürzungs- und Symbolverzeichnis VIII
1 Einleitung 1
2 Grundlagen der Mathematik und der Mechanik 6
2.1 Tensoralgebra und -analysis 6
2.2 Nichtlineare Kontinuumsmechanik 11
2.3 Nichtlineare Finite-Elemente-Methode 16
3 Einordnung in den Stand der Forschung 22
4 Experimentelle Untersuchungen 26
4.1 Charakterisierung der Standardcorde 26
4.2 Charakterisierung der Hybridcorde 33
5 Materialmodelle für Multi lamentgarne 38
5.1 Anisotropes Plastizitätsmodell der Filamentreibung 38
5.2 Numerische Lösung der Materialgleichungen 43
5.3 Analytische Lösung für reibungsfreies Gleiten 48
5.4 Modellierung des thermischen Schrumpfens 50
6 FEM-basierte Modellierung von Hybridcorden 53
6.1 Simulation der Verzwirnung eines Standardcords 53
6.2 Erweiterung des Berechnungsmodells auf Hybridcorde 60
6.3 Analytisches Modell der Geometrie eines Hybridcords 65
6.4 Qualitative Charakterisierung des Hybridcordmodells 74
6.5 Parameteridenti kation und Validierung 83
6.6 Optimierungsbeispiele 92
7 Schalenartige RVEs für Cord-Elastomer-Verbunde 96
7.1 Geometrie der Axial- und der Kreuzlage 96
7.2 Erweiterte periodische Randbedingungen 98
7.3 E ektive Schaleneigenschaften 111
7.4 Berücksichtigung der Drucklast 118
7.5 Diskretisierung der RVEs 122
7.6 Submodelltechnik 128
7.7 Parameterstudien an Hybridcord-Elastomer-Verbunden 135
8 Zusammenfassung und Ausblick 146
Literaturverzeichnis 151 / The analysis of stresses and strains within textile-reinforced rubber components like air springs, tyres, driving belts, and tubes requires accurate as well as efficient computational models. On the one hand, the large deformations, the composite's strongly anisotropic properties, and the large ratio between the size of the cords and the composite necessitate a precise modeling. On the other hand, the highly loaded parts of the components are spatially confined and thus a reduction of the computational effort is desirable. These reduced models are efficient enough for performing engineering-oriented optimizations.
The two main priorities of this work are the continuum mechanical modeling of hybrid cords and the development of representative volume elements of highly loaded hybrid cord-rubber composites. Based on an anisotropic plasticity model, which takes the frictional sliding between the filaments within multifilament yarns into account, a finite element model for the simulation of the twisting process of a hybrid cord is the fundament of this work. A comparison with experimental results from tensile and torsional tests as well as images of cross sections validate the proposed hybrid cord model. The basis of the representative volume element is the extension of the classical periodic boundary conditions, which now enable to take the curvature and pressure load into account. Thus, the model is suitable to analyze the highly loaded parts of hybrid cord-rubber composites like the rolling lobe of an air spring. Finally, the set-ups of hybrid cords and hybrid cord-rubber composites are analyzed by means of parameter studies to obtain a minimized loading of the rubber, yarns, and their interface.:Inhaltsverzeichnis
Abkürzungs- und Symbolverzeichnis VIII
1 Einleitung 1
2 Grundlagen der Mathematik und der Mechanik 6
2.1 Tensoralgebra und -analysis 6
2.2 Nichtlineare Kontinuumsmechanik 11
2.3 Nichtlineare Finite-Elemente-Methode 16
3 Einordnung in den Stand der Forschung 22
4 Experimentelle Untersuchungen 26
4.1 Charakterisierung der Standardcorde 26
4.2 Charakterisierung der Hybridcorde 33
5 Materialmodelle für Multi lamentgarne 38
5.1 Anisotropes Plastizitätsmodell der Filamentreibung 38
5.2 Numerische Lösung der Materialgleichungen 43
5.3 Analytische Lösung für reibungsfreies Gleiten 48
5.4 Modellierung des thermischen Schrumpfens 50
6 FEM-basierte Modellierung von Hybridcorden 53
6.1 Simulation der Verzwirnung eines Standardcords 53
6.2 Erweiterung des Berechnungsmodells auf Hybridcorde 60
6.3 Analytisches Modell der Geometrie eines Hybridcords 65
6.4 Qualitative Charakterisierung des Hybridcordmodells 74
6.5 Parameteridenti kation und Validierung 83
6.6 Optimierungsbeispiele 92
7 Schalenartige RVEs für Cord-Elastomer-Verbunde 96
7.1 Geometrie der Axial- und der Kreuzlage 96
7.2 Erweiterte periodische Randbedingungen 98
7.3 E ektive Schaleneigenschaften 111
7.4 Berücksichtigung der Drucklast 118
7.5 Diskretisierung der RVEs 122
7.6 Submodelltechnik 128
7.7 Parameterstudien an Hybridcord-Elastomer-Verbunden 135
8 Zusammenfassung und Ausblick 146
Literaturverzeichnis 151
|
24 |
Modellierung und Simulation der Aushärtung polymerer WerkstoffeLandgraf, Ralf 20 October 2015 (has links)
Die vorliegende Arbeit befasst sich mit der kontinuumsmechanischen Formulierung des Aushärteverhaltens polymerer Werkstoffe sowie der Implementierung und Simulation von Aushärtestoffgesetzen im Rahmen der Finite-Elemente-Methode. Auf Basis eines allgemeinen Modellierungsrahmens wird ein konkretisiertes Stoffgesetz für die Nachbildung von Aushärteprozessen eines acrylischen Knochenzements entwickelt. Darüber hinaus werden verschiedene Finite-Elemente-Simulationen zum klinischen Verfahren der Vertebroplastie präsentiert. / This work deals with the continuum mechanical formulation of curing phenomena in polymers as well as the implementation and simulation of curing models within the finite element method. Based on a general modelling framework, a specified material model for the simulation of curing processes in an acrylic bone cement is developed. Moreover, different finite element simulations regarding the clinical procedure of vertebroplasty are presented.
|
Page generated in 0.1022 seconds