Spelling suggestions: "subject:"large deviation."" "subject:"marge deviation.""
61 |
[en] QUASIPERIODICITY AND THE POSITIVITY OF LYAPUNOV EXPONENTS / [pt] QUASE PERIODICIDADE E A POSITIVIDADE DOS EXPOENTES DE LYAPUNOVLUCAS BARBOSA GAMA 11 January 2019 (has links)
[pt] O teorema de Benedicks e Carleson afirma que para a família quadrática existe um conjunto de parâmetros, com medida positiva, para os quais o expoente de Lyapunov é positivo no ponto crítico. Nesta dissertação apresentamos uma demonstração rigorosa e detalhada desse célebre resultado. Uma parte importante da demonstração é o estudo do comportamento quase periódico de um conjunto de órbitas. Além disso, um argumento de grandes desvios é utilizado para mostrar que os parâmetros que não satisfazem a propriedade desejada formam um conjunto pequeno. Tais técnicas apresentam um interesse intrínseco, já que têm se mostrado muito proveitosas para o estudo de outros problemas em sistemas dinâmicos. Combinando o teorema de Benedicks e Carleson ao teorema de Singer, conclui-se que para
um conjunto de parâmetros com medida positiva, a função quadrática correspondente não admite atratores periódicos, indicando um comportamento caótico. Neste trabalho, também são estudados critérios para a positividade do expoente de Lyapunov de cociclos quase periódicos de Schrodinger, como o teorema de Herman. O estudo de cociclos de Schrodinger representa um importante tópico na área de física matemática. Mais ainda, algumas das generalizações de tais critérios utilizam as técnicas de Benedicks-Carleson. / [en] The Benedicks and Carleson theorem states that for the quadratic family there exists a set of parameters, with positive measure, for which the Lyapunov exponent is positive at the critical point. In this dissertation we present a rigorous and detailed proof of this famous result. An important part of the proof is the study of the quasi periodic behavior of a set of orbits. In addition, a large deviation argument is used to show that parameters which do not satisfy the desired property form a small set. Such techniques have an intrinsic interest, as they have proven fruitful in the study of other problems in dynamical systems. Combining Benedicks-Carlesons theorem with Singers theorem, we conclude that for a set of parameters with positive measure, the corresponding quadratic function does not admit periodic attractors, indicating its chaotic behavior. In this work we also study criteria for the positivity of the Lyapunov exponent of quasi-periodic Schrodinger cocycles, such as Hermans theorem. The study of the Schrodinger cocycles
represents an important topic in mathematical physics. Moreover, some of the generalizations of such criteria use the techniques of Benedicks-Carleson.
|
62 |
Le modèle GREM jumelé à un champ magnétique aléatoirePersechino, Roberto 06 1900 (has links)
No description available.
|
63 |
Das parabolische Anderson-Modell mit Be- und EntschleunigungSchmidt, Sylvia 15 December 2010 (has links)
We describe the large-time moment asymptotics for the parabolic Anderson model where the speed of the diffusion is coupled with time, inducing an acceleration or deceleration. We find a lower critical scale, below which the mass flow gets stuck. On this scale, a new interesting variational problem arises in the description of the asymptotics. Furthermore, we find an upper critical scale above which the potential enters the asymptotics only via some average, but not via its extreme values. We make out altogether five phases, three of which can be described by results that are qualitatively similar to those from the constant-speed parabolic Anderson model in earlier work by various authors. Our proofs consist of adaptations and refinements of their methods, as well as a variational convergence method borrowed from finite elements theory.
|
64 |
Large Deviations Studies for Small Noise Limits of Dynamical Systems Perturbed by Lévy Processes / Dissertation zur Erlangung des akademischen Grades doctor rerum naturalium im Fach Mathematik der Humboldt-Universitat zu BerlinDe Oliveira Gomes, André 13 April 2018 (has links)
Die vorliegende Dissertation beschäftigt sich mit der Anwendung der Theorie der großen Abweichungen auf verschiedene Fragestellungen der stochastischen Analysis und stochastischen Dynamik von Sprungprozessen.
Die erste Fragestellung behandelt die erste Austrittszeit aus einem beschränkten Gebiet für eine bestimmte Klasse von Sprungdiffusionen mit exponentiell leichten Sprüngen.
In Abhängigkeit von der Leichtheit des Sprungmaßes wird das asymptotische Verhalten der Verteilung und insbesondere der Erwartung der ersten Austrittszeit bestimmt wenn das Rauschen verschwindet.
Dabei folgt die Verteilung der ersten Austrittszeit einem Prinzip der großen Abweichungen im Falle eines superexponentiellen Sprungmaßes. Wohingegen im subexponentiellen Fall die Verteilung
einem Prinzip moderater Abweichungen genügt.
In beiden Fällen wird die Asymptotik bestimmt durch eine deterministische Größe, die den minimalen Energieaufwand beschreibt, um die Sprungdiffusion einen optimalen Kontrollpfad, der zum Austritt führt, folgen zu lassen.
Die zweite Fragestellung widmet sich dem Grenzverhalten gekoppelter Vorwärts-Rückwärtssysteme stochastischer Differentialgleichungen bei kleinem Rauschen.
Dazu assoziiert ist eine spezielle Klasse nicht-lokaler partieller Differentialgleichungen, die auch in nicht-lokalen Modellen der Fluiddynamik eine Rolle spielen.
Mithilfe eines probabilistischen Ansatzes und der Markovschen Struktur dieser Systeme wird die Konvergenz auf Ebene von Viskositätslösungen untersucht. Dabei wird ein Prinzip der großen Abweichungen für die involvierten Stochastischen Prozesse hergeleitet. / This thesis deals with applications of Large Deviations Theory to different problems of Stochastic Dynamics and Stochastic Analysis concerning Jump Processes.
The first problem we address is the first exit time from a fixed bounded domain for a certain class of exponentially light jump diffusions. According to the lightness of the jump measure of the driving process, we derive, when the source of the noise vanishes, the asymptotic behavior of the law and of the expected value of first exit time. In the super-exponential regime the law of the first exit time follows a large deviations scale and in the sub-exponential regime it follows a moderate deviations one. In both regimes the first exit time is comprehended, in the small noise limit, in terms of a deterministic quantity that encodes the minimal energy the jump diffusion needs to spend in order to follow an optimal controlled path that leads to the exit.
The second problem that we analyze is the small noise limit of a certain class of coupled forward-backward systems of Stochastic Differential Equations. Associated to these stochastic objects are some nonlinear nonlocal Partial Differential Equations that arise as nonlocal toy-models of Fluid Dynamics. Using a probabilistic approach and the Markov nature of these systems we study the convergence at the level of viscosity solutions and we derive a large deviations principles for the laws of the stochastic processes that are involved.
|
65 |
Abschätzungen der Konvergenzgeschwindigkeit zur Normalverteilung unter Voraussetzung einseitiger Momente (Teil 2)Paditz, Ludwig January 1976 (has links)
Der Beitrag unterteilt sich in zwei Teile: Teil 1 (vgl. Informationen/07; 1976,05) und Teil 2 (cp. Informationen/07; 1976,06).
Teil 1 enthält eine Einleitung und Grenzwertsätze für unabhängige und identisch verteilte Zufallsgrößen und die Übertragung der betrachteten Grenzwertsätze auf den Fall der Existenz einseitiger Momente.
Teil 2 enthält Grenzwertsätze für mittlere Abweichungen für Summen unabhängiger nichtidentisch verteilter Zufallsgrößen (Serienschema) und eine Diskussion der erhaltenen Ergebnisse und schließlich einige Literaturangaben.
Sei F_n(x) die Verteilungsfunktion der Summe X_1+X_2+...+X_n, wobei X_1, X_2, ...,X_n unabhängige und identisch verteilte Zufallsgrößen mit Erwartungswert 0 und Streuung 1 und endlichen absoluten Momenten c_m, m>2, sind, und sei Phi die standardisierte Normalverteilungsfunktion. Es werden absolute Konstanten L_i derart berechnet, dass wir Fehlerabschätzungen im unleichmäßigen zentralen Grenzwertsätzen in verschiedenen Fällen angeben können, wobei sich der Index i in L_i auf folgende fünf Fälle bezieht: kleine x, mittlere Abweichungen für x, große Abweichungen für x, kleine n und große n.
Im Fall der Existenz einseitiger Momente werden obere Schanken für 1-F_n(x) angegeben für x>D_m*n^(1/2)*ln(n) bzw. x>D_m*n^(1/2)*(ln(n))^(1/2), womit Ergebnisse von S.V.NAGAEV(1965) präzisiert werden.
Der Beitrag unterteilt sich in zwei Teile: Teil 1 (vgl. Informationen/07; 1976,05) und Teil 2 (cp. Informationen/07; 1976,06).
Teil 1 enthält eine Einleitung und Grenzwertsätze für unabhängige und identisch verteilte Zufallsgrößen und die Übertragung der betrachteten Grenzwertsätze auf den Fall der Existenz einseitiger Momente.
Teil 2 enthält Grenzwertsätze für mittlere Abweichungen für Summen unabhängiger nichtidentisch verteilter Zufallsgrößen (Serienschema) und eine Diskussion der erhaltenen Ergebnisse und schließlich einige Literaturangaben.
Sei F_n(x) die Verteilungsfunktion der Summe X_1+X_2+...+X_n, wobei X_1, X_2, ...,X_n unabhängige und identisch verteilte Zufallsgrößen mit Erwartungswert 0 und Streuung 1 und endlichen absoluten Momenten c_m, m>2, sind, und sei Phi die standardisierte Normalverteilungsfunktion. Es werden absolute Konstanten L_i derart berechnet, dass wir Fehlerabschätzungen im unleichmäßigen zentralen Grenzwertsätzen in verschiedenen Fällen angeben können, wobei sich der Index i in L_i auf folgende fünf Fälle bezieht: kleine x, mittlere Abweichungen für x, große Abweichungen für x, kleine n und große n.
Im Fall der Existenz einseitiger Momente werden obere Schanken für 1-F_n(x) angegeben für x>D_m*n^(1/2)*ln(n) bzw. x>D_m*n^(1/2)*(ln(n))^(1/2), womit Ergebnisse von S.V.NAGAEV(1965) präzisiert werden.:6. Grenzwertsätze für mittlere Abweichungen für verschieden verteilte Zufallsgrößen S. 1
7. Beweise zum Abschnitt 6 S. 2
8. Diskussion der Ergebnisse S. 6
Literatur S. 10 / The paper is divided in two parts: part 1 (cp. Informationen/07; 1976,05) and part 2 (cp. Informationen/07; 1976,06).
Part 1 contains an introduction and limit theorems for iid random variables and the transfer of the considered limit theorems to the case of the existence of onesided moments.
Part 2 contains limit theorems of moderate deviations for sums of series of non iid random variables and a discussion of all obtained results in part 1 and 2 and finally some references.
Let F_n(x) be the cdf of X_1+X_2+...+X_n, where X_1, X_2, ...,X_n are iid random variables with mean 0 and variance 1 and with m-th absolute moment c_m, m>2, and Phi the cdf of the unit normal law. Explicit universal constants L_i are computed such that we have an error estimate in the nonuniform central limit theorem with the L_i, where i corresponds to the five cases considered: small x, moderate deviations for x, large deviations for x, small n , large n.
Additional upper bounds for 1-F_n(x) are obtained if the one-sided moments of order m, m>2, are finite and if x>D_m*n^(1/2)*ln(n) and x>D_m*n^(1/2)*(ln(n))^(1/2) respectively improving results by S.V.NAGAEV (1965).:6. Grenzwertsätze für mittlere Abweichungen für verschieden verteilte Zufallsgrößen S. 1
7. Beweise zum Abschnitt 6 S. 2
8. Diskussion der Ergebnisse S. 6
Literatur S. 10
|
66 |
Abschätzungen der Konvergenzgeschwindigkeit zur Normalverteilung unter Voraussetzung einseitiger Momente (Teil 1)Paditz, Ludwig January 1976 (has links)
Der Beitrag unterteilt sich in zwei Teile: Teil 1 (vgl. Informationen/07; 1976,05) und Teil 2 (cp. Informationen/07; 1976,06).
Teil 1 enthält eine Einleitung und Grenzwertsätze für unabhängige und identisch verteilte Zufallsgrößen und die Übertragung der betrachteten Grenzwertsätze auf den Fall der Existenz einseitiger Momente.
Teil 2 enthält Grenzwertsätze für mittlere Abweichungen für Summen unabhängiger nichtidentisch verteilter Zufallsgrößen (Serienschema) und eine Diskussion der erhaltenen Ergebnisse und schließlich einige Literaturangaben.
Sei F_n(x) die Verteilungsfunktion der Summe X_1+X_2+...+X_n, wobei X_1, X_2, ...,X_n unabhängige und identisch verteilte Zufallsgrößen mit Erwartungswert 0 und Streuung 1 und endlichen absoluten Momenten c_m, m>2, sind, und sei Phi die standardisierte Normalverteilungsfunktion. Es werden absolute Konstanten L_i derart berechnet, dass wir Fehlerabschätzungen im unleichmäßigen zentralen Grenzwertsätzen in verschiedenen Fällen angeben können, wobei sich der Index i in L_i auf folgende fünf Fälle bezieht: kleine x, mittlere Abweichungen für x, große Abweichungen für x, kleine n und große n.
Im Fall der Existenz einseitiger Momente werden obere Schanken für 1-F_n(x) angegeben für x>D_m*n^(1/2)*ln(n) bzw. x>D_m*n^(1/2)*(ln(n))^(1/2), womit Ergebnisse von S.V.NAGAEV(1965) präzisiert werden.:1. Einführung S. 2
2. Grenzwertsätze für identisch verteilte Zufallsgrößen S. 3
3. Übertragung der formulierten Grenzwertsätze auf den Fall der Existenz einseitiger Momente S. 6
4. Beweis zum Abschnitt 2 S. 8
5. Beweise zum Abschnitt 3 S. 13 / The paper is divided in two parts: part 1 (cp. Informationen/07; 1976,05) and part 2 (cp. Informationen/07; 1976,06).
Part 1 contains an introduction and limit theorems for iid random variables and the transfer of the considered limit theorems to the case of the existence of onesided moments.
Part 2 contains limit theorems of moderate deviations for sums of series of non iid random variables and a discussion of all obtained results in part 1 and 2 and finally some references.
Let F_n(x) be the cdf of X_1+X_2+...+X_n, where X_1, X_2, ...,X_n are iid random variables with mean 0 and variance 1 and with m-th absolute moment c_m, m>2, and Phi the cdf of the unit normal law. Explicit universal constants L_i are computed such that we have an error estimate in the nonuniform central limit theorem with the L_i, where i corresponds to the five cases considered: small x, moderate deviations for x, large deviations for x, small n , large n.
Additional upper bounds for 1-F_n(x) are obtained if the one-sided moments of order m, m>2, are finite and if x>D_m*n^(1/2)*ln(n) and x>D_m*n^(1/2)*(ln(n))^(1/2) respectively improving results by S.V.NAGAEV (1965).:1. Einführung S. 2
2. Grenzwertsätze für identisch verteilte Zufallsgrößen S. 3
3. Übertragung der formulierten Grenzwertsätze auf den Fall der Existenz einseitiger Momente S. 6
4. Beweis zum Abschnitt 2 S. 8
5. Beweise zum Abschnitt 3 S. 13
|
67 |
Grandes d´eviations de matrices aléatoires et équation de Fokker-Planck libre / Large deviations of random matrices and free Fokker-Planck equationGroux, Benjamin 09 December 2016 (has links)
Cette thèse s'inscrit dans le domaine des probabilités et des statistiques, et plus précisément des matrices aléatoires. Dans la première partie, on étudie les grandes déviations de la mesure spectrale de matrices de covariance $XX^*$, où $X$ est une matrice aléatoire rectangulaire à coefficients i.i.d. ayant une queue de probabilité en $exp(-at^{alpha})$, $alpha in ]0,2[$. On établit un principe de grandes déviations analogue à celui de Bordenave et Caputo, de vitesse $n^{1+alpha/2}$ et de fonction de taux explicite faisant intervenir la convolution libre rectangulaire. La démonstration repose sur un résultat de quantification de la liberté asymptotique dans le modèle information-plus-bruit. La seconde partie de cette thèse est consacrée à l'étude du comportement en temps long de la solution de l'équation de Fokker-Planck libre en présence du potentiel quartique $V(x) = frac14 x^4 + frac{c}{2} x^2$ avec $c ge -2$. On montre que quand $t to +infty$, la solution $mu_t$ de cette équation aux dérivées partielles converge en distance de Wasserstein vers la mesure d'équilibre associée au potentiel $V$. Ce résultat fournit un premier exemple de convergence en temps long de la solution de l'équation des milieux granulaires en présence d'un potentiel non convexe et d'une interaction logarithmique. Sa démonstration utilise notamment des techniques de probabilités libres. / This thesis lies within the field of probability and statistics, and more precisely of random matrix theory. In the first part, we study the large deviations of the spectral measure of covariance matrices XX*, where X is a rectangular random matrix with i.i.d. coefficients having a probability tail like $exp(-at^{alpha})$, $alpha in (0,2)$. We establish a large deviation principle similar to Bordenave and Caputo's one, with speed $n^{1+alpha/2}$ and explicit rate function involving rectangular free convolution. The proof relies on a quantification result of asymptotic freeness in the information-plus-noise model. The second part of this thesis is devoted to the study of the long-time behaviour of the solution to free Fokker-Planck equation in the setting of the quartic potential $V(x) = frac14 x^4 + frac{c}{2} x^2$ with $c ge -2$. We prove that when $t to +infty$, the solution $mu_t$ to this partial differential equation converge in Wasserstein distance towards the equilibrium measure associated to the potential $V$. This result provides a first example of long-time convergence for the solution of granular media equation with a non-convex potential and a logarithmic interaction. Its proof involves in particular free probability techniques.
|
68 |
Data-driven goodness-of-fit tests / Datagesteuerte VerträglichkeitskriteriumtestsLangovoy, Mikhail Anatolievich 09 July 2007 (has links)
No description available.
|
69 |
Über die Annäherung der Verteilungsfunktionen von Summen unabhängiger Zufallsgrößen gegen unbegrenzt teilbare Verteilungsfunktionen unter besonderer Beachtung der Verteilungsfunktion der standardisierten NormalverteilungPaditz, Ludwig 28 May 2013 (has links) (PDF)
Mit der vorgelegten Arbeit werden neue Beiträge zur Grundlagenforschung auf dem Gebiet der Grenzwertsätze der Wahrscheinlichkeitstheorie vorgelegt.
Grenzwertsätze für Summen unabhängiger Zufallsgrößen nehmen unter den verschiedenartigsten Forschungsrichtungen der Wahrscheinlichkeitstheorie einen bedeutenden Platz ein und sind in der heutigen Zeit nicht mehr allein von theoretischem Interesse. In der Arbeit werden Ergebnisse zu neuere Problemstellungen aus der Summationstheorie unabhängiger Zufallsgrößen vorgestellt, die erstmalig in den fünfziger bzw. sechzger Jahren des 20. Jahrhunderts in der Literatur auftauchten und in den zurückliegenden Jahren mit großem Interesse untersucht wurden.
International haben sich in der Theorie der Grenzwertsätze zwei Hauptrichtungen herauskristallisiert:
Zum Einen die Fragen zur Konvergenzgeschwindigkeit, mit der eine Summenverteilungsfunktion gegen eine vorgegebene Grenzverteilungsfunktion konvergiert, und zum Anderen die Fragen nach einer Fehlerabschätzung zur Grenzverteilungsfunktion bei einem endlichen Summationsprozeß.
Zuerst werden unbegrenz teilbare Grenzverteilungsfunktionen betrachtet und dann wird speziell die Normalverteilung als Grenzverteilung diskutiert.
Als charakteristische Kenngrößen werden sowohl Momente oder einseitige Momente bzw. Pseudomomente benutzt. Die Fehlerabschätzungen werden sowohl als gleichmäßige wie auch ungleichmäßige Restgliedabschätzungen angegeben, einschließlich einer Beschreibung der dabei auftretenden absoluten Konstanten.
Als Beweismethoden werden sowohl die Methode der charakteristischen Funktionen als auch direkte Methoden (Faltungsmethode) weiter ausgebaut. Für eine 1965 von Bikelis angegebene Fehlerabschätzung gelang es nun erstmalig, die auftretende absolute Konstante C mit C=114,667 numerisch abzuschätzen.
Weiterhin werden in der Arbeit sogenannte Grenzwertsätze für mittlere Abweichungen studiert. Hier werden erstmalig auch Restgliedabschätzungen abgeleitet.
Der in den letzten Jahren zum Beweis von Grenzwertsätzen eingeschlagene Weg über die Faltung von Verteilungsfunktionen erwies sich als bahnbrechend und bestimmte die Entwicklung sowohl der Theorie der Grenzwertsätze für mittlere und große Abweichungen als auch der Untersuchung zu den ungleichmäßigen Abschätzungen im zentralen Grenzwertsatz bedeutend.
Die Faltungsmethode stellt in der vorliegenden Dissertationsschrift das hauptsächliche Beweisinstrument dar. Damit gelang es, eine Reihe neuer Ergebnisse zu erhalten und insbesondere mittels der elektronischen Datenverarbeitung neue numerische Resultate zu erhalten. / With the presented work new contributions to basic research in the field of limit theorems of probability theory are given.
Limit theorems for sums of independent random variables taking on the most diverse lines of research in probability theory an important place in modern times and are no longer only of theoretical interest. In the work results are presented to newer problems on the summation theory of independent random variables, at first time in the fifties and sixties of the 20th Century appeared in the literature and have been studied in the past few years with great interest.
International two main directions have emerged in the theory of limit theorems:
Firstly, the questions on the convergence speed of a cumulative distribution function converges to a predetermined limit distribution function, and on the other hand the questions on an error estimate for the limit distribution function at a finite summation process.
First indefinite divisible limit distribution functions are considered, then the normal distribution is specifically discussed as a limit distribution.
As characteristic parameters both moments or one-sided moments or pseudo-moments are used. The error estimates are stated both in uniform as well as non-uniform residual bounds including a description of the occurring absolute constants.
Both the method of characteristic functions as well as direct methods (convolution method) can be further expanded as proof methods. Now for the error estimate, 1965 given by Bikelis, was the first time to estimate the appearing absolute constant C with C = 114.667 numerically.
Furthermore, in the work of so-called limit theorems for moderate deviations are studied. Here also remainder estimates are derived for the first time.
In recent years to the proof of limit theorems the chosen way of the convolution of distribution functions proved to be groundbreaking and determined the development of both the theory of limit theorems for moderate and large deviations as well as the investigation into the nonuniform estimates in the central limit theorem significantly.
The convolution method is in the present thesis, the main instrument of proof. Thus, it was possible to obtain a series of results and obtain new numerical results in particular by means of electronic data processing.
|
70 |
Extremes of log-correlated random fields and the Riemann zeta function, and some asymptotic results for various estimators in statisticsOuimet, Frédéric 05 1900 (has links)
No description available.
|
Page generated in 0.1102 seconds