• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 480
  • 152
  • 64
  • 59
  • 18
  • 14
  • 14
  • 7
  • 6
  • 4
  • 3
  • 3
  • 2
  • 2
  • 1
  • Tagged with
  • 945
  • 945
  • 945
  • 385
  • 284
  • 277
  • 182
  • 165
  • 164
  • 152
  • 144
  • 137
  • 136
  • 127
  • 127
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
431

Posuzování vlivu na životní prostředí při konstrukci výrobních strojů z pohledu emise vybraných skleníkových plynů / Assesment of the Environmental Impact in the Design of Production Machines in Terms of Greenhouse Gas Emissions of Selected

Krbalová, Maria January 2016 (has links)
The presented doctoral thesis is focused on environmental impact assessment of basic engineering materials used in a production machine construction. Ecological profile of the machine itself develops already in the phase of its design. It is not only about the choice of future machine parameters and materials that it is built from, but also about technologies used for its manufacture and operation conditions of the finished machine (consumption of energy and service fluids). The thesis occupies in detail with environmental impact analysis of the production machine design from the viewpoint of material production that mentioned machine consists of. The output from the performed analysis is methodology for evaluating of machine design from the viewpoint of greenhouse gas emissions. Created methodology enables evaluating of machine ecological profile and its possible adjustments even during pre-production stage. In the first part of the thesis the analysis of current legislation in the field of fighting against climate changes, reducing of products energy consumption and increasing of production machines energy efficiency is presented. Also in this part of the thesis description of methods that were used to achieve thesis goals is stated. Furthermore analysis of production machine as a system of structural components that fulfil the certain functions and description of used basic engineering materials are presented. The second part of the thesis is devoted to environmental impact analysis of the production machine design process. There the design process and environmental impact of machine design are described. This is followed by description of production machine life cycle and detailed analysis of undesirable substances emissions emitted during pre-production phases of machine life cycle (i.e. during the raw materials extraction and materials production). From this analysis the particular constituents’ pre-production phases which are sources of undesirable substances emissions (e.g. greenhouse gas emissions) were derived. The thesis also includes analysis of these constituents’ life cycles and description of electric power generation as a basic constituent of any phase of product life cycle. In this part of the thesis calculations of particular fuel type’s amounts that is required to produce 1 MWh of electric power and carbon dioxide amount produced during electric power generation are presented. The third part of the thesis contains created models of manufacturing processes of basic engineering materials and calculations of related emissions of selected greenhouse gases. The practical output from this part of the thesis is methodology that enables environmental impact assessment of machine design from the viewpoint of engineering materials used in its construction.
432

Avaliação do ciclo de vida de argamassas com substituição parcial de cimento portland por cinza de bagaço de cana-de-açúcar /

Assunção, Camila Cassola. January 2020 (has links)
Orientador: Mauro Mitsuuchi Tashima / Resumo: A construção civil, setor responsável pela infraestrutura do ambiente antrópico, é de grande importância para o desenvolvimento de atividades sociais e econômicas, atuando, todavia, como geradora de impactos ambientais. Na presente pesquisa, com o objetivo de avaliar comparativamente o desempenho ambiental de argamassas confeccionadas com cimento Portland e argamassas com substituição deste por cinza do bagaço de cana-de-açúcar (CBC) nas proporções de 15 e 30%, é utilizado a Avaliação do Ciclo de Vida (ACV). A substituição do material mais consumido pela construção civil, por um resíduo da usina sucroalcooleira se enquadra nos princípios da economia circular (EC), contribuindo para o desenvolvimento sustentável no Brasil. Para a estrutura metodológica e a condução da presente ACV fez-se uso das recomendações normativas das NBR 14040 e 14044, onde o estudo é dividido em quatro etapas: definição do objetivo e escopo; inventário do ciclo de vida (ICV); avaliação dos impactos do ciclo de vida (AICV); e interpretação. Para a condução das etapas de ICV e AICV faz-se uso do software de ACV GaBi, versão 6.0 da base de dados do Ecoinvent 2.01 e do método de AICV ReCiPe 2008. Os impactos ambientais da produção da CBC são considerados no estudo para este ser valorizado como matéria-prima no sistema produtivo de argamassas, não como apenas um resíduo da produção sucroalcooleira. Assim, o traço de argamassa com substituição de 30% apresenta melhor desempenho para a categoria de Mudança cl... (Resumo completo, clicar acesso eletrônico abaixo) / Mestre
433

A Decision-making Framework for Hybrid Resource Recovery Oriented Wastewater Systems

Rezaei, Nader 28 June 2019 (has links)
Water shortage, water contamination, and the emerging challenges in sustainable water resources management (e.g., the likely impacts of climate change and population growth) necessitate adopting a reverse logistics approach, which is the process of moving wastewater from its typical final destination back to the water supply chain for reuse purposes. This practice not only reduces the negative impacts of wastewater on the environment, but also provides an alternative to withdrawal from natural water resources, forming a closed-loop water supply chain. However, the design of such a supply chain requires an appropriate sustainability assessment, which simultaneously accounts for economic, environmental, and social dimensions. The overall aim of this work was therefore to contribute to the literature by evaluating the impacts of water reclamation and reuse according to the triple-bottom-line sustainability indicators (i.e., economic, environmental, and social) and to develop frameworks and mathematical models to help decision-makers, stakeholders, and officials with the design of sustainable water reclamation and reuse systems. The applicability of the developed frameworks and models was examined using real case studies and hypothetical scenario analyses. This enactment also revealed the tradeoffs and thresholds associated with the design of sustainable water reclamation and reuse systems. To conquer the mentioned goal, the research was conducted in three major sections. The first part of the research was outlined to design possible scenarios for water reuse based on water reuse guidelines and evaluate the different types of end-use based on the three major dimensions of sustainability (i.e., economic, environmental and social aspects), simultaneously. The different reuse types considered include unrestricted urban reuse, agricultural reuse, indirect potable reuse (IPR), direct potable reuse (DPR), distributed unrestricted urban reuse, as well as some degree of decentralization of treatment plants for distributed unrestricted urban reuse. The tradeoff investigation and decision-making framework were demonstrated in a case study and a regret-based model was adopted as the support tool for multi-criteria decision-making. This study revealed that although increasing the degree of treatment for water reuse required implementation of advanced treatment options and it increased the implementation, operation, and maintenance (O&M) costs of the design, it increased the value of resource recovery significantly, such that it can offset the capital and O&M costs associated with the treatment and distribution for DPR. Improving the reclaimed water quality also reduced the environmental footprint (eutrophication) to almost 50% for DPR compared to the other reuse scenarios. This study revealed that the distance between the water reclamation facility and the end use plays a significant role in economic and environmental (carbon footprint) indicators. In the second part of this research, a multi-objective optimization model was developed to minimize the costs and environmental footprint (greenhouse gas emissions), and maximize social benefits (value of resource recovery) of the water reclamation systems by locating the treatment facility, allocating treatment capacity, selecting treatment technology, and allocating customers (final reclaimed water users). The expansion of the water reclamation system in Hillsborough County, Florida was evaluated to illustrate the use of the model. The impacts of population density and topography (elevation variation) of the water service area on the model outputs were also investigated. Although the centralization of treatment facilities takes advantage of the economies of scale, the results revealed that simultaneous consideration of economic and environmental indicators favored decentralization of treatment facilities in the study area. This was mainly due to the significant decrease in water transfer requirements, especially in less populous areas. Moreover, the results revealed that contribution of population density to the optimal degree of decentralization of treatment facilities was significant. In the last part of this work, hypothetical scenarios for a water service area were generated to evaluate the impacts of external variables on the design of water reclamation and reuse systems. Although the conducted sensitivity analyses in the previous sections revealed the tradeoffs and thresholds associated with the design of water reclamation systems, the concept of a hypothetical study helped with the elimination of case-specific factors and local conditions that could possibly influenced the outcomes. These factors, which were specific to the case studies (e.g., the location of candidate sites for implementation of water reclamation facilities and special population distribution patters) made barriers to the conclusions and hurdled the interpretation of findings. Two major factors, which were found to be significant among the factors influencing the design of water systems (i.e., elevation variation and population density), were selected for the evaluation. Accordingly, three different topographies (i.e., flat region, medium elevation variation, and hilly) and three types of population density (i.e., low, medium, and high) were considered for the design of hypothetical cases and the previous model developed in the second section was modified and used to evaluate the impacts. The results revealed that although decentralization of water reclamation facilities decreases the costs and environmental impacts associated with water transfer phase (i.e., wastewater collection and reclaimed water distribution), there were tradeoffs between the impacts of decentralization of treatment plants and the benefits from economies of scale for treatment. The results showed that when the population density is high and there is moderate to high elevation variations in the water service area, decentralization of treatment facilities is the beneficiary option. However, if the population density is low, economies of scale for treatment becomes more influential and lower degrees of decentralization of treatment facilities is preferred.
434

Comparative life cycle assessment of multi-storey timber buildings

Yeh, Yu-Hsiang 07 August 2014 (has links)
The entire comparative estimation comprises four sections: 1. Embodied environmental implications of different structural systems of wooden buildings; 2. Embodied ecological efficiency of diverse constructions composed of various materials; 3. LCA of building models comprising equivalent thermal performance; 4. LCA of building models exhibiting similar seismic behaviour. First, the LCA results for thirty realised buildings are analysed based on the inventory of each project. This evaluation is intended to quantify and compare the embodied environmental burdens caused by different structural systems of timber houses. The second section is a comparative evaluation of the embodied ecological impacts caused by different materials, when used in the same construction. This study aims to investigate the ecological efficiency of various materials in the form of whole structures. With regard to making a compatible and reasonable LCA comparison, however, the appraisal needs a more scientific framework. In order to address this insufficiency, the third and fourth LCA studies are carried out. The third section involves various buildings made of different materials but providing equivalent thermal performance. Within this estimation, the thermal performance of a building is simply represented by the thermal inertia of its outer walls. Constructions composed of alternative envelopes are established and LCA based on the inventories of these structures are carried out. The fourth section examines three structures composed of three building materials but exhibiting similar seismic behaviour. In this study, the horizontal stiffness of the entire building against earthquakes indicates its seismic performance. The simulation develops alternative multi-storey buildings according to the seismic performance. The environmental impacts of the three buildings are quantified and compared. Both the third and fourth sections take the recycling scenarios into account. The impact of disposal after the end-of-life and the contribution from reuse and recovery are integrated into the overall impact assessment. Defining the system boundary and scope is essential for LCA studies. Normally, LCA framework refers to a ‘from-cradle-to-grave’ scenario, including the manufacturing, utilisation and dismantling phases. In the studies here, however, the estimation is focused on the production and recycling stages, without the results for utilisation and maintenance. This appraisal is the so-called ‘from-cradle-to-gate’ plus ‘from-gate-to-grave’ system. Compared to former research, this dissertation raises a couple of innovative contributions to the sustainability appraisals of constructions: 1. The scopes are focused on the structural part of buildings, considering the congruent system boundary for LCA. 2. A series of LCAs compare various building materials in the form of construction, integrating diverse aspects about buildings like thermal and seismic performance. 3. These LCAs are based on consistent prerequisites and make it possible to compare the results comprehensively. 4. In addition to embodied implications, these LCA quantify the contribution from material recycling. 5. This study divides the timber buildings according to their structural systems and estimates them individually. / Die vergleichende Bewertung der Umweltleistung mehrgeschossiger Wohnbauten umfasst vier Abschnitte: 1. Ökologische Auswirkungen der Bereitstellung und Bearbeitung von Holz für verschiedene Tragsysteme; 2. Material- und herstellungsinduzierte (graue) Umwelteffizienz von verschiedenen Materialien und Bauweisen; 3. Ökobilanzierung von Gebäuden mit gleichen thermischen Eigenschaften; 4. Ökobilanzierung von Gebäuden mit ähnlichem seismischen Verhalten. Zunächst werden die Ergebnisse der Ökobilanz für dreißig realisierte Bauten auf der Grundlage der Sachbilanzen analysiert. Diese Auswertung vergleicht und quantifiziert die materialbezogene Umweltbelastung für verschiedene Tragsysteme mehrgeschossiger Wohnbauten aus Holz. Der zweite Abschnitt vergleicht die ökologischen Auswirkungen verschiedener Baustoffe, wobei jeweils der gleiche Konstruktionstyp zugrunde gelegt wird. Das Ziel dieser Studie ist die Untersuchung der Umwelteffizienz unterschiedlicher Materialien auf der Ebene der Gebäudeteile. In Hinblick auf die Kompatibilität und Plausibilität der Ökobilanz wird mit der dritten und vierten LCA ein einheitlicher Bewertungsansatz geschaffen. Der dritte Abschnitt handelt von verschiedenen Gebäudetypen mit gleichem Wärmestandard aber unterschiedlichen Baustoffen, wobei die Wärmeeffizienz vereinfachend durch den Wärmedurchgangswiderstand der Außenwände erfasst wird. Es werden Baukonstruktionen mit alternativen Gebäudehüllen entwickelt und auf der Grundlage der Sachbilanzen ökologisch bewertet. Der vierte Abschnitt untersucht drei Strukturen aus verschiedenen Baustoffen mit ähnlichem seismischen Verhalten. Diese Studie verwendet die horizontale Steifigkeit des Gebäudes gegen Erdbebenerschütterungen als Indikator für die seismische Leistungsfähigkeit. Auf der Basis dieses Indikators werden konstruktive Alternativen für mehrgeschossige Gebäuden entwickelt und deren Umweltwirkungen quantitativ ermittelt. Sowohl im dritten als auch im vierten Abschnitt werden unterschiedliche Recyclingszenarien berücksichtigt. Die Auswirkungen auf die Umwelt, die nach der Nutzungsdauer infolge der Abfallbeseitigung, des Materialrecycling oder die Wiederverwendung entstehen, werden in die gesamte Umweltwirkungsabschätzung integriert. Die Festlegung der Systemgrenzen und der Umfang der Betrachtung ist für die Ökobilanz unerlässlich. Normalerweise betrachten diese alle Lebenszyklusphasen eines Produkts, einschließlich Herstellung, Nutzung und Recyclings („from-cradle-to-grave“). Die hier betrachteten Untersuchungen beschränken sich jedoch auf die Phasen der Produktion und des Recyclings. Umweltauswirkungen infolge der Nutzung und Wartung des Gebäudes werden nicht berücksichtigt ( „from-cradle-to-gate“ und „from-gate-to-grave“). Im Vergleich mit früheren Forschungsergebnissen arbeitet diese Dissertation innovative Beiträge zur Umweltbewertung von Baukonstruktionen heraus: 1. Der Rahmen der Untersuchung erstreckt sich auf die Bauteile der Gebäudestruktur, was zu einer einheitlichen Systemgrenze für die Ökobilanzen führt. 2. Die Datenreihen der Ökobilanzen vergleichen verschiedenartige Baumaterialien auf der Ebene von Gebäudeteilen unter verschiedenen Aspekten. 3. Diesen Ökobilanzen liegen einheitliche Voraussetzungen zugrunde. Dadurch ist es möglich, die Ergebnisse umfassend zu vergleichen. 4. Neben den material- und herstellungsinduzierten Umweltauswirkungen quantifizieren diese Ökobilanzen direkt den Beitrag des Materialrecyclings. 5. Die Arbeit klassifiziert die mehrgeschossigen Holzbauten nach Tragsystemen und bewertet diese individuell.
435

Synthesis and Environmental Assessment of Arsenic-Containing Copper Chalcogenides for Photovoltaic Applications

Joseph Andler (9095126) 15 July 2020 (has links)
As the demand for energy increases, competition for a sustainable alternative to non-renewable energy resources has resulted in the growth of the photovoltaic industry. Although most photovoltaic technologies are based on crystalline silicon, thin film technologies have been developed with the expectation of generating a comparably high-performing product with lower processing costs. These materials have demonstrated sufficiently high optoelectronic performance to enable commercialization but concerns such as material scarcity limit terawatt level power production.<div><br></div><div>In the continuous pursuit of earth abundant solar absorber materials appropriate for thin film technologies, enargite Cu3AsS4 has been identified as a promising material due to its ideal direct band gap, stability, and high absorption. Recent efforts have demonstrated this class of copper chalcogenides exhibits band gap tunability and has solution processing capabilities for potentially scalable manufacturing. Furthermore, recent first-principles calculations of enargite Cu3AsS4 have hypothesized this material may have high carrier mobility and defect-tolerant optoelectronic properties, which further support investigation into this material. <br></div><div><br></div><div>In this dissertation, a novel reactive deposition processing route has been developed which has produced dense, single-phase enargite thin films. A champion device efficiency of 0.54% was achieved following a post deposition etching procedure on these films, which demonstrates the density and observable secondary phases were not limiting to initial nanoparticle-based device performances. Together with recent modeling efforts, the non-ideal band alignment with both the back contact and diode junction is concluded to be the primary limiting factor for high efficiency devices. <br></div><div><br></div><div>As this technology contains arsenic, concerns have been raised about its potential carcinogenicity and toxicity. Similar concerns were raised during the development of cadmium telluride technology, but these concerns have been mitigated through careful life cycle analyses and identifying strategies for responsible life cycle management. Therefore, a life cycle analysis and two risk assessments have been completed on Cu3AsS4 systems. Although emissions of arsenic and its contributions to life cycle impacts are expected to be low due to the small quantity required, hot spots have been identified to reduce waste and emissions. Reduction strategies for this material system are found to be applicable to other PV systems and include minimizing molybdenum sputter waste, reusing and recycling balance of system components, and investigating low-energy processing routes on thin substrates. This work serves to establish a basis on which the potential environmental implications of this thin film technology are understood. <br></div><div><br></div><div>This dissertation will serve as a guide toward the technical and environmental development of Cu3AsS4 thin films. Having a life cycle perspective during the systematic development of a technology will enable sustainable engineering. Furthermore, the processing and characterization methods detailed herein are expected to be generally applicable to other copper chalcogenide systems. <br></div>
436

Life cycle assessment and resource management options for bio-ethanol production from cane molasses in Indonesia

Kummamuru Venkata, Bharadwaj January 2013 (has links)
The intent of this thesis is to analyse the sustainability of producing bio-ethanol from cane molasses in Indonesia and its potential to replace gasoline in the transportation sector. A field trip was conducted in East Java, Indonesia, and data was gathered for analysis. Life cycle assessment (LCA) was performed to analyse the net emissions and energy consumption in the process chain. The greenhouse gas (GHG) emissions of the life cycle are 17.45 gCO2e per MJ of ethanol produced. In comparison to gasoline, this results in a 78% reduction in GHG emissions in the complete process chain. Net Energy Value (NEV) and Net Renewable Energy Value (NREV) were 6.65 MJ/l and 24 MJ/l. Energy yield ratio (ER) was 9.43 MJ of ethanol per MJ of fossil energy consumed in the process. Economic allocation was chosen for allocating resources between sugar and molasses. Sensitivity analysis of various parameters was performed. The emissions and energy values are highly sensitive to sugarcane yield, ethanol yield and the price of molasses. Alternative management options were considered for optimizing the life cycle. Utilizing ethanol from all the mills in Indonesia has a potential to replace 2.3% of all motor gasoline imports. This translates in import savings of 2.3 trillion IDR per year. Use of anaerobic digestion or oxidation ponds for waste water treatment is unviable due to high costs and issues with gas leakage. Utilizing 15% of cane trash in the mill can enable grid independency. Environmental impacts due to land use change (Direct &amp; Indirect) can be crucial in overall GHG calculations. Governmental regulation is necessary to remove current economic hurdles to aid a smoother transition towards bioethanol production and utilization. / Harnessing agricultural feedstock and residues for bioethanol production - towards a sustainable biofuel strategy in Indonesia
437

Life Cycle Impacts of Road Infrastructure : Assessment of energy use and greenhouse gas emissions

Miliutenko, Sofiia January 2012 (has links)
Road infrastructure is essential in the development of human society, but has both negative and positive impacts. Large amounts of money and natural resources are spent each year on its construction, operation and maintenance. Obviously, there is potentially significantenvironmental impact associated with these activities. Thus the need for integration of life cycle environmental impacts of road infrastructure into transport planning is currently being widely recognised on international and national level. However certain issues, such as energy use and greenhouse gas (GHG) emissions from the construction, maintenance and operation of road infrastructure, are rarely considered during the current transport planning process in Sweden and most other countries.This thesis examined energy use and GHG emissions for the whole life cycle (construction, operation, maintenance and end-of-life) of road infrastructure, with the aim of improving transport planning on both strategic and project level. Life Cycle Assessment (LCA) was applied to two selected case studies: LCA of a road tunnel and LCA of three methods for asphalt recycling and reuse: hot in-plant, hot in-place and reuse as unbound material. The impact categories selected for analysis were Cumulative Energy Demand (CED) and Global Warming Potential (GWP). Other methods used in the research included interviews and a literature review.The results of the first case study indicated that the operational phase of the tunnel contributed the highest share of CED and GWP throughout the tunnel’s life cycle. Construction of concrete tunnels had much higher CED and GWP per lane-metre than construction of rocktunnels. The results of the second case study showed that hot in-place recycling of asphalt gave slightly more net savings of GWP and CED than hot in-plant recycling. Asphalt reuse was less environmentally beneficial than either of these alternatives, resulting in no net savings of GWP and minor net savings of CED. Main sources of data uncertainty identified in the two case-studies included prediction of future electricity mix and inventory data for asphalt concrete.This thesis contributes to methodological development which will be useful to future infrastructure LCAs in terms of inventory data collection. It presents estimated amounts of energy use and GHG emissions associated with road infrastructure, on the example of roadtunnel and asphalt recycling. Operation of road infrastructure and production of construction materials are identified as the main priorities for decreasing GHG emissions and energy use during the life cycle of road infrastructure. It was concluded that the potential exists for significant decreases in GHG emissions and energy use associated with the road transport system if the entire life cycle of road infrastructure is taken into consideration from the very start of the policy-making process. / QC 20120229
438

Assessment of tools for environmentally preferable procurement with a life cycle perspective : the case of acquisition in Swedish defence

Hochschorner, Elisabeth January 2004 (has links)
Procurement in public and non-public organisations has the potential to influence product development towards more environmentally preferable products. In 2003, public procurement in Sweden was 28% of GDP. Different types of approaches can contribute some knowledge and thereby facilitate the choice of environmentally preferable products. The thesis focuses on procurement in Swedish Defence. According to a decision by the Swedish government in 1998, the Swedish Armed Forces (SAF) and Defence Materiel Administration (FMV) are required to take environmental consideration in all phases of the acquisition process. The importance of a life cycle perspective is stressed in several SAF and FMV environmental documents. The starting point of this thesis was that environmental consideration should be taken in the Swedish acquisition of defence materiel, considering the whole life cycle of products. The aim was to produce suggestions for how this can be done. In order to make this suggestion some Ecodesign tools were reviewed and evaluated and two methods for simplified Life Cycle Assessment (LCA) were compared. Suggestions of tools and methodology recommendations for environmentally preferable procurement in the Swedish defence are presented. For this purpose qualitative and/or simplified LCAs were suggested. The suggestions have been evaluated through interviews with actors in the process. When a simplified LCA is needed, the MECO assessment is recommended. Methodology recommendations for use of the MECO method in the Swedish Defence are presented. LCA is an appropriate tool for taking environmental consideration into the acquisition process, since it focuses on a product and includes its life cycle. If the environmental work lacks a life cycle perspective, there is a risk that the most significant aspects will not be considered. Four areas for use of LCA in the acquisition process were identified: Learning about environmental aspects of the product; fulfilling requirements from customers; setting environmental requirements; and choosing between alternatives. The actors interviewed were interested in using LCA methods, but there is a need for an initiative by one or several actors if the method is to be used regularly in the process. It is important that the results are communicated within the organisations involved in the procurement process. Environmental consideration should preferably be taken early in the acquisition process and environmental questions should be integrated into other activities of the organisations involved in the procurement process. Such work would be facilitated if there were greater cooperation between the procuring and environmental units, in this case at FMV, SAF and the Swedish Ministry of Defence. / QC 20100616
439

Potential social impacts of a possible implementation of the Pulp &amp; Fuel concept for producing biofuels at a pulp mill / Potentiell social påverkan av en möjlig implementering av Pulp &amp; Fuel konceptet där produktion av biobränsle produceras i ett pappersmassabruk

Efraimsson, Nora, Johnsson, Sofie January 2022 (has links)
The purpose of this study is to create an understanding of what potential social impacts (both positive and negative) the concept of P&amp;F will have and could have if an implementation of the process would be done. Interviews are mainly used for providing input to the method S-LCA (Social Life Cycle Assessment) and by that fulfil the purpose. Two questions will be addressed: What are the potential social impacts of the P&amp;F concept on the stakeholders: worker, value chain actors, local community, and society, if integrated into an already existing pulp mill? What are the differences in terms of social impacts between the first and second generation of biofuels? Two methods are used to fulfil the purpose and to answer the related questions. First method is S-LCA as mentioned above. Second method is thematic analysis, where data from interviews is transformed into codes, then quantified and lastly divided into themes. The two mentioned methods work in parallel with each other. The result from thematic analysis shows that subcategories with high social impacts are, technology development, health and safety and contribution to economic development, mainly due to new equipment, job creations and technology. The results from the reference scales show an overall positive score, which means a positive social effect on a potential implementation of the P&amp;F. It was noted that the sustainable future of the concept is strongly connected with positive social impacts like technological development and costs for investments in new equipment on an industrial scale. Several factors are important to consider when assessing an implementation of a process like P&amp;F, and further focus should be put on assessing the negative subcategory health and safety related to a potential new fuel. For this to be possible, there is a necessity to further develop the S-LCA methodology. As the S-LCA to a larger part measures the potential negative impacts, one challenge will be to develop the methodology for the assessment of potential positive social impacts. The S-LCA is an ongoing developing process, where contributions from applying, demonstrating, and sharing findings play a significant role for future research. / Syftet med denna studie är att skapa en förståelse för vilka potentiella sociala effekter (både positiva och negativa) begreppet P&amp;F kommer att ha och skulle kunna ha om en implementering av processen skulle göras. Intervjuer används främst för att ge input till metoden S-LCA (Social Life Cycle Assessment) och därmed uppfylla syftet. Två frågor kommer att behandlas: Vilka är de potentiella sociala effekterna av P&amp;F-konceptet på intressenterna: arbetstagare, aktörer i värdekedjan, lokalsamhället och samhället, om de integreras i en redan befintlig massafabrik? Vilka är skillnaderna när det gäller sociala effekter mellan första och andra generationens biodrivmedel? Två metoder används för att uppfylla syftet och för att besvara de relaterade frågorna. Första metoden är S-LCA som nämnts ovan. Den andra metoden är tematisk analys, där data från intervjuer omvandlas till koder, sedan kvantifieras och slutligen delas in i teman. De två nämnda metoderna fungerar parallellt med varandra. Resultatet från den tematiska analysen visar att underkategorier med stor social påverkan är, teknikutveckling, hälsa och säkerhet och bidrag till ekonomisk utveckling, främst på grund av ny utrustning, jobbskapande och teknik. Resultaten från referensskalorna visar en övergripande positiv poäng, vilket innebär en positiv social effekt på en potentiell implementering av P&amp;F. Det noterades att konceptets hållbara framtid är starkt kopplad till positiva sociala effekter som teknisk utveckling och kostnader för investeringar i ny utrustning i industriell skala. Flera faktorer är viktiga att ta hänsyn till när man bedömer ett genomförande av en process som P&amp;F, och ytterligare fokus bör läggas på att bedöma den negativa underkategorin hälsa och säkerhet i samband med ett potentiellt nytt bränsle. För att detta ska vara möjligt är det nödvändigt att vidareutveckla S-LCA-metoden. Eftersom S-LCA till en större del mäter de potentiella negativa effekterna blir en utmaning att utveckla metoden för bedömning av potentiella positiva sociala effekter. S-LCA är en pågående utvecklingsprocess, där bidrag från att tillämpa, demonstrera och dela resultat spelar en viktig roll för framtida forskning.
440

Life Cycle Assessment of a High-Density Datacenter Cooling System: TeliaSonera’s ‘Green Room’ Concept

Bitencourt de Oliveira, Felipe January 2012 (has links)
The increasingly power load of datacenters worldwide and consequently, the increase on heat dissipation by electronic components, have been highlighting the importance of efficiently designing cooling solutions for such systems. In fact, bad management of the cooling system can greatly increase the total electricity consumption in a datacenter. This being said, TeliaSonera in order to decrease the total electricity consumption in its datacenters, has developed a new cooling solution known as the Green Room concept. Therefore in order to evaluate the potential environmental benefits related to this product, this work was developed. The Life Cycle Assessment methodology in accordance to ISO 14040/43 standards was applied to assess its environmental performance, from cradle-to-grave. Moreover the software SimaPro, the Ecoinvent database and the ReCiPe impact assessment method were also utilized. The results emphasized the phases and activities during Green Room life cycle presenting the highest potential impacts. This being said, the utilization phase presented for every impact category analyzed the highest potential impacts, with exception of ozone depletion category, which was dominated by material extraction and manufacturing phase, due to the presence of R134a refrigerant. In addition transportation phase presented the lowest values for every category and the end of life phase exposed considerable impact mitigation for the whole life cycle. Moreover extraction and manufacturing phases presented copper, steel and the refrigerant R134a as the most impacting materials for damage to human health, damage to ecosystems and damage to resources, respectively. Finally, improvements were proposed in order to increase the environmental performance of this cooling system.

Page generated in 0.0846 seconds