• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 29
  • 9
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 50
  • 50
  • 8
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Estudo de mecanismos moleculares determinantes de diferenças da interação de macrófagos de camundongos CBA com Leishmania major ou Leishmania amazonensis

Araújo, Ivana Nunes Gomes de January 2004 (has links)
Submitted by Ana Maria Fiscina Sampaio (fiscina@bahia.fiocruz.br) on 2012-11-29T19:07:35Z No. of bitstreams: 1 Ivana Nunes Gomes De Araujo Estudo de mecanismo... 2004.pdf: 52151625 bytes, checksum: 4f6174379d294a0210664b0966341227 (MD5) / Made available in DSpace on 2012-11-29T19:07:35Z (GMT). No. of bitstreams: 1 Ivana Nunes Gomes De Araujo Estudo de mecanismo... 2004.pdf: 52151625 bytes, checksum: 4f6174379d294a0210664b0966341227 (MD5) Previous issue date: 2004 / Fundação Oswaldo Cruz. Centro de Pesquisas Gonçalo Moniz. Salvador, Bahia, Brasil / Camundongos CBA são susceptíveis à Leishmania amazonensis e resistentes à L. major. Eventos da resposta imune inata parecem cruciais na determinação da resposta à infecção por Leishmania. Macrófagos desempenham papel importante no controle da infecção, pois in vitro controlam a infecção por L. major, entretanto são permissíveis à L. amazonensis. Neste trabalho, pretendeu-se investigar mecanismos moleculares envolvidos na determinação dos perfis de resposta de macrófagos de CBA infectados, in vitro, por L. amazonensis ou L. major. Observamos que IFN-y, apesar de induzir produção semelhante de NO, reduz a infecção causada por L. major, não alterando a infecção por L. amazonensis. Essa redução é dependente de TNF-a. Em estudos de biogênese do vacúolo parasitóforo, observou-se que há semelhança na cinética de fusão dos vacúolos contendo L. amazonensis ou L. major com lisossomas, evidenciando que a maior sobrevivência de L. amazonensis não está relacionada a um retardo na formação do fagolisossomo. O padrão de expressão de genes, que poderiam influenciar no desenvolvimento da resposta imune do hospedeiro à infecção por Leishmania, foi avaliado, utilizando-se a técnica de JMP^icroarray. A infecção por L. amazonensis ou L. major induz aherações no padrão de expressão de genes anteriormente relacionados à infecção por Leishmania, e outros que ainda não tinham sido associados. Genes relacionados á explosão respiratória, formação do vacúolo parasitóforo e receptores de superfície, envolvidos na ativação celular e fagocitose, estão induzidos ou suprimidos a depender da espécie de Leishmania e o tempo de infecção. Genes relacionados a receptores do tipo scavenger foram induzidos na infecção por L. major. Esse resultado está relacionado ao aumento na expressão in vitro do receptor scavenger MARCO em células infectadas por L. major, quando comparada à infecção por L. amazonensis. Estudos in vivo demonstraram que linfonodos de camundongos infectados por L. major apresentaram um aumento da expressão de MARCO em comparação à infecção por L. amazonensis. Observamos que L amazonensis induziu gene da catalase, enzima que inibe a explosão respiratória. Esse dado pode estar relacionado com a observação anterior, que na infecção in vitro de macrófagos com L. amazonensis há uma inibição da produção de H2O2, em comparação á célula controle. Esses dados sugerem que diferenças encontradas na infecção de macrófagos podem estar relacionadas com a determinação dos perfis de resistência ou susceptibilidade, reforçando a importância do macrófago para o estabelecimento da infecção. / CBA mice are susceptible to Leishmania amazonensis and resistant to L. major infection. Events of innate immune response are supposed to be determinants of Leishmania infection outcome. CBA macrophages control L. major and are permissive to L. amazonensis infection in vitro, indicating that macrophages participate in determination of host immune profile. In the present work, we intended to investigate the molecular mechanisms, which underlie these differences. We demonstrated that IFN-y was only able to reduce L. major infection although induced similar NO production by both L. amazonensis- and L. /wa/or-infected cells. This reduction is a TNF-a-dependent mechanism. Furthermore, the ability of L. amazonensis to survive inside CBA nacrophages was not related to a delay on L. amazonensis-mànceà phagosome fusion with lysosomes as both L. amazonensis- and L. mq/or-induced parasitophorous vacuoles present the same kinetic of fusion with lysosomes. DNAmicroarray was then performed in response to L. amazonensis or L. major infection which are the macrophages genes up or down-regulated. We showed that both parasites induced significant alterations on macrophage gene expression. Some of the expressed genes were previously related to Leishmania infection but some of them were not yet associated to Leishmania infection. Genes related to cell surface receptors, which participate both in cell activation and phagocytosis of microorganisms, as well as genes involved in respiratory burst response and in parasitophorous vacuole biogenesis had their expression modified dependending on the Leishmania species and time after infection. Interestingly, we observed that L. major induced higher expression of scavenger receptors. In addition, this result is related to a 20% higher expression of MARCO scavenger receptor in L. major-infected macrophages. We also demonstrated that L. amazonensis infected macrophages express genes of enzymes related to ROI scavenging such as catalase. These data is related to our previous observation that, in L. amazonensis-infected cells, there was similar H2O2 generation when compared to control non-infected cells. In summary, these data suggest that CBA macrophages are able to interact distinctly with L. amazonensis and L. major, supporting the idea that macrophage is a key cell in the determination of resistance and susceptibility in Leishmania infection.
42

Role hlodavců rodu Arvicanthis jako rezervoárů Leishmania major: xenodiagnostika a experimentální infekce flebotomy. / Role of rodents of the genus Arvicanthis in Leishmania major maintenance: xenodiagnosis and experimental transmission of infections.

Hrnčířová, Kateřina January 2017 (has links)
A cutaneous leishmaniasis is the most common clinical form of human disease caused by parasite of the genus Leishmania. They are transmitted between the hosts by haematophagous females of dipteran sand flies of the genus Phlebotomus in the Old World and Lutzomyia in the New World. One of the major agents of cutaneous leishmaniasis in the Old World is Leishmania major. The disease caused by this species is a zoonosis where rodents act as reservoir host. The parasite long time circulates between reservoir rodents and sand flies, while humans are infected only accidentaly in the focus of infection. Rodents of the genus Arvicanthis belongs to the most abundant in the African continent. The genus has evolved in Ethiopia from where it expanded to a major part of Sub - Saharan Africa and the delta of the river Nile. These rodents are very abundant in endemic locations of cutaneous and visceral leishmanias and fulfil many reservoir host criterias including repeated field findings of individuals infected by L. major and another Leishmania species in nature. However, their role in the disease cycle remains to be confirmed. A. neumanni used in this study is an East African species spread from Ethiopia and Somalia to Kenya and Tanzania. Animals were experimentally infected with three different L. major...
43

The role of the dihydroxyacetone phosphate acyltransferase LmDAT in lipophosphoglycan synthesis, metacyclogenesis and autophagy in Leishmania major

Al-Ani, Gada K. Khalil January 1900 (has links)
Master of Science / Department of Biochemistry / Rachel Zufferey / Glycerolipids are the most abundant lipids and are important constituents of various virulence factors in the protozoan parasite Leishmania. The dihydroxyacetone phosphate acyltransferase LmDAT catalyzes the first step of the ether, and possibly ester glycerolipid biosynthetic pathway. A L. major null mutant of LmDAT grew slowly, died rapidly during the stationary phase of growth, and more importantly, was attenuated in virulence in mice. The goal of this study was to determine the molecular basis responsible for the attenuated virulence. Western blot analysis revealed that the ∆lmdat/∆lmdat null mutant synthesized altered versions of the virulence factor lipophosphoglycans that were not released in the media, suggesting that its lipid anchor structure was altered. The ∆lmdat/∆lmdat strain differentiated into virulent metacyclics, but with lower efficiency compared to the wild type. Using the autophagosomal marker ATG8-GFP, the ∆lmdat/∆lmdat line produced twice as many autophagosomes as the wild type, suggesting that it is either defective in degradation of autophagosomes or that autophagy is simply induced. In conclusion, the attenuated virulence of ∆lmdat/∆lmdat may be explained by i) its inability to synthesize and release normal forms of lipophosphoglycan, ii) its inability to fully differentiate into virulent metacyclics, and iii) altered autophagy.
44

Studies of <em>Leishmania major</em> Pteridine Reductase 1, a Novel Short Chain Dehydrogenase

Luba, James 01 September 1997 (has links)
Pteridine reductase 1 (PTR1) is an NADPH dependent reductase that catalyzes the reduction of several pterins and folates. The gene encoding this enzyme was originally identified in Leishmania based on its ability to provide resistance to the drug methotrexate (MTX). The DNA and amino acid sequences are known, and overproducing strains of Escherichia coli are available. PTR1 has been previously shown to be required for the salvage of oxidized pteridines (folate, biopterin, and others). Since Leishmaniaare folate and pterin auxotrophes, PTR1 is a possible target for novel anti-folate drugs for the treatment of leishmaniasis. PTR1 catalyzes the transfer of hydride from NADPH to the 2-amino-4-oxo-pteridine ring system yielding 7, 8-dihydropteridines, and to the pteridine ring system of 7, 8-dihydropteridines yielding 5,6, 7, 8-tetrahydropteridines. PTR1 shows a pH dependent substrate specificity. At pH 4.6 the specific activity of PTR1 is highest with pterins, while at pH 6.0 the specific activity of PTR1 was highest with folates. The sequence of PTR1 is only 20-30% homologous to the sequences of members of the short chain dehydrogenase/reductase enzyme family. Although this is typical for members of this enzyme family, it does not allow for unambiguous classification in this family. In fact, when the DNA sequence of PTR1was first determined, PTR1 was classified as an aldoketo reductase. To classify PTR1 definitively, further biochemical characterization was required. To provide this information, the work described here was undertaken: (i) the stereochemical and kinetic course of PTR1 was determined; (ii) residues important in catalysis and ligand binding were identified; and (iii) conditions for the crystallization of PTR1 were developed. The stereochemistry of hydride transfer The use of [3H]-folate, showed that the ultimate product of PTR1 was 5, 6, 7, 8-tetrahydrofolate. 4R-[3H]-NADPH and 4S-[3H]-NADPH were synthesized enzymatically and used as the cofactor for the reduction of folate. PTR1 was coupled to thymidylate synthase (TS), and tritium from 4S-[3H]-NADPH was transferred to thymidylate. Therefore, the pro-S hydride of NADPH was transferred to the si face of dihydrofolate (DHF; see figure I-1). The transfer of the pro-Shydride indicates that PTR1 is a B-side dehydrogenase which is consistent with its membership in the short chain dehydrogenase (SDR) family. The kinetic mechanism of PTR1 When NADPH was varied at several fixed concentrations of folate (and vice-versa) V/K (Vmax/KM) showed a dependence upon concentration of the fixed substrate. This is consistent with a ternary complex mechanism, in contrast to a substituted enzyme mechanism that exhibits no dependence of V/K on fixed substrate. Product inhibition patterns using NADP+ and 5-deazatetrahydrofolate (5dTHF, a stable product analog) were consistent with an ordered ternary complex mechanism in which NADPH binds first and NADP+ dissociates last. However, an enzyme-DHF binary complex was detected by fluorescence. Isotope partitioning experiments showed that the enzyme-DHF binary complex was not catalytically competent whereas the enzyme-NADPH complex was. Measurement of the tritium isotope effect on V/K (T(V/K)) at high and low dihydrofolate confirmed that PTR1 proceeds via a steady state ordered mechanism. Rapid quench analysis showed that dihydrofolate was a transient intermediate during the reduction of folate to tetrahydrofolate and that folate reduction is biphasic. Catalytic Residues of PTR1 The amino acid sequences of dihydropteridine reductase and 3-α, 20-β, hydroxy steroid dehydrogenase were aligned to that of PTR1. Based on the results of the alignment, site directed mutagenesis was used to investigate the role of specific residues in the catalytic cycle of PTR1. Variant enzymes were screened based on their ability to rescue a dihydrofolate reductase (DHFR) deficient strain of E. coli. Selected PTR1 variants (some complementing and some non-complementing) were purified and further characterized. Tyrosine 193 of the wild type enzyme was found to be involved in the reduction of pteridines, but not in the reduction of 7, 8-dihydropteridines, and eliminated the substrate inhibition of 7, 8-dihydropteridines observed with the wild type enzyme. Both PTR1(K197Q) and PTR1(Y193F/K197Q) had decreased activity for all substrates and low affinity for NADPH. In contrast to the wild type enzyme, NADPH displayed substrate inhibition towards PTR1(K197Q). All PTR1(D180) variants that were purified were inactive except for PTR1(D180C), which showed 2.5% of wild type activity with DHF. The binary complexes of PTR1(D180A) and PTR1(D180S) with NADPH showed a decrease in affinity for folate. Based on the kinetic properties of the PTR1 variants, roles for Y193, K197, and D180 are proposed. In conjunction with D180, Y193 acts as a proton donor to N8 of folate. K197 forms hydrogen bonds with NADPH in the active site and lowers the pKaof Y193. D180 participates in the protonation of N8 of folate and N5 of DHF. Crystallization of PTR1 and PTR1-ligand complexes The crystallization of PTR1 from L. major and L. tarentolea as unliganded and as binary and ternary complexes was attempted. Several crystal forms were obtained including L. major PTR1-NADPH-MTX crystals that diffracted to ~ 3.2 Å resolution. It was not possible to collect a full data set of any of the crystals. At their current stage, none of the crystal forms is suitable for structural work.
45

Rôle de l'ADN dans l'activation du TLR9 lors de l'infection par Leishmania major : propriétés des séquences génomiques et implication des facteurs protéiques

Erin Khan, Melissa 21 March 2014 (has links) (PDF)
La plus grande sensibilité des souris TLR9-/- a révélé le rôle de ce récepteur dans l'infection par Leishmania major. Les cellules dendritiques (DCs) sont activées de manière TLR9-dépendante par l'ADN du L. major et d'autres Trypanosomatidae et non par l'ADN de vertébré. La nature de l'ADN capable d'activer le TLR9 reste controversée quant à la séquence/charpente de l'ADN et l'implication de cofacteurs se liant avec le TLR9 ou l'ADN. Nous avons démontré l'importance de la séquence d'ADN. Contrairement aux génomes de parasites, l'ADN de vertébré présente une contre-sélection des motifs activateurs du TLR9 au profit des motifs inhibiteurs. De plus, l'activation du TLR9 par l'ADN du parasite est augmentée en présence de la protéine HMGB1, qui se fixe mieux sur l'ADN de parasite que de vertébré. La maturation du TLR9 requiert un clivage protéolytique par des protéases endosomales, dont les cathepsines (Cat) B, S, L et l'asparagine endopeptidase (AEP) qui interviennent différemment dans les macrophages et les DCs. Après infection par L. major, nous avons montré que les souris AEP-/-, CatS-/- et CatL-/- ont une pathologie identique aux souris WT, ce qui peut être dû à la redondance de leur fonction. Etonnamment, les souris CatB-/- sont plus résistantes. Leurs lésions et la charge parasitaire dans les ganglions se résolvent plus rapidement, reflétant une réponse immune plus précoce et un contrôle plus rapide de la réaction inflammatoire.En conclusion, ces résultats contribuent à une meilleure compréhension des mécanismes permettant au TLR9 de discriminer entre l'ADN de pathogène et de vertébré et soulèvent le rôle non protecteur de la cathepsine B dans l'infection par L. major.
46

Fusão Homotípica e Heterotípica entre Vacúolos Parasitóforos de Leishmania spp / Homotypic and Heterotypic Fusion between Leishmania spp. Parasitophorous Vacuoles

Real, Fernando [UNIFESP] 22 February 2011 (has links) (PDF)
Made available in DSpace on 2015-07-22T20:50:16Z (GMT). No. of bitstreams: 0 Previous issue date: 2011-02-22 / Quase todos os patógenos intracelulares não virais de importância humana e animal penetram nas células hospedeiras por fagocitose “clássica” ou modificada. Por este motivo os fagossomos constituem o primeiro e, às vezes, o último habitat dos patógenos intracelulares. Sua sobrevida e multiplicação na célula hospedeira dependem da modulação do fenótipo composicional e funcional dos fagossomos em que habitam, como o pH intravacuolar, a aquisição de substratos e nutrientes pela presença de canais e transportadores e a fusão com lisossomos, outros fagossomos e vesículas. Cada fagossomo ou fagolisossomo é uma entidade particular, cuja biogênese depende de sinais expressos ou disparados pela célula e pela partícula ou organismo internalizado. Uma vez internalizados pelas células hospedeiras, alguns patógenos escapam do fagossomo e se instalam no citosol. Outros interferem com a maturação dos fagossomos, de forma a excluí-los das vias endocítica e secretória ou gerar vacúolos de capacidade fusogênica seletiva. Os parasitas do gênero Leishmania permanecem, durante todo o ciclo de vida intracelular no hospedeiro mamífero, em estruturas semelhantes a fagolisossomos denominadas vacúolos parasitóforos (VPs). A diversidade morfológica e bioquímica desses vacúolos foi pouco estudada. Os VPs formados pelas espécies mais estudadas – (L.) L. major, L. (L.) donovani e L. (V.) braziliensis - abrigam uma ou duas formas amastigotas e apresentam pouco espaço vacuolar livre. À medida que os amastigotas se dividem, os VPs que os hospedam fissionam, porém os mecanismos envolvidos neste processo são desconhecidos. Já parasitas do complexo (L.) (L.) mexicana, incluindo L. (L.) amazonensis, L. (L.) mexicana e L. (L.) pifanoi, ocupam VPs espaçosos contendo mais de um amastigota. O presente estudo experimental teve como objetivo responder à questão: “qual a importância de um VP espécie-específico para o parasitismo intracelular de Leishmania?”. Nos experimentos descritos, macrófagos derivados de precursores de medula óssea de camundongo foram coinfectados por duas espécies de Leishmania para investigar a possibilidade de fusão entre VPs que hospedam diferentes parasitas e as consequências de uma possível coabitação intravacuolar sobre a viabilidade e multiplicação dos dois parasitas. Os macrófagos foram inicialmente infectados com L. (L.) amazonensis e em seguida superinfectados por L. (L.) major, espécies que desenvolvem VPs de tamanho, número de parasitas e biogênese distintos. Para permitir o reconhecimento inequívoco da espécie dos parasitas, os macrófagos foram infectados por amastigotas não fluorescentes de L. (L.) amazonensis e superinfectados com amastigotas ou promastigotas de L. (L.) major que expressam proteínas fluorescentes GFP ou DsRed2. Constatamos que os VPs contendo amastigotas de L. (L.) major aderiram aos espaçosos VPs de L. (L.) amazonensis mas a fusão entre os vacúolos não foi detectada. A multiplicação da L. (L.) major e a fissão de seus VPs nos macrófagos superinfectados não foram afetadas pela infecção pelos dois parasitas. Já os VPs contendo promastigotas da L. (L.) major se fundiram com os VPs da L. (L.) amazonensis. Nestes VPs “quiméricos” (contendo ambas as espécies de parasitas) os promastigotas de L. (L.) major dividiram-se mas não se diferenciaram em amastigotas. Essa diferenciação só ocorreu nos pequenos VPs que abrigavam exclusivamente a L. (L.) major. / Most non-viral intracellular pathogens gain entrance into human and animal host cells by “classic” or modifIed phagocytosis and are thus lodged in phagosomes which they may or not continue to occupy in the course of infection. Their survival and multiplication within host cells depend on modulation of the compositional and functional phenotypes of the phagosomes they occupy, including intravacuolar pH, substrate acquisition through membrane transporters and channels, and fusion with lysosomes, and other cell phagosomes and vesicles. Each phagosome thus exhibits particular features, whose biogenesis is conditioned to different signals triggered by both the host cell and the internalized particle/microorganism. Once internalized by host cells, some pathogens escape the phagosome and assume the host cell cytosol as their intracellular niche. Other pathogens interfere with phagosomal maturation, leading to the development of phagosomes excluded from host cell endocytic and secretory pathways or vacuoles with selective fusogenic properties. During their intracelular lifecycle, protozoan parasites of the genus Leishmania remain enclosed in phagolysosome-like structures called Parasitophorous Vacuoles (PVs). The morphological and biochemical diversity of Leishmania PVs were not extensively studied. Most species – such as L. major, L. donovani and L. braziliensis – are lodged in membrane-bound PVs, containing one or two amastigotes, that undergo fission as parasites divide. The mechanisms involved in PV fission remain to be elucidated. In contrast, species from the L. mexicana complex, such as L. amazonensis, L. mexicana and L. pifanoi, occupy large PVs which may contain many parasites. The present experimental aimed to answer the question: “what is the importance of a speciesspecific PV to Leishmania intracellular parasitism?”. In the experiments herewith described, mouse bone marrow-derived macrophages were co-infected with two Leishmania species to investigate the possibility of fusion between PVs that shelter different parasites, and the consequences of a possible intravacuolar cohabitation on their survival and multiplication. Macrophages were initially infected with L. amazonensis and later on superinfected with L. major, which represent species with different PV size, parasite content and biogenesis. In order to distinguish the two species, macrophages were infected with non-fluorescent L. amazonensis amastigotes and superinfected with either amastigotes or promastigotes of L. major transfected with the fluorescent proteins GFP or DsRed2. Although PVs contacted each other, fusion between L. amazonensis and L. major amastigote PVs was not detected. Leishmania major multiplication and PV fission were not affected by coinfection. In contrast, PVs containing L. major promastigotes fused with pre-established L. amazonensis PVs. In these “chimeric” vacuoles (containing both Leishmania), L. major promastigotes multiplied, however they did not differentiate into amastigotes. The differentiation of L. major promastigotes into amastigotes occurred exclusively within their own, unfused PVs. / TEDE / BV UNIFESP: Teses e dissertações
47

Reconstrução in silico das vias de processamento da informação genética nos Tritryps (Trypanosoma cruzi, Trypanosoma brucei e Leishmania major) – busca por análogos funcionais

Gomes, Monete Rajão January 2010 (has links)
Submitted by Anderson Silva (avargas@icict.fiocruz.br) on 2012-09-03T16:36:35Z No. of bitstreams: 1 monete_r_gomes_ioc_bcs_0002_2010.pdf: 4408396 bytes, checksum: dc300c2a3e79c9521a3d4a99c18e5e9d (MD5) / Made available in DSpace on 2012-09-03T16:36:35Z (GMT). No. of bitstreams: 1 monete_r_gomes_ioc_bcs_0002_2010.pdf: 4408396 bytes, checksum: dc300c2a3e79c9521a3d4a99c18e5e9d (MD5) Previous issue date: 2010 / Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Rio de Janeiro, RJ, Brasil. / Leishmania major, Trypanosoma brucei e Trypanosoma cruzi (Tritryps) são protozoários unicelulares que causam a leishmaniose, a doença do sono e a doença de Chagas, respectivamente. Essas doenças causam ônus econômicos principalmente em regiões subtropicais e tropicais. Atualmente, não existem vacinas comercialmente disponíveis e não há tratamento eficaz para tais doenças. Isso se deve ao fato dos fármacos disponíveis apresentarem muitos efeitos colaterais e estarem propensas ao desenvolvimento de resistência. A maioria desses fármacos foi descoberta através da seleção de um grande número de compostos contra parasitas íntegros. Porém, nos últimos anos, uma nova abordagem vem ganhando espaço sob o termo de “desenho racional de fármacos”. Este termo representa a busca por compostos contra alvos moleculares específicos, visando diferenças bioquímicas e fisiológicas entre o parasita e o hospedeiro. A era pós-genômica gerou uma grande quantidade de informações que permitem a identificação ótima de novos alvos. Neste contexto, a partir de dados públicos dos genomas de Tritryps, reconstruímos as vias de processamento da informação genética (com ênfase nas vias de replicação e reparo, transcrição e tradução) nesses organismos, para adquirir uma melhor representação das enzimas envolvidas nestes processos. Estas análises permitiram estudos comparativos para identificar candidatos a novos alvos terapêuticos. Em nossa metodologia utilizamos a ferramenta AnEnPi (http://bioinfo.pdtis.fiocruz.br/AnEnPi/) para buscar nas seqüências genômicas por enzimas análogas. Utilizando os dados provindos do KEGG, primeiro houve uma etapa de clusterização das estruturas primárias de todas as enzimas desse banco de dados anotadas com o mesmo EC. Para isso utilizou-se uma pontuação (score) de similaridade no Blastp de 120, como parâmetros de corte. Encontramos 830 grupos de ECs com mais de um cluster e 1430 com um único cluster. Após isso, foi realizado um passo de reanotação. Para isto, foi rodado um novo Blastp, assumindo como ponto de corte um e-value de 10e-20, entre todas as proteínas preditas nos genomas de cada Tritryp contra todos os clusters. Desses dados geramos mapas das vias de interesse para esses organismos e os comparamos aos mapas que o KEGG disponibiliza como padrão. Identificamos alguns casos de analogia nestas vias entre seres humanos e Tritryps que podem vir a ser utilizados como novos alvos terapêuticos para o desenvolvimento de fármacos contra esses parasitas. Foi feita a modelagem por homologia de um análogo (6.1.1.-, de T. brucei), utilizando a ferramenta MHOLline. Além disso, buscamos no banco de alvos terapêuticos para doenças negligenciadas, TDRTARGETS (http://tdrtargets.org/), pelos ECs identificados como possíveis novos alvos, e não encontramos nenhuma ocorrência. Tal fato pode indicar que com a metodologia aplicada conseguimos identificar novos candidatos a alvos terapêuticos contra estes parasitas. Em análises futuras, vamos testar e-values mais restritivos na etapa de reanotação, para assim, testar o potencial de reanotação da ferramenta. / Leishmania major, Trypanos oma brucei e Trypanosoma cruzi (Tritryps) are unicellular protozoa that cause leishmaniasis, sleeping sickness and Chagas disease, respectively. These diseases cause economic burden mainly in subtropical and tropical regions. Currently, there are no commer cially available vaccines and no effective treatment for such diseases. This is because the available drugs present many side effects and are willing to develop resistance. Most of these drugs were discovered through the screening of large numbers of compo unds against whole parasites. However, a new approach has been gaining ground under the term "rational drug design", recently. This term represents the search for compounds against specific molecular targets, aiming physiological and biochemical difference s between parasites and hosts. The post - genomic era generated a lot of information that allow optimal identification of new targets. In this context, from public data of the Tritryps’ genomes, we reconstructed the genetic information processing pathway (wi th emphasis on replication and repair, transcription and translation) of these organisms, to obtain a better representation of enzymes involved in these processes. These analyses allowed comparative studies to identify candidates for new therapeutic target s. In our methodology we used the AnEnPi tool ( http://bioinfo.pdtis.fiocruz.br/AnEnPi/ ) to search the genomes for analogous enzymes. Using the data coming from KEGG, there was first a clustering step of the primary structures of all enzymes annotated with the same EC in this database. For this we used a Blastp similarity score of 120 as threshold. We found 830 groups of ECs with more than one cluster and 1430 with only one cluster. After that, we performed a reannotation step. For this task a new Blastp was done, assuming an e - value cutoff of 10e - 20 , among all pr edicted proteins, from each Tritryp genome, against all clusters. From these data we generated maps, for Tritryps, of the pathways of interest and compared them to the KEGG standard maps. We identified some cases of analogy in these pathways between humans and Tritryps that may be used as new therapeutic targets for developing drugs against these parasites. The homology modeling was done for an analog (6.1.1. - , T. brucei ), using the tool MHOLline. Furthermore we also searched in the therapeutic targets data base for neglected disease, TDRTARGES (http://tdrtargets.org/), for the ECs identified as possible new targets, and no occurrences were found. This may indicate that with the methodology applied we managed to identify new candidates for therapeutic targets against these parasites. In further analysis, we will test more restrictive e - values on the reannotation step to test the potential of reannotation of the tool.
48

Planejamento de inibidores da enzima diidroorotato desidrogenase de Trypanosoma cruzi por biocalorimetria / Biocalorimetry as a tool for Trypanosoma cruzi dihydroorotate dehydrogenase inhibitors discovery

Cheleski, Juliana 04 March 2011 (has links)
A doença de Chagas, causada pelo protozoário flagelado Trypanosoma cruzi, é uma doença tropical que enseja morte/morbidade de milhões de pessoas na América Latina. Por processos migratórios, vem-se estendendo ao sul dos Estados Unidos, Canadá, Europa, Austrália e Japão. Essa doença tem sido considerada super-negligenciada pela indústria farmacêutica, já que os dois fármacos disponíveis para o seu tratamento foram introduzidos há mais de quarenta anos e apresentam baixa eficácia com vários efeitos colaterais severos. Mais recentemente, a Organização Mundial da Saúde considerou a doença de Chagas, dentre outras, como a doença da pobreza! Com esse cenário completamente desfavorável aos portadores da doença, é necessária a descoberta, desenvolvimento e introdução de novos fármacos para o tratamento eficiente e seguro da doença de Chagas. <br />Dentro desse contexto, este trabalho representa uma importante contribuição para o entendimento das razões moleculares da ação farmacológica de substâncias químicas bioativas de interesse à farmacoterapia da doença de Chagas. Ao nível molecular, a enzima pertencente à via de síntese de novo de nucleotídeos de pirimidinas, diidroorotato desidrogenase do Trypanosoma cruzi (TcDHODH), é um alvo promissor para a descoberta e desenvolvimento de candidatos a fármacos de interesse para o tratamento da doença de Chagas. <br />Os conceitos e ferramentas da química medicinal computacional, tais como os ensaios virtuais in silico, foram usados para a identificação de inibidores da TcDHODH. Vinte e seis substâncias inéditas como inibidores da TcDHODH foram adquiridos comercialmente e avaliados experimentalmente através da Calorimetria de Titulação Isotérmica (ITC) para a determinação do mecanismo de inibição e da constante cinética de afinidade (Kiapp). <br />Na etapa de docagem molecular, o objetivo era identificar moléculas que apresentassem uma boa afinidade pelo sítio ativo da enzima TcDHODH. A primeira série de ligantes selecionados dos métodos in silico, apresentou inibição enzimática na concentração de micromolar com eficiência média de ligante de 0,50 kcal mol-1 átomo-1. Devido à baixa massa molecular (aproximadamente 200 kDa) e a alta eficiência de ligante, essa série foi considerada como constituída de excelentes substâncias com elevado poder de reconhecimento biomolecular. Por isso, foram caracterizadas como substâncias passíveis de otimização no processo do-ligante-para-substância matriz. <br />As enzimas TcDHODH e DHODH de Leishmania major (LmDHODH) têm sítios ativos com elevado grau de similaridade. Portanto, usando a enzima LmDHODH como padrão de substituição da TcDHODH é possível fazer a descrição do modo de interação do co-complexo TcDHODH-inibidor. O modo de ação descrito através da resolução da estrutura cristalográfica de raios-X, além de validar ortogonalmente os resultados cinéticos obtidos por ITC - que identificou as substâncias como inibidores competitivos (por interação direta no sítio ativo da enzima TcDHODH), geraram hipóteses farmacofóricas para a busca de novas moléculas (chamadas de segunda geração), agora com padrão superior de reconhecimento molecular do sítio da TcDHODH. Para validar complementarmente a hipótese, foi demonstrado que os inibidores da TcDHODH inibem, similarmente, a LmDHODH. <br />Uma análise cuidadosa da estrutura tridimensional da enzima TcDHODH, demostrou a possibilidade de ocupação do sítio S2 que se estende além da região do sítio catalítico S1, permitindo assim o aumento da afinidade biomolecular com os inibidores. Além disso, o sítio S2 não é encontrado na estrutura da proteína de humanos (HsDHODH), podendo ser uma região passível de seletividade frente à enzima TcDHODH. <br />O emprego adequado dessa hipótese resultou na otimização dos ligantes identificados previamente para substâncias mais potentes que inibiram a enzima de forma competitiva em relação ao substrato diidroorotato (DHO) em valores Kiapp de 121 &plusmn; 14 nM e 190 &plusmn; 10 nM. <br />A técnica de ITC foi fundamental no processo de descoberta de inibidores enzimáticos, pois se mostrou extremamente susceptível à determinação da interação intermolecular enzima-inibidor, permitindo acompanhar a cinética da reação e obter os valores da constante de afinidade de maneira precisa e acurada. Com isso, a taxa de acerto obtida nesta tese foi de 46%, considerando-se apenas as substâncias com valores de Ki app < 100 &micro;M. Esse é um número favoravelmente apreciável, já que na literatura ele gira em torno de 1-10% quando o planejamento in silico é realizado, quando comparado às taxas de acerto dos métodos de ensaio em larga escala (HTS), entre 0-2 %, os resultados alcançados neste trabalho são ainda mais significativos. <br />Além disso, as substâncias químicas selecionadas através da integração de métodos in silico e biocalorimétricos apresentam elevado grau de complexidade no processo biomolecular de interação enzima-ligante, que permite classificá-las para as fases seguintes da gênese planejada de fármacos. / American trypanosomiasis or Chagas disease, caused by the haemoflagellate Trypanosoma cruzi, is a tropical disease that affects millions of people in Latin America. Epidemiology of Chagas disease in non-endemic countries is attained by immigration as the disease also affects people in the United States, Canada, Europe, Australia and Japan. However, the United States are not to be written off as an area of nonendemicity for Chagas disease like Europe or Asia because the southern states have enzootic T. cruzi transmission that involves triatomine species and hosts such as raccoons, opossums, and domestic dogs. Even though, this disease has been considered as a super-neglected from the big Pharma Industry viewpoint since the only available drugs for its treatment were introduced in the market more than forty years ago and worsen is that they have low efficacy and cause various severe side effects. <br />Although the current clinical scenario is of course discouraging and is far from being even a soothing treatment for those who suffer from the disease, it prompt ones to set efforts towards the need of discovering and developing new efficacious and safe drugs to treat Chagas disease. <br />Our research group covers the concept of enzymes acting as targets for the action of drugs. Once T. cruzi has many druggable targets, the dihydroorotate dehydrogenase enzyme (TcDHODH) that belongs to the de novo pyrimidine nucleotide synthetic pathway has been chosen for the search of new inhibitors that may be of use in the treatment of Chagas disease. To accomplish with this and considering that inhibitors are molecules that decrease enzyme activity leading to parasite death, we used the concepts and tools of modern computational medicinal chemistry such as in silico screening of small molecules that bind to the active site of the TcDHODH. <br />After a thoroughly program of virtually screening thousands of compounds, 26 were purchased from commercially available sources and experimentally assayed against the TcDHODH using Isothermal Titration Calorimetry (ITC) in order to determine the mechanism of inhibition and the kinetic affinity constant (Kiapp). <br />The first series of inhibitors selected from our in silico strategy were evaluated by ITC to yield compounds that inhibited the TcDHODH in the micromolar concentration range with an average of 0.50 kcal mol-1 atom-1 ligand efficiency (LE). Because the assayed compounds have low molecular weight (ca. 200 kDa) and high LE, which bring them to the specific bimolecular pattern recognition all of them were considered good inhibitors capable of being selected to enter the hit-to-lead optimization process. <br />The detailed description of the ligand-enzyme mode of binding (MOB) is thoroughly accomplished by solving the X ray crystal structure of the surrogate Leishmania major DHODH enzyme (LmDHODH), which has a high degree of similarity with the enzyme TcDHODH. The MOB credited to be in the active site of the TcDHODH orthogonally validated the ITC kinetic experimental data obtained for all ligands as competitive inhibitors that interact at the active site of the TcDHODH and helped to generate pharmacophoric hypotheses for the search of new second generation molecules acting against the enzyme TcDHODH.  Analyzing the 3D structure of the TcDHODH along with its surrogate LmDHODH, we envisaged the possibility of compounds to extend their side chain beyond the region of the catalytic site (called S1), and interacting in a region called S2, so to increase binding affinity. Moreover, the TcDHODH S2 site that is not found in the 3D protein structure of humans (HsDHODH) is likely to offer new insights for the search of inhibitors whose binding to this S2 site can pave the roads towards the needed structural basis for selective inhibition of TcDHODH. <br />The most potent compounds inhibited the enzyme competitively with respect to the substrate dihydroorotate (DHO) at Kiapp values of 121 &plusmn; 14 nM and 190 &plusmn; 10 nM, which constitutes high affinity TcDHODH inhibitors. The ITC technique was pivotal to this process of enzyme inhibitors discovery, because it proved to be extremely sensitive thus allowing to monitor the kinetics of the reaction and to obtain precise and accurate values of affinity constants. <br />The hit rate obtained in this work, considering only those compounds with Kiapp < 100 &micro;M, was 46%. This is a really high number, since literature values range from 1 to 10% when the planning new inhibitors via in silico methods when compared to the success rates obtained by the methods of testing on large scales (HTS), 0-2 %, the results achieved in this work are even more significant. Moreover, the compounds selected through the integration of in silico and calorimetric methods showed a high degree of complexity in the process of bimolecular enzyme-ligand recognition, which allows to pass them to the next phase of the drug design process.
49

Planejamento de inibidores da enzima diidroorotato desidrogenase de Trypanosoma cruzi por biocalorimetria / Biocalorimetry as a tool for Trypanosoma cruzi dihydroorotate dehydrogenase inhibitors discovery

Juliana Cheleski 04 March 2011 (has links)
A doença de Chagas, causada pelo protozoário flagelado Trypanosoma cruzi, é uma doença tropical que enseja morte/morbidade de milhões de pessoas na América Latina. Por processos migratórios, vem-se estendendo ao sul dos Estados Unidos, Canadá, Europa, Austrália e Japão. Essa doença tem sido considerada super-negligenciada pela indústria farmacêutica, já que os dois fármacos disponíveis para o seu tratamento foram introduzidos há mais de quarenta anos e apresentam baixa eficácia com vários efeitos colaterais severos. Mais recentemente, a Organização Mundial da Saúde considerou a doença de Chagas, dentre outras, como a doença da pobreza! Com esse cenário completamente desfavorável aos portadores da doença, é necessária a descoberta, desenvolvimento e introdução de novos fármacos para o tratamento eficiente e seguro da doença de Chagas. <br />Dentro desse contexto, este trabalho representa uma importante contribuição para o entendimento das razões moleculares da ação farmacológica de substâncias químicas bioativas de interesse à farmacoterapia da doença de Chagas. Ao nível molecular, a enzima pertencente à via de síntese de novo de nucleotídeos de pirimidinas, diidroorotato desidrogenase do Trypanosoma cruzi (TcDHODH), é um alvo promissor para a descoberta e desenvolvimento de candidatos a fármacos de interesse para o tratamento da doença de Chagas. <br />Os conceitos e ferramentas da química medicinal computacional, tais como os ensaios virtuais in silico, foram usados para a identificação de inibidores da TcDHODH. Vinte e seis substâncias inéditas como inibidores da TcDHODH foram adquiridos comercialmente e avaliados experimentalmente através da Calorimetria de Titulação Isotérmica (ITC) para a determinação do mecanismo de inibição e da constante cinética de afinidade (Kiapp). <br />Na etapa de docagem molecular, o objetivo era identificar moléculas que apresentassem uma boa afinidade pelo sítio ativo da enzima TcDHODH. A primeira série de ligantes selecionados dos métodos in silico, apresentou inibição enzimática na concentração de micromolar com eficiência média de ligante de 0,50 kcal mol-1 átomo-1. Devido à baixa massa molecular (aproximadamente 200 kDa) e a alta eficiência de ligante, essa série foi considerada como constituída de excelentes substâncias com elevado poder de reconhecimento biomolecular. Por isso, foram caracterizadas como substâncias passíveis de otimização no processo do-ligante-para-substância matriz. <br />As enzimas TcDHODH e DHODH de Leishmania major (LmDHODH) têm sítios ativos com elevado grau de similaridade. Portanto, usando a enzima LmDHODH como padrão de substituição da TcDHODH é possível fazer a descrição do modo de interação do co-complexo TcDHODH-inibidor. O modo de ação descrito através da resolução da estrutura cristalográfica de raios-X, além de validar ortogonalmente os resultados cinéticos obtidos por ITC - que identificou as substâncias como inibidores competitivos (por interação direta no sítio ativo da enzima TcDHODH), geraram hipóteses farmacofóricas para a busca de novas moléculas (chamadas de segunda geração), agora com padrão superior de reconhecimento molecular do sítio da TcDHODH. Para validar complementarmente a hipótese, foi demonstrado que os inibidores da TcDHODH inibem, similarmente, a LmDHODH. <br />Uma análise cuidadosa da estrutura tridimensional da enzima TcDHODH, demostrou a possibilidade de ocupação do sítio S2 que se estende além da região do sítio catalítico S1, permitindo assim o aumento da afinidade biomolecular com os inibidores. Além disso, o sítio S2 não é encontrado na estrutura da proteína de humanos (HsDHODH), podendo ser uma região passível de seletividade frente à enzima TcDHODH. <br />O emprego adequado dessa hipótese resultou na otimização dos ligantes identificados previamente para substâncias mais potentes que inibiram a enzima de forma competitiva em relação ao substrato diidroorotato (DHO) em valores Kiapp de 121 &plusmn; 14 nM e 190 &plusmn; 10 nM. <br />A técnica de ITC foi fundamental no processo de descoberta de inibidores enzimáticos, pois se mostrou extremamente susceptível à determinação da interação intermolecular enzima-inibidor, permitindo acompanhar a cinética da reação e obter os valores da constante de afinidade de maneira precisa e acurada. Com isso, a taxa de acerto obtida nesta tese foi de 46%, considerando-se apenas as substâncias com valores de Ki app < 100 &micro;M. Esse é um número favoravelmente apreciável, já que na literatura ele gira em torno de 1-10% quando o planejamento in silico é realizado, quando comparado às taxas de acerto dos métodos de ensaio em larga escala (HTS), entre 0-2 %, os resultados alcançados neste trabalho são ainda mais significativos. <br />Além disso, as substâncias químicas selecionadas através da integração de métodos in silico e biocalorimétricos apresentam elevado grau de complexidade no processo biomolecular de interação enzima-ligante, que permite classificá-las para as fases seguintes da gênese planejada de fármacos. / American trypanosomiasis or Chagas disease, caused by the haemoflagellate Trypanosoma cruzi, is a tropical disease that affects millions of people in Latin America. Epidemiology of Chagas disease in non-endemic countries is attained by immigration as the disease also affects people in the United States, Canada, Europe, Australia and Japan. However, the United States are not to be written off as an area of nonendemicity for Chagas disease like Europe or Asia because the southern states have enzootic T. cruzi transmission that involves triatomine species and hosts such as raccoons, opossums, and domestic dogs. Even though, this disease has been considered as a super-neglected from the big Pharma Industry viewpoint since the only available drugs for its treatment were introduced in the market more than forty years ago and worsen is that they have low efficacy and cause various severe side effects. <br />Although the current clinical scenario is of course discouraging and is far from being even a soothing treatment for those who suffer from the disease, it prompt ones to set efforts towards the need of discovering and developing new efficacious and safe drugs to treat Chagas disease. <br />Our research group covers the concept of enzymes acting as targets for the action of drugs. Once T. cruzi has many druggable targets, the dihydroorotate dehydrogenase enzyme (TcDHODH) that belongs to the de novo pyrimidine nucleotide synthetic pathway has been chosen for the search of new inhibitors that may be of use in the treatment of Chagas disease. To accomplish with this and considering that inhibitors are molecules that decrease enzyme activity leading to parasite death, we used the concepts and tools of modern computational medicinal chemistry such as in silico screening of small molecules that bind to the active site of the TcDHODH. <br />After a thoroughly program of virtually screening thousands of compounds, 26 were purchased from commercially available sources and experimentally assayed against the TcDHODH using Isothermal Titration Calorimetry (ITC) in order to determine the mechanism of inhibition and the kinetic affinity constant (Kiapp). <br />The first series of inhibitors selected from our in silico strategy were evaluated by ITC to yield compounds that inhibited the TcDHODH in the micromolar concentration range with an average of 0.50 kcal mol-1 atom-1 ligand efficiency (LE). Because the assayed compounds have low molecular weight (ca. 200 kDa) and high LE, which bring them to the specific bimolecular pattern recognition all of them were considered good inhibitors capable of being selected to enter the hit-to-lead optimization process. <br />The detailed description of the ligand-enzyme mode of binding (MOB) is thoroughly accomplished by solving the X ray crystal structure of the surrogate Leishmania major DHODH enzyme (LmDHODH), which has a high degree of similarity with the enzyme TcDHODH. The MOB credited to be in the active site of the TcDHODH orthogonally validated the ITC kinetic experimental data obtained for all ligands as competitive inhibitors that interact at the active site of the TcDHODH and helped to generate pharmacophoric hypotheses for the search of new second generation molecules acting against the enzyme TcDHODH.  Analyzing the 3D structure of the TcDHODH along with its surrogate LmDHODH, we envisaged the possibility of compounds to extend their side chain beyond the region of the catalytic site (called S1), and interacting in a region called S2, so to increase binding affinity. Moreover, the TcDHODH S2 site that is not found in the 3D protein structure of humans (HsDHODH) is likely to offer new insights for the search of inhibitors whose binding to this S2 site can pave the roads towards the needed structural basis for selective inhibition of TcDHODH. <br />The most potent compounds inhibited the enzyme competitively with respect to the substrate dihydroorotate (DHO) at Kiapp values of 121 &plusmn; 14 nM and 190 &plusmn; 10 nM, which constitutes high affinity TcDHODH inhibitors. The ITC technique was pivotal to this process of enzyme inhibitors discovery, because it proved to be extremely sensitive thus allowing to monitor the kinetics of the reaction and to obtain precise and accurate values of affinity constants. <br />The hit rate obtained in this work, considering only those compounds with Kiapp < 100 &micro;M, was 46%. This is a really high number, since literature values range from 1 to 10% when the planning new inhibitors via in silico methods when compared to the success rates obtained by the methods of testing on large scales (HTS), 0-2 %, the results achieved in this work are even more significant. Moreover, the compounds selected through the integration of in silico and calorimetric methods showed a high degree of complexity in the process of bimolecular enzyme-ligand recognition, which allows to pass them to the next phase of the drug design process.
50

Structural Studies on DNA Damage Inducible Protein 1 (Ddi1) of Leishmania and the Rotavirus Nonstructural Protein NSP4

Kumar, Sushant January 2016 (has links) (PDF)
Structuraj investigations on the Ddi1 (DNA-damage inducible protein 1) of Leishmania major and on the rotavirus nonstructural protein NSP4 were carried out. Ddi1 belongs to the ubiquitin receptor family of proteins. One of its domains is similar to the retroviral aspartic proteinases. It has been shown that this domain is the target of HIV-protease inhibitors that were being used in the treatment of AIDS and it was observed that these drugs effectively controlled opportunistic diseases caused by many parasitic protozoa such as Leishmania and Plasmodium species. The retroviral protease-like domains present in Ddi1 proteins of these organisms were identified as the targets of these drugs. Structural studies on Ddi1 from L. major have been carried out, in an attempt to provide a platform for the design of anti-protozoal compounds. Rotavirus NSP4, the first viral enterotoxin to be identified, is a multifunctional glycoprotein that plays critical roles in viral pathogenesis and morphogenesis. As part of an ongoing project on the structural characterization of NSP4, we determined the structure of the diarrhea-inducing region of this protein from the rotavirus strain MF66. Chapter 1 presents an overview of Ddi1 and NSP4 of the rotavirus with an emphasis on their structural features. The methods employed during the course of the present work are described in Chapter 2. Structural studies on the retroviral protease-like domain of Ddi1 (Ddi1-RVP) of L. major is presented in Chapter 3. Apart from this domain, Ddi1 of L. major also has a ubiquitin-associated and ubiquitin-like domains whereas P. falciparum has only the ubiquitin-associated domain. Activity of the full length Ddi1 of L. major and the retroviral protease domain of P. falciparum using an HIV protease substrate was shown to be inhibited by an HIV protease inhibitor, saquinavir. Binding of saquinavir to the proteins was also confirmed by Biolayer Interferometry studies. The crystal structure of the retroviral protease domain of L. major Ddi1 has been determined. It forms a homodimeric structure similar to that of HIV protease and the reported structure of the same domain from Saccharomyces cerevisiae. The loops in Ddi1-RVP are similar to the 'flap' regions of the HIV protease which close-in upon substrate/inhibitor binding; they are visible in the electron density maps, unlike the case of the S. cerevisiae protein. Though the native form of the domain shows an open dimeric structure, normal mode analysis reveals that it can take up a closed conformation resulting from relative movements of the subunits. The present structure of Ddi1-RVP of L. major with the defined 'flap'-like loops will be helpful in the design of effective drugs against protozoal diseases, starting with HIV protease inhibitors as the lead compounds. Chapter 4 describes the structural investigations carried out on the diarrhea-inducing region of the nonstructural protein NSP4 of the rotavirus strain MF66 which forms an α-helical coiled-coil structure. Crystal structures of a synthetic peptide and of two recombinant proteins spanning this region showed parallel tetrameric organization of this domain with a bound Ca2+ ion at the core. Subsequently, we determined the structure of NSP4 from a different strain as a pentamer without the bound Ca2+ ion. This new structure provides more insights into understanding some of the functions of NSP4 such as the release of ions into the cytoplasm and binding to the double-layered particle (DLP). We also established conditions responsible for these structural transitions. The crystal structure of the coiled-coil domain of NSP4 presented in this chapter shows an entirely different structure which is an antiparallel tetramer. This explains our failure to determine the structure by the molecular replacement method using known oligomers. The structure was solved by the Sulphur-SAD method using diffraction data collected with Cr Ka radiation. The study reveals that the structural diversity of NSP4 is not limited. We could relate sequence variations and pH conditions to the differences in oligomeric assemblies. Surface properties of the domain suggest that the new form is likely to interact with different sets of proteins compared to those that interact with the parallel tetramers or pentamers. Further investigations are needed to establish this property.

Page generated in 0.0907 seconds