Spelling suggestions: "subject:"life cycle essessment"" "subject:"life cycle bioassessment""
471 |
Implementing Circular Economy Measures for Stockholm's Sustainable Development: An Assessment of Using Second-hand Textiles in School Craft EducationLuquet, Maurine January 2023 (has links)
Circular Economy is an increasingly popular concept, which could be implemented to decrease our environmental impacts and promote sustainable development. Within Agenda 2030 and the Paris Agreement, the city of Stockholm has the goal to become climate neutral by 2030 and wants to explore the effects ofcircularity measures. The city has decided to introduce a flow of second-hand materials in a school as a pilotstudy to redirect waste, in alignment with the waste management hierarchy. This thesis' objective is to researchthe impacts of this measure on textile waste management at the scale of a school's use, in the context ofsustainable development. First, interviews were conducted with the stakeholders and the system was analysed from a systems thinking perspective. Second, a Life Cycle Assessment on implementing second-hand textile flows in the school was used to quantify the environmental impacts of the measure. Finally, a survey filled by students gave the perspective they had on using second-hand inside and outside of the school. Results show that the system gathers the required characteristics to support a CE. Introducing this new flow of textiles has benefits compared to business-as-usual scenarios, and decreases carbon emissions. Pupils are showing interest in second-hand, but an economic incentive might be needed for them to change behaviours outside of the school. Findings underline the circular economy is connected to the three pillars of sustainable development at the local scale of the pilot study. The challenge of scaling up this measure and expanding the results at the level of the city is arduous but would support the city of Stockholm in its climate neutrality goal while helping to change the mindsets of its citizens for the future.
|
472 |
Life cycle assessment on sodium-ion cells for energy storage systems : A cradle-to-gate study including 16 environmental perspectives, focusing on climate change impactNibelius, Rebecca January 2023 (has links)
Because of the changing energy supply landscape, with the transition towards renewable energy, an emerging demand for energy storage systems (ESS) is expected in the near future. Battery energy storage is promising to contribute to mitigate the greenhouse gas emissions, but face issues considering resource use (IEA, 2023; IRENA, 2022). Sodium-ion batteries are a promising technology for the ESS-market, expected to take up 21 % of new installations by 2030. This means an anticipated demand of about 50 GWh of sodium-ion cells required in 2030. Key drivers for the expected entrance of sodium-ion storage are the low price, high abundance of cell materials and expectations of a more safe and sustainable battery. Lithium-ion technology is currently dominating the energy storage market, but have concerns with ethical resource supply and rising mineral prices combined with the growing demand. (BloombergNEF, 2023; IEA, 2023) There is a scarcity of information considering sodium-ion environmental reporting (Liu et al., 2021; Peters et al., 2021). Therefore, the purpose of this study is to evaluate the environmental aspect of sodium-ion storage technology. Thereby, with this study a life cycle assessment (LCA) is performed on a specific sodium-ion cell. The specific scope for the thesis is to look at 1 kWh of produced battery energy storage, in a cradle-to-gate perspective. The results are to be presented with a decomposition of the emissions across the value chain including materials, transport, and energy influence. As well a division of the cell materials impacts are demonstrated. For the assessed cell, it is assumed to be intended for a giga scale production (>1 GWh annual cell storage produced). Hypothetically this is to be placed in Europe, with both a global and a local supply chain presented. In order with European initiatives, there is a guideline called PEFCR, that recommends how to access the environmental footprint of different products. Among these guidelines, there is a certain standard for battery environmental assessment, which was pursued to be followed. According to these recommendations, the methodology of this assessment will include 16 environmental perspectives, called EF2.0. The EF2.0 emission categories presented as main result are Climate Change (total), Acidification, Resource Use (fossils), Resource Use (minerals & metals), and Particulate Matter, since these are considered relevant for batteries by PEFCR. (European Commission and ReCharge, 2018) Furthermore, it was chosen for this study to have its core in analysing the EF2.0 Climate Change impact, with the aim to identify measures on how to reduce the carbon footprint caused by the cell’s life cycle. With the perspective of the 16 environmental effects, a sodium-ion current state scenario was put in focus. On top of this, a decarbonized scenario is presented for the EF2.0 Climate Change impact. For the current state scenario, a comparison is made with a lithium-ion cell from industry, produced from fossil-free energy. This is framing the sodium-ion environmental results in the perspective of how a decarbonized lithium-ion cell performs environmentally. Both the sodium and lithium cells included in the comparison, have the aim to be used for energy storage system applications (ESS). Regarding the results for the 16 environmental categories, overall, the cathode is the main driver for emissions, followed by electrolyte and anode. Furthermore, in the decarbonized scenario, it is illustrated that implementing certain measures within the value chain could reduce the sodium-cell carbon emissions with potentially more than half of what is estimated today. Altogether, the sodium-ion value chain is in an emerging expansion phase (Rho motion, 2023), with a young supply chain starting to form. It is discussed that in the near future, with higher energy density on sodium cells commercialized (Peters et al., 2021), the environmental footprint for sodium-ion could significantly improve. Anyhow, the strongest indication from this study, is that the resource use from minerals and metals drastically would reduce with a technology switch from lithium to sodium. Among the 16 environmental impacts as a whole, the main trend is that sodium-ion cells induce less harm on the environment compared to lithium technologies. Certainly, in the future sodium-ion cells could be a low cost and sustainable option available for energy storage systems. / I och med dagens förändrade energiförsörjningslandskap, med en pågående trend mot mer förnybar energi, förväntas en ökad efterfrågan på storskaliga energilagringssystem (ESS) inom en snar framtid. Däribland är batterilagring lovande för att bidra till att minska utsläppen av växthusgaser, men försörjningen av batterier står samtidigt inför utmaningar vad gäller resursutarmning (IEA, 2023; IRENA, 2022). Natriumjonbatterier är en lovande teknik för ESS-marknaden, som förväntas uppta 21 % av försäljningsmarknaden till 2030. Vilket skulle motsvara en efterfrågan på cirka 50 GWh natriumjonceller till 2030. De viktigaste drivkrafterna för en förmodad ökning av natriumbatterilagring är låga kostnader, överflödig tillgång på cellmaterial och förväntningar om att det ska vara ett säkrare och mer hållbart batteri. Litiumbatterier dominerar för närvarande energilagringsmarknaden, men har problem med etisk resursförsörjning och stigande mineralpriser, samtidigt som det finns en växande efterfrågan av energilagring. (BloombergNEF, 2023; IEA, 2023) Eftersom det finns sparsamt med information kring miljökonsekvenser av natriumbatteriproduktion (Liu et al., 2021; Peters et al., 2021) är syftet med den här studien att utvärdera miljöavtrycket av natriumjonbatterilagring. I studien utförs därför en livscykelanalys (LCA) på en bestämd natriumjoncell. Mer specifikt omfattar det att analysera det ekologiska avtrycket av 1 kWh producerad batterikapacitet, i ett cradle-to-gate-perspektiv. Resultaten presenteras dels som en fördelning av utsläppen över hela värdekedjan, inklusive material, transport och produktionspåverkan. Därtill visas en differentiering av cellmaterialets miljöpåverkan. Det berörda batteriet antas vara tillverkad i en giga scale produktion (>1 GWh årlig celltillverkning). Hypotetiskt antas tillverkningen placeras i Europa, men både en global och en lokal leveranskedja bedöms. I enlighet med europeiska initiativ finns det riktlinjer kallade PEFCR, som rekommenderar hur bedömningar av produkters miljöavtryck bör utföras. Det finns en specifik standard för miljöbedömning av batterier, vilken har eftersträvats i den här studien. I enlighet med rekommendationerna, innefattar den här studiens metod att utvärdera 16 miljöperspektiv, kallade EF2.0. De utsläppskategorier (EF2.0) som presenteras som huvudresultat är Climate Change (total), Acidification, Resource Use (fossils), Resource Use (minerals & metals), och Particulate Matter, eftersom dessa enligt PEFCR anses vara relevanta för just batterier. (European Commission and ReCharge, 2018) Det bör understrykas att den här studie har sitt huvudfokus på att analysera EF2.0 Climate Change (total), med målet att identifiera åtgärder för hur koldioxidavtrycket orsakat av batteriets livscykel kan minskas. För de 16 miljökategorierna, har ett natriumbatteris nuvarande läge ”current state scenario” satts i fokus. Utöver det presenteras ett ”decarbonized scenario” för EF2.0 Climate Change (total). För ”current state”-scenariot görs en jämförelse med ett litiumbatteri från industrin, vilket produceras med fossilfri energi. Därmed skapas förståelse för hur natriumbatteriets miljöpåverkan skiljer sig från det lågfossilintensiva litiumjoncellen. Både natrium- och litiumcellerna som ingår i jämförelsen har som avsikt att användas för energilagringssystem (ESS). Gällande resultatet av de 16 miljökategorierna är det tydligt att katoden är den främsta källan för utsläpp, följt av elektrolyten och anoden. I ”decarbonized scenario” illustreras därtill att om vissa specifika åtgärder implementeras i värdekedjan, skulle det kunna minska natriumbatteriers koldioxidutsläpp med potentiellt mer än hälften av vad som uppskattats idag. I nuläget pågår en utveckling och expansion av leveranskedjan för natriumbatteriproduktion (Rho motion, 2023), med en materialproduktion som börjar ta form. Samtidigt kan det i en snart framtid förväntas levereras natriumbatterier med högre energidensitet (Peters et al., 2021) och då skulle miljöpåverkan från natriumceller kunna sjunka avsevärt. Det centrala medskicket från den här studien är att resursanvändningen av mineraler och metaller drastiskt skulle minska i och med ett teknikskifte från litium- till natriumbatterier. Med de 16 miljöperspektiven i åtanke, är det övergripande resultatet att natriumceller orsakar mindre miljöskada jämfört med litiumteknik. Högst troligt, kan natriumceller i framtiden vara ett billigt och hållbart alternativ för energilagringssystem.
|
473 |
Paper vs Plastic: A comparative Life Cycle Assessment (LCA) of two flower packaging solutionsChatzopoulou, Marianna January 2023 (has links)
The concept of sustainability is currently a prominent topic of discussion within the field of packaging. In the context of numerous product manufacturing enterprises, the integration of sustainability principles into their operational framework is often perceptible to external observers solely through the packaging of the final product. In addition to the established criteria, fundamental concepts and principles, the predominant discourse surrounding the pursuit of sustainable packaging goals primarily revolves around the specific models and practices implemented by the industry. Growing environmental concerns from industry and consumers have driven the development of innovative bio-based materials as alternatives to fossil-derived plastic polymers for packaging applications. This thesis project is in collaboration with the Swedish-Finnish company, Stora Enso Oyj; a paper mill company specialized in packaging, biomaterials, wooden construction and paper solutions, made by renewable materials, such as wood and biomass. The study involves the execution of a comparative Life Cycle Assessment (LCA) to evaluate two distinct packaging solutions. The EcoFlowerBox (EFLB), a packaging solution developed by Stora Enso, is specifically designed to cater to the needs of the floral industry. It serves as an alternative to the conventional flower bucket, fulfilling the essential functions of flower storage and transportation. The materials that were compared in the study are corrugated board and plastic, respectively. The main objective of the study was to determine the most environmentally sustainable option based on the greenhouse gas emissions generated throughout their entire life cycle. In addition to the criterion related to material composition, the ecological durability of the products was assessed by considering their end-of-life treatment and potential. The assessment methodology discussed in this study covers the complete life cycle of the products being examined. This includes the extraction of raw materials, the manufacturing and utilization processes, and the eventual end-of-life stage. The research findings indicate that the EcoFlowerBox (EFLB), produced by Stora Enso, exhibits a carbon footprint that is 29% lower compared to the PP bucket in the baseline scenario. This suggests that, from a climate standpoint, the EFLB functions as a more environmentally advantageous packaging solution, in terms of greenhouse gas (GHG) emissions, in comparison to the PP bucket. Additionally, the study identified that the recycling rates and the weight of the PP bucket are crucial factors that exert a substantial impact on the study's outcomes. The results underscore the significance of addressing these areas of concern in order to improve the environmental performance of the EFLB when compared to other PP buckets, and to attain more sustainable packaging solutions for flowers.
|
474 |
Life Cycle Assessment within Arkema’s portfolio: Carbon Footprint of Acrylics / Livscykelanalys inom Arkemas portfölj: Akrylers koldioxidavtryckFaye, Alizé January 2023 (has links)
Livscykelanalys är en metod som utformades och utvecklades för att kvantifiera miljöpåverkan från produkter och tjänster för mer än trettio år sedan. Sedan dess har den kontinuerligt förbättrats och blivit mer och mer robust. Som tillverkare av kemiska produkter och monomerer använder Arkema livscykelanalys för att mäta sina produkters miljöpåverkan. Detta görs för att förstå enskilda produkters fotavtryck samt företagets övergripande miljöpåverkan. För att göra detta används ISO-normerna 14040 och 14044. Dessa normer anger generiska ramar för LCA-beräkningar men är inte specifika för den kemiska industrin. Med tanke på att metodologiska svårigheter kan uppstå inom den kemiska sektorn har många riktlinjer och rekommendationer publicerats på senare tid. I denna uppsats studeras och jämförs några av dessa riktlinjer. Tillämpningen av dessa metoder utförs på två produkter inom Arkemas portfölj: akrylsyra och etylakrylat, som är byggstenar för många polymerer. Resultaten av utvärderingen visar på områden där förbättringar kan göras. För de studerade produkterna är råvarorna de största bidragande orsakerna. Därför kan det vara fördelaktigt att övergå från petroleumbaserade material till biobaserade. Att välja den minst miljöpåverkande produktionsvägen är också ett sätt att aktivt minska produkternas koldioxidavtryck. / Life Cycle Assessment is a methodology that has been designed and developed to quantify the environmental impacts of products and services more than thirty years ago. Since then, it has been in continuous improvement and becomes more and more robust. As a producer of chemical products and monomers, Arkema uses Life Cycle Assessment to measure the environmental impact of its products. This is done to understand the footprints of individual products as well as the company's overall environmental impact. To do so, the ISO norms 14040 and 14044 are used. These norms set generic frames for LCA calculation but are not specific to the chemical industry. Considering that methodological difficulties can arise in the chemical sector, many guidelines and recommendations are being published recently. In this thesis, some of those guidelines are studied and compared. The application of these methodologies is performed on two products within Arkema’s portfolio: acrylic acid and ethyl acrylate, which are building blocks for many polymers. The results of the assessment reveal areas where improvements can be made. For the products studied, the main contributors are the raw materials. Therefore, transitioning from petroleum-based materials to biobased ones could be beneficial. Additionally, selecting the least impactful production route is also a way to actively reduce the carbon footprint of the products.
|
475 |
Environmental and economic potential of rice husk use in An Giang province, VietnamPham, Thi Mai Thao 07 January 2019 (has links)
To evaluate CO2 emission mitigation potential and cost effectiveness of rice husk utilization, Life Cycle Analysis was conducted for 9 scenarios. The results showed that, gasification is the most efficient CO2 mitigation. From cost analysis, the cost mitigation can be achieved by replacing the current fossil fuels in cooking scenarios. Among the power generation scenarios, it was found that 30MW combustion and 5MW gasification power generations were the most economically-efficient scenarios. The briquette combustion power generation appeared less cost-competitive than direct combustion, whilst the large-scale gasification scenarios and the pyrolysis scenarios give the increase in cost from the baseline. From the viewpoints of both CO2 and cost, it was indicated that the
win-win scenarios can be the rice husk use for cooking, for large-scale combustion power generation, and for small-scale gasification. / Để đánh giá tiềm năng giảm thiểu phát thải CO2 và hiệu quả chi phí của việc sử dụng trấu, phương pháp đánh giá vòng đời sản phẩm đã được thực hiện cho 9 kịch bản. Kết quả cho thấy, khí hóa trấu để sản xuất điện có tiềm năng giảm phát sinh khí CO2 nhiều nhất. Kết quả phân tích chi phí cho thấy việc giảm thiểu chi phí có thể đạt được khi thay thế sử dụng nhiên liệu hóa thạch trong kịch bản dùng trấu cho nấu ăn. Giữa các kịch bản về sản xuất điện, hiệu quả kinh tế cao nhất trong trường hợp đốt trực tiếp trấu để sản xuất điện ở quy mô công xuất lớn (30MW) và khí hóa ở quy mô trung bình (5MW). Trường hợp dùng củi trấu không mang lại hiệu quả kinh tế so với dùng trực tiếp trấu để phát điện. Hai trường hợp dùng trấu để sản xuất dầu sinh học và khí hóa gas công suất lớn
(30MW) cho thấy chi phí tăng cao so với điều kiện biên. Kịch bản cho kết quả khả thi về hiệu quả kinh tế và giảm phát thải CO2 là dùng trấu để nấu ăn, đốt trực tiếp để phát điện công suất lớn và khí hóa công suất trung bình.
|
476 |
LCA and LCCA in the design of geotechnical engineering worksSamuelsson, Ida January 2023 (has links)
Geotechnical engineering works are part of almost all construction and infrastructure projects. The geotechnical engineering work contributes to the impact on the environment and gives rise to costs throughout its life cycle. Life Cycle Assessment (LCA) and Life Cycle Cost Analysis (LCCA) are established methods for evaluating a product's environmental impact and costs. However, the use of these methods is not extensive for geotechnical engineering works. A literature review showed that there is published research, but as the research topic is relatively new, there are many research gaps. A few topics in geotechnical engineering are better investigated than others and the entire life cycle is often not evaluated, usually only the production and construction stages. Although LCA and LCCA are established methods, the methodology for evaluating geotechnical engineering works needs further development to increase the evaluation work of sustainability aspects. In this licentiate thesis, a methodology is presented of how LCA and LCCA can be integrated into the geotechnical design process. The integration enables changes to the geotechnical design to further reduce the LCA and LCCA result, which is presented in the methodology. The methodology also presents a way to evaluate the possible geotechnical designs to select the most sustainable design based on the LCA and LCCA results. The thesis also presents the performance of LCA and LCCA for geotechnical engineering works and solutions to several difficulties that the geotechnical engineer may encounter during the evaluation of environmental impact and costs. / Geotekniska konstruktioner är en del av i stort sett alla konstruktions- och infrastrukturprojekt. Den geotekniska konstruktionen bidrar till påverkan på miljön samt ger upphov till kostnader under hela sin livscykel. Livscykelanalys (LCA) och livscykelkostnadsanalys (LCCA) är etablerade metoder för att utvärdera en produkts miljöpåverkan respektive kostnader. Användningen av dessa metoder är dock inte stor för geotekniska konstruktioner. En litteraturgenomgång visade att det finns publicerad forskning men då forskningsämnet är relativt nytt finns det många forskningsluckor. Ett fåtal ämnen inom geoteknik är bättre utredda än andra och hela livscykeln är oftast inte utvärderad utan vanligtvis endast produktions- och konstruktionssteget. Trots att LCA och LCCA är etablerade metoder behöver metodiken för utvärdering av geotekniska konstruktioner utvecklas för att öka utvärderingsarbetet av hållbarhetsaspekter. I denna licentiatuppsats presenteras en metodik för hur LCA och LCCA kan integreras i den geotekniska designprocessen. Integreringen möjliggör ändringar av den geotekniska designen för att ytterligare reducera LCA- och LCCA-resultatet vilket presenteras i metodiken. Metodiken redovisar även ett sätt för att utvärdera de möjliga geotekniska designerna för att utifrån LCA- och LCCA-resultaten välja den mest hållbara designen. Uppsatsen redovisar även utförandet av LCA och LCCA för geotekniska konstruktioner och lösningar på ett flertal svårigheter som geoteknikern kan påträffa under utvärderingen av miljöpåverkan och kostnader. / <p>QC 230313</p>
|
477 |
Greenometer-7: A tool to Assess the Sustainability of a Building's Life Cylce at the Conceptual Design PhaseMer'eb, Muhammad Musa 05 May 2008 (has links)
No description available.
|
478 |
Life Cycle Assessment and Costing of Geosynthetics Versus Earthen MaterialsChulski, Katherine D. January 2015 (has links)
No description available.
|
479 |
Evaluation of Changes between the Material and Resource Category of LEED v4.0 and v3.0 as it Pertains to New Construction and Major RenovationsPai, Vibha January 2017 (has links)
No description available.
|
480 |
Supporting Sustainable Markets Through Life Cycle Assessment: Evaluating emerging technologies, incorporating uncertainty and the consumer perspectiveMerugula, Laura 13 September 2013 (has links)
No description available.
|
Page generated in 0.121 seconds