• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 99
  • 34
  • 29
  • 13
  • 5
  • 4
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 209
  • 42
  • 36
  • 33
  • 32
  • 29
  • 25
  • 25
  • 25
  • 23
  • 22
  • 22
  • 21
  • 20
  • 19
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

Evaluating Angiotensin II Type 1 Receptor Changes in Post- Renal Insufficiency and in Left Anterior Descending Artery Ligation Animal Models Using [11C]Methyl-Candesartan

Mackasey, Kumiko January 2012 (has links)
Non invasive in vivo imaging will lead to better understanding of Angiotensin II Type 1 Receptor’s (AT1R) role in disease progression and may guide therapy in cardiovascular patients. Two models were used in this project: 5/6 nephrectomy and transient left anterior descending (LAD) ligation. Rats were scanned with [13N]ammonia and [11C]methyl-candesartan, both of which are Positron Emission Tomography (PET) tracers, at 8 weeks (nephrectomy) and 2 weeks (LAD ligation) after surgery. Western blot analysis was used to corroborate PET data. Nephrectomy: Renal AT1R image analysis displayed a 40% decrease in kidney AT1R in nephrectomized animals compared to sham (p<0.05) which was confirmed with Western blot and biodistribution. LAD ligation: Left Ventricle AT1R Western blot analysis exhibited a 60% increase in 20min ligation (p<0.05) with maintained myocardial blood flow. In conclusion, changes in renal AT1R were successfully imaged using [11C]methyl-candesartan in nephrectomized animals, and 20min LAD ligation/reperfusion is an appropriate model to image an increase in cardiac AT1R following ischemic injury.
122

Validation and optimization of multiplexInSitu PLA for signalling pathway analysis

Sinha, Tanay Kumar January 2021 (has links)
With the advent of Tyrosine kinase inhibitors (TKI) as a therapy for Chronic myeloid Leukemia (CML), the patients now enjoy a life expectancy close to that of the general population. But some patients do get unresponsive to the TKI treatment over time due to several mutations in the kinase domain of the BCR-ABL fusion protein, which further leads to activation of multiple signaling cascades within the leukemic cell, helping it survive and proliferate. This project validates and optimizes a new method of In situ PLA that incorporates the usage of different padlocks and template oligos. Multiple cross-reactivity tests and interaction assays in multiple cancer cell lines will further optimize this system as a robust multiplex protein-protein interaction detection tool. Proteins associated with the MAP-K, PI3-K, and Jak-STAT signaling pathways were the main detection targets.
123

Étude de l'interactôme de l'ubiquitine ligase E3 MARCH1 par essais de proximité par liaison de biotine

Balthazard, Renaud 08 1900 (has links)
Le métabolisme des cellules immunitaires est assujetti à un contrôle étroit. L’inflammation, la présentation antigénique et l’expansion clonale sont des évènements qui demandent un changement rapide dans le métabolisme des cellules. Notamment, la glutamine est grandement sollicitée lors de la maturation des cellules dendritiques, les macrophages et les lymphocytes B et T pour son rôle dans la synthèse des protéines et son implication dans la phosphorylation oxydative. Au repos, les cellules présentatrices d’antigènes (CPAs) expriment l’ubiquitine ligase E3 MARCH1. MARCH1 est une protéine membranaire qui régule la réponse immunitaire en ubiquitinant, entre autres, le complexe majeur d’histocompatibilité II (CMH II) et CD86. Lors de l’activation des cellules immunitaires, son expression est réprimée, ce qui permet l’accumulation du CMH II et de CD86 sur leur membrane. Nous pensons que MARCH1 régule négativement le métabolisme des cellules immunitaires. Parmi les protéines membranaires sous le contrôle de MARCH1 pourraient se trouver des transporteurs de glutamine. La baisse rapide de MARCH1 serait nécessaire pour permettre aux cellules de modifier leur métabolisme en augmentant le transport de la glutamine. Dans le mémoire présent, nous nous sommes intéressés à l’interactôme de MARCH1. Afin de découvrir de nouvelles cibles de MARCH1, nous avons utilisé la méthode du BioID dans des cellules HEK293T. Le BioID est une méthode innovatrice permettant l’identification d’interactions interprotéines. La protéine de fusion BioID2 permet la biotinylation et l’isolation des protéines adjacentes in vivo. Ces essais de proximité nous ont permis d’identifier 41 cibles potentielles de MARCH1. Nous avons analysé l’expression de 13 de ces protéines par cytométrie en flux. Nos résultats démontrent que MARCH1 induit la dégradation de NKCC1, CD147 et SNAT2. L’expression de MARCH1 dans les cellules HEK293T engendre une diminution de SNAT2 en surface. S’il avère que MARCH1 régule le métabolisme de la glutamine dans les cellules immunitaires, il s’agirait alors d’un nouveau mécanisme par lequel cette ubiquitine ligase E3 module la réponse immunitaire. SNAT2 est nécessaire dans l’adaptation des cellules pour leurs besoins en glutamine. Nous discuterons du rôle que joue cette protéine dans l’adaptation du métabolisme et la glutaminolyse. / Immune cell metabolism is subjected to a tight control. Inflammation, antigen presentation and clonal expansion are all events that comes with a rapid change in metabolism. Glutamine is highly solicited during dendritic cells, macrophages and B and T lymphocytes maturation, due to its role in protein synthesis and oxidative phosphorylation. At steady-state, antigen presenting cells express the ubiquitin ligase E3 MARCH1. MARCH1 is a membrane protein involved in the immune response through major histocompatibility II and CD86 ubiquitination and degradation. During their activation, MARCH1 expression is repressed. This allows for accumulation of MHC II and CD86 on the cell surface, but other membrane-bound receptors and transporters are also increased during that time. Among those, proteins involved in glutamine transport are increased and thus help immune cells to adjust their intracellular nutrient pool for their new metabolic needs. We propose that MARCH1 negatively regulates immune cell metabolism through the regulation of nutrient transporters. The rapid stop in the transcription of MARCH1 induces an increase in receptors on the cytoplasmic membrane. Here, we aimed to identify the MARCH1 interactome. In order to identify new MARCH1 targets, we used the BioID proximity assays in HEK293T cells. BioID is an innovative method for the identification of protein interactions. BioID2 protein fusion can be used for in vivo biotinylation and isolation of promiscuous proteins. These proximity assays allowed us to identify 41 potential MARCH1 targets. We analyzed the expression of 13 of these proteins and found that 3 were affected by MARCH1 expression. Our results show that MARCH1 induces the degradation of NKCC1, CD147 and SNAT2. More specifically, MARCH1 expression in HEK293T induces the internalisation of the glutamine transporter SNAT2. If MARCH1 proves to regulate glutamine transport in immune cells, this would be a novel mechanism by which this ubiquitin ligase regulates adaptive immune system. Indeed, SNAT2 is required for the cellular adaption of amino acids during maturation, including glutamine. We will discuss the implications of MARCH1 as a metabolic switch and the role this would have in glutaminolysis and antigen presentation.
124

Synthèse et étude d'ADN et d'ARN G-quadruplexes à topologies contrôlées. Applications pour la caractérisation et la sélection de ligands / Synthesis and study of topologically controlled DNA and RNA G-quadruplexes. Applications for the characterization and the selection of ligands

Bonnat, Laureen 19 December 2017 (has links)
Les acides nucléiques riches en guanines ou en cytosines peuvent se replier sur eux-mêmes et former des systèmes tétramériques tels que les G-quadruplexes (G4) ou les i-motifs. Ces motifs, abondamment représentés dans certaines régions du génome humain semblent contribuer à la régulation cellulaire et suscitent depuis plusieurs années un intérêt grandissant. Ils sont notamment présents dans la région télomérique, mais aussi dans les promoteurs d’oncogènes ou au sein des génomes viraux et sont impliqués dans certaines pathologies humaines. Ils représentent ainsi des cibles thérapeutiques et diagnostiques potentielles. Cependant, les G4 adoptent in-vitro des topologies variées qui compliquent le développement de ligands spécifiques et affins. Dans ce contexte, le laboratoire a développé le concept du TASQ pour ‘‘Template Assembled Synthetic G-Quadruplex’’ dans le but d'accéder à des G4 se structurant en une topologie définie.Le premier chapitre décrit l’assemblage de mimes de motifs G4 contraints en une topologie unique. En utilisant un gabarit cyclodécapeptide rigide et différentes méthodes de conjugaison, nous avons assemblé des motifs G4 ARN parallèle et hybride ADN/ARN dérivant de la séquence télomérique ainsi qu’un motif G4 d’ADN présent dans la séquence promotrice du VIH-1. L’utilisation du concept TASQ nous a également permis de préparer un motif G-triplexe (G3), intermédiaire à la formation des motifs G4. Nous avons montré une forte stabilisation de tous les édifices G4 contraints ainsi préparés.Le second chapitre concerne les études de caractérisation et de sélection de ligands vis-à-vis des motifs G4 et G3 contraints. La caractérisation repose sur l’évaluation de l’affinité et de la sélectivité de différentes familles de ligands pour ces édifices, par résonance plasmonique de surface ou par interférométrie bio-couche. La sélection de ligands a été réalisée par la méthode SELEX dans le but d’obtenir des aptamères affins et spécifiques d’un motif G4 contraint. / Guanines or cytosines rich nucleic acids can fold into tetrameric G-quadruplexes (G4) or i-motifs structures. G4 motifs are found within the human genome and should contribute to cellular regulation. In particular G4 are found at telomeric region and also in promoters of oncogenes or within viral genomes. They are suspected of participating in the regulation of human pathologies and have therefore been envisioned as potential therapeutic and diagnostic targets. However, the intrinsic conformational polymorphism of G4 motifs complicates the development of specific and affine ligands. In this context, the laboratory has developed the TASQ concept for "Template Assembled Synthetic G-Quadruplex" with the aim to obtain a defined G4 topology.The first chapter reports on the assembly on the peptide template of RNA and DNA:RNA hybrid G4 structures that derive from the human telomeric sequence as well as of DNA G4 structure found within the HIV virus promoter. G-triplex (G3) motif which is supposed to be an intermediate during the formation of the G4 motifs has also been prepared. By using appropriate ligations of the oligonucleotide strands on the peptide template we were able to control the folding of G-quadruplex motifs and stabilize them.The second chapter reports the studies for the characterization and the selection of ligands against G4 and G3 motifs. The evaluation of the affinity and selectivity of different families of ligands for these constrain motifs was performed by using surface plasmon resonance or by bio-layer interferometry. The selection of ligands was carried out by the SELEX method in order to obtain affine and specific aptamers of a constrained G4 motif.
125

Immunocytochemical Analysis of Endogenous Frizzled-(Co-)Receptor Interactions and Rapid Wnt Pathway Activation in Mammalian Cells

Neuhaus, Jochen, Weimann, Annett, Berndt-Paetz, Mandy 17 January 2024 (has links)
The differential activation of Wnt pathways (canonical: Wnt/-catenin; non-canonical: planar cell polarity (PCP), Wnt/Ca2+) depends on the cell-specific availability and regulation of Wnt receptors, called Frizzled (FZD). FZDs selectively recruit co-receptors to activate various downstream effectors. We established a proximity ligation assay (PLA) for the detection of endogenous FZD–coreceptor interactions and analyzed time-dependent Wnt pathway activation in cultured cells. Prostate cancer cells (PC-3) stimulated by Wnt ligands (Wnt5A, Wnt10B) were analyzed by Cy3-PLA for the co-localization of FZD6 and co-receptors (canonical: LRP6, non-canonical: ROR1) at the single-cell level. Downstream effector activation was assayed by immunocytochemistry. PLA allowed the specific (siRNA-verified) detection of FZD6–LRP6 and FZD6–ROR1 complexes as highly fluorescent spots. Incubation with Wnt10B led to increased FZD6–LRP6 interactions after 2 to 4 min and resulted in nuclear accumulation of -catenin within 5 min. Wnt5A stimulation resulted in a higher number of FZD6–ROR1 complexes after 2 min. Elevated levels of phosphorylated myosin phosphatase target 1 suggested subsequent Wnt/PCP activation in PC-3. This is the first study demonstrating time-dependent interactions of endogenous Wnt (co-)receptors followed by rapid Wnt/-catenin and Wnt/PCP activation in PC-3. In conclusion, the PLA could uncover novel signatures of Wnt receptor activation in mammalian cells and may provide new insights into involved signaling routes
126

Prebiotic photoreduction and polymerization of cysteinyl peptides.

Xxx, Anju 11 October 2023 (has links)
Cysteinyl peptides likely played an important role in the prebiotic synthesis of cofactors, such as iron-sulfur clusters. However, cysteinyl peptides must be reduced in order to coordinate iron-sulfur clusters. Mixtures of ferric ions and cysteinyl peptides leads to the reduction of ferric to ferrous ions and the concomitant formation of disulfide bridged, oxidized cysteinyl peptides that are incapable of coordinating an iron-sulfur cluster. Here, we develop a photochemically driven solution to this problem. Lipoic acid (( R )-5-(1,2-dithiolane-3-yl)pentanoic acid), a molecule structurally similar to fatty acids, can be photochemically reduced and can subsequently reduce the oxidized cysteinyl peptides needed for the coordination of an iron-sulfur cluster. Other dithilane ring containing molecules possess similar activity to lipoic acid. The synthesis of small peptides containing cysteines, such as glutathione and GCG (Gly-Cys-Gly) is easy by both solid phase and solution phase methodologies. However, as the length of the peptide increases, the yield begins to decrease, especially for peptides containing cysteines due to oxidation. One solution could be to exploit a previously uncovered mechanism for the joining of peptides into longer peptides. Such mechanisms, referred to as CPL for catalytic peptide ligation, rely on either thiols or metals as catalysts and peptide nitriles as substrates. Thus far, CPL has only been exploited with non-cysteinyl peptides. In this thesis, we extend CPL to cysteine containing peptides by taking advantage of the templating effects of Zn2+. Longer peptides with properly spaced cysteines are frequently better able to stabilize iron-sulfur clusters in aqueous solution than shorter peptides. Coordination can either be complete or an open coordination position, filled by solvent, can be used to bind substrate. Two well-known examples of such an arrangement are the radical SAM (S-adenosylmethionine) enzyme and aconitase being an enzyme of the citric acid cycle. We designed and synthesized peptide sequences that could coordinate a [4Fe-4S]2+ cluster with three cysteinyl ligands, leaving an open coordination position. The stability of the [4Fe-4S] cluster was affected by the intermediates of the citric acid cycle. The iron-sulfur can be reconstituted with the long peptidyl sequences from proteins such as SLC25A39 which contains four cysteine ligands to form [2Fe-2S] cluster, which is necessary for glutathione transport from cytosol to mitochondria.
127

Mismatch ligation during non-homologous end joining pathway: kinetic characterization of human DNA ligase IV/XRCC4 complex

Wang, Yu 10 July 2007 (has links)
No description available.
128

Effects of Vasoflux on DNA-Histone Complexes in Vitro and on Organ Function and Survival Outcome in a Murine Model of Sepsis

Sharma, Neha January 2018 (has links)
Sepsis is life-threatening organ dysfunction produced by a dysregulated host response to infection in which neutrophils release neutrophil extracellular traps (NETs). NETs consist of DNA, histones, and antimicrobial peptides which kill pathogens. However, DNA and histones also exert damage by activating the intrinsic pathway of coagulation and inducing endothelial cell death, respectively. AADH, a 15kDa non-anticoagulant unfractionated heparin (UFH), prevents histone-mediated cytotoxicity in vitro and improves survival in septic mice. We explored the effectiveness of Vasoflux, a 5.5kDa low-molecular-weight-heparin as an anti-sepsis treatment as compared to enoxaparin and UFH. Vasoflux has reduced anticoagulant functions and hence reduces the risk of bleeding as compared to enoxaparin or UFH. We showed that UFH, enoxaparin, or Vasoflux at concentrations of up to 13.3uM, 40uM, or 40uM, neutralize histone-mediated cytotoxicity. These results suggest that these glycosaminoglycans (GAGs) are able to neutralize histone-mediated cytotoxicity independent of the AT-binding pentasaccharide. To quantitate the binding affinity between GAGs and histones, surface plasmon resonance was conducted. UFH is a more potent inhibitor of histone-mediated cytotoxicity compared to Vasoflux as UFH has a 10-fold greater binding affinity to histones compared to Vasoflux. To translate our in vitro findings to in vivo, Vasoflux, enoxaparin, and UFH were administered in a murine model of sepsis. Vasoflux at 8mg/kg - 50mg/kg reduced survival and exhibited damage in the lung, liver, and kidney in septic mice compared to 10 mg/kg of UFH or 8mg/kg of enoxaparin. This may be due to Vasoflux and UFH disrupting the DNA-histone complex, thereby releasing free procoagulant DNA. This is evident by our gel electrophoresis experiments, where addition of 1uM Vasoflux or 3.3uM UFH to DNA-histone complexes lead to histone dissociation from DNA. UFH bound to histones may be able to inhibit DNA-mediated thrombin generation, as it retains its anticoagulant properties, demonstrated by UFH-histone complexes attenuating DNA and TF-mediated thrombin generation. In contrast, Vasoflux may not neutralize the procoagulant DNA leading to a hypercoagulable state in the mice. Our study may have important clinical implications as there is an ongoing trial, HALO, which will administer intravenous UFH to patients suspected to have septic shock to reduce mortality. Based on our results, future clinical trials should consider the antithrombin-dependent anticoagulant activity of UFH being used as a sepsis treatment. / Thesis / Master of Science (MSc) / Sepsis is a life threatening condition caused by the body’s extreme response to microbial infection of the blood, whereby neutrophils release traps composed of cell-free DNA (cfDNA), histones, and antimicrobial proteins. In addition to fighting off infections, these traps also exert harmful effects like triggering clotting and killing host cells. Currently, no specific anti-septic drugs exist. Studies have shown that DNase1 (a recombinant protein that digests double stranded cfDNA) or a modified form of heparin (neutralizes histones) improves survival in septic mice. Our goal was to explore the protective effects of Vasoflux, (a non-anticoagulant heparin) and DNase1 in a mouse model of sepsis. We hypothesize that the combined therapy of DNase1 and Vasoflux will improve survival. We found that Vasoflux has minimal blood thinning activity and can prevent histones from killing cells. However, Vasoflux administered into septic mice worsened organ damage and decreased survival. We hypothesize that this damage may be due to Vasoflux’s ability to displace histones from histone-DNA complexes, thereby releasing free DNA, which promotes excessive blood clotting in sepsis.
129

Endothelial Cell-Specific Knockout of Meis1 Protects Ischemic Hindlimb Through Vascular Remodeling

Chen, Miao 28 June 2018 (has links)
Peripheral artery disease (PAD) affects more than 200 million people worldwide. PAD refers to illness due to a reduction or complete occlusion of blood flow in the artery, especially to the extremities in disease conditions, such as atherosclerosis or diabetes. Critical limb ischemia (CLI) is a severe form of PAD associated with high morbidity and mortality. Currently, no effective and permanent treatments are available for this disease. The current endovascular medications (e.g., angioplasty or stents) only relieve the clinical symptoms while the surgical therapies (e.g., bypass or endarterectomy) require grafting vessels from a healthy organ to the diseased limb of the patient. However, even with these therapeutic techniques, 30% of patients still undergo limb amputation within a year. Thus, understanding of disease mechanism and development of new therapeutic approaches are in urgent needs. Meis1 (myeloid ecotropic viral integration site 1) gene belongs to the three-amino-acid loop extension subclass of homeobox gene families, and it is a highly conserved transcription factor in all eukaryotes. Up to date, little is known about the role of Meis1 in regulating vascular remodeling under ischemic condition. In this study, we aim to investigate the role and underlying mechanism of Meis1 in the regulation of arteriogenesis and angiogenesis using hindlimb ischemia model of transgenic neonatal mice. The long-term goal is to develop a new treatment for patients with PAD. Three separate but related studies were planned to complete the proposed research aims. To better understand the role of Meis1, we reviewed, in the first chapter, all literature relevant to the recent advances of the Meis1 in normal hematopoiesis, vasculogenesis, and heart developments, which were mostly studied in zebrafish and mouse. Briefly, Meis1 is found to be highly expressed in the brain and retina in zebrafish and additional in the heart, nose, and limb in mouse during the very early developmental stage, and remains at a low level quickly after birth. Meis1 is necessary for both primitive and definitive hematopoiesis and required for posterior erythroid differentiation. The absence of Meis1 results in a severe reduction of the number of mature erythrocytes and weakens the heart beats in zebrafish. Meis1 deficiency mouse is dead as early as E11.5 due to the severe internal hemorrhage. In addition, Meis1 is essential in heart development. Knock-down of Meis1 can promote angiotensin II-induced cardiomyocytes (CMs) hypertrophy or CMs proliferation, which can be repressed by a transcription factor Tbx20. Meis1 appears to play a complicated role in the blood vessels. Although the major blood vessels are still normal when global deletion of Meis1, the intersegmental vessel cannot be formed in Meis1 morphants in the zebrafish, and the small vessels are either too narrow or form larger sinuses in Meis1 deficient mouse. The effects of Meis1 on the vascular network under normal and disease (ischemia) condition remain largely unknown, and the existing data in this field is limited. In the second chapter, we developed a method protocol to identify mice of all ages, especially neonates that we faced methodological difficulties to easily and permanently label prior to our major experiments. In this study, single- or 2-color tattooing (ear, tail, or toe or combinations) was performed to identify a defined or unlimited number of mice, respectively. Tail tattooing using both green and red pastes was suitable for identifying white-haired neonatal mice as early as postnatal day (PND) 1, whereas toe tattooing with green paste was an effective alternative approach for labeling black-haired mouse pups. In comparison, single-color (green) or 2-color (green and red) ear tattooing identified both white and black adult mice older than three weeks. Ear tattooing can be adapted to labeling an unlimited number of adult mice by adding the cage number. Thus, tattooing various combinations of the ears, tail, and toes provides an easy and permanent approach for identifying mice of all ages with minimal disturbance to the animals, which shows a new approach than any existing method to identify mouse at all ages, especially the neonatal pups used in the present study (Chapter 4). Various formation of hindlimb ischemia with ligations of femoral artery or vein or both have been reported in the literature. The ischemic severity varies dependent on mouse strains and ligation methods. Due to the tiny body size of our experimental neonatal mice (PND2), it is technically challenging to separate the femoral artery from femoral vein without potential bleeding. In the third chapter, we aimed to explore a suitable surgical approach that can apply to neonatal mice. To this end, we compared the effects of femoral artery/vein (FAV) excision vs. femoral artery (FA) excision on hindlimb model using adult CD-1 mice. We showed during the 4-week period of blood reperfusion, no statistically significant differences were found between FAV and FA excision-induced ischemia regarding the reduction of limb blood flow, paw size, number of necrotic toes, or skeletal muscle cell size. We conclude that FAV and FA excision in CD-1 mice generate a comparable severity of hindlimb ischemia. In other words, FAV ligation is no more severe than FA ligation. These findings provide valuable information for researchers when selecting ligation methods for their neonate hindlimb models. Based on these findings, we selected FAV ligation of hindlimb ischemia approach to study the function of Meis1 in vascular remodeling of neonatal mice. In the fourth chapter (the main part of my dissertation), we investigated the roles of Meis1 in regulating arteriogenesis and angiogenesis of neonatal mouse under the ischemic condition. To this end, endothelial cell-specific deletion of Meis1 was generated by cross-breeding Meis1flox/flox mice with Tie2-Cre mice. Wild-type (WT, Meis1f/f) and endothelial cell-specific knock-out (KO, Meis1ec-/-Tie2-Cre+) C57BL/6 mice at the age of PND2 were used. Under the anesthesia, the pups were subject to hindlimb ischemia by excising FAV. Laser Doppler Imager was used to measure the blood flow pre- and post-surgery up to 28 days. Toe necrosis, skeletal regeneration, and vascular distributions were examined at the end of experiments (PND28 post-ischemia). Surprisingly, during 4-week periods after ischemia, the blood flow ratios (ischemic vs. control limb) in KO mice significantly increased compared to WT on PND14 and PND28, suggesting the inhibitory effects of Meis1 on blood flow recovery under ischemic condition. Meanwhile, WT mice showed more severe necrotic limb (lower ratio of limb length and area, and higher necrotic scores at PND7) than those in the KO mice. Furthermore, significant increases in diameters of Dil-stained arterioles of the skin vessel and the vessels on the ligation site were observed in KO mice, indicating the enhanced arteriogenesis in KO mice. To investigate the underlying mechanism, RNA from the ischemia and control limb was extracted and q-PCR was used to study the potential genes involved in the mechanism. Casp3 and Casp8 were found downregulated showing less apoptosis in the KO mice. On the other hand, endothelial cells (ECs) were isolated from the lungs of 3-5 WT and KO neonates using CD31 Microbeads. CD31+ cells were plated and treated with 0, 0.5, and 1μM doxorubicin for 24 hours and analyzed with various assays. Meis1-KO ECs demonstrated higher cell viability and formed a higher number of vascular tubes than those in WT ECs following 0.5μM Dox treatment, presenting the potential ability of angiogenesis in KO-ECs. Furthermore, the increased viability in KO ECs may be due to the decreased expression or activities of Casp8 and Casp3. In conclusion, my present studies have developed a new methodology to easily and permanently identify all mice at any ages. The insignificant differences between FAV and FA ligations suggest that a relative-easy surgical approach could be used to generate hindlimb ischemic model, which potentially reduces the cost, decreases the surgical time and prevents damage of femoral nerve from surgical tools. More importantly, by using transgenic mice, we found that Meis1-KO dramatically increased blood flow and protected the ischemic hindlimb through vascular remodeling. Obviously, the molecular and cellular mechanisms underlying the above beneficial effects appear complicated and likely to involve multiple cellular remodeling processes and molecular signaling pathways to enhance arteriogenesis and angiogenesis and/or reduce cellular apoptosis through Meis1-mediated pathways. Our study demonstrated that under ischemic condition, knockout of Meis1 increases expression of Hif1a, which then activates Agt or VEGF, thus enhances arteriogenesis or angiogenesis; In addition, knockout of Meis1 activates Ccnd1, which subsequently promotes regeneration of skeletal muscle, and reduces expression of Casp8 and Casp3, thus preventing limb tissue from ischemia-induced apoptosis. Our innovative findings offer great potential to ultimately lead to new drug discovery or therapeutic approaches for prevention or treatment of PAD. / PHD
130

Auxiliar-vermittelte Peptidfragmentverknüpfung: Synthese und Anwendung leistungsfähiger Nα-Auxiliare für die erweiterte native chemische Peptidligation

Loibl, Simon 23 January 2018 (has links)
Chemoselektive Peptidfragmentverknüpfungsmethoden sind ein zentrales Element der chemischen Peptid- und Proteinsynthese. Auf der Suche nach einem „universellen Werkzeug für die Peptidligation“ wurde in den vergangenen zwei Jahrzenten eine Vielzahl unterschiedlicher Hilfsmolekülen (Auxiliare) entwickelt. Trotz des enormen Forschungaufwandes blieben bisher verfügbare Nα-Auxiliare jedoch in ihrer Anwendung auf glycinhaltige Ligationsstellen beschränkt. Im Fall der häufig verwendeten säurelabilen Nα-Auxiliare müssen zudem starke Säuren oder Supersäuren eingesetzt werden, um das Hilfsmolekül nach der Peptidligation zu entfernen. Dabei wurde häufig die Spaltung der zuvor aufgebauten Amidbindung als unerwünschte Nebenreaktion beobachtet. In der vorliegenden Arbeit wurde die Synthese von acht Nα-Auxiliaren erarbeitet und deren Anwendung in der erweiterten nativen chemischen Ligation untersucht. Dabei konnten sechs Hilfsmoleküle identifiziert werden, welche die Auxiliar-Abspaltung unter mild-basischen Bedingungen ermöglichten. Von besonderer Bedeutung war das 2-Mercapto-2-phenethyl-Grundgerüst, welches im Gegensatz zu bisher beschriebenen Nα-Auxiliaren erstmals den Zugang zu sterisch anspruchsvollen Verknüpfungstellen, jenseits von Glycin, gestattete. Der Nutzen des Auxiliars wurde in die chemische Totalsynthese zweier antimikrobieller Peptide demonstriert. Durch die Verwendung eines 13C-markierten Hilfsmoleküls konnte der Mechanismus der radikalischen Auxiliar-Abspaltungsreaktion in NMR-Experimenten detailliert untersucht werden. Zusätzlich wurde das 2-Mercapto-2-phenethyl-Auxiliar in einer neuen Methode der chemischen Proteinsynthese eingesetzt, welche die gewünschten Proteine ohne eine einzige HPLC-Reinigung in reiner Form lieferte. Im letzen Teil der Arbeit wurde mit dem 2-Selenol-2-phenethyl-Grundgerüst erstmals die Anwendung eines Selenol-funktionalisierten Nα-Auxiliars beschrieben. Das Hilfsmolekül ermöglichte besonders schnelle Verknüpfungsreaktionen und konnte zudem rasch mit hoher Selektivität entfernt werden. / Chemoselective ligation methods are an essential element of chemical peptide and protein synthesis. The search of a „universal tool for peptide ligation“ led to a range of different ligation auxiliaries over the last two decades. Despite the intense research in this field established Nα-auxiliaries remained limited to glycine-containing ligation sites. Furthermore, the application of frequently used acid-labile Nα-auxiliaries requires strong acids or superacids to remove the auxiliary after the ligation reaction. Under these harsh acidic conditions the cleavage of the established amide bond has been observed as an undesired side-reaction. This work describes the synthesis of eight Nα-auxiliaries and their application in extended native chemical ligation. Six helping molecules were identified enabling auxiliary cleavage under mild-basic conditions. Perhaps most important and in contrast to previously reported Nα-auxiliaries, the 2-mercapto-2-phenethyl group facilitated access to sterically demanding ligation sites, beyond glycine. The synthetic utility of the auxiliary was demonstrated by the chemical total synthesis of two antimicrobial peptides. The application of a 13C-labelled scaffold allowed a detailled study oft the radical auxiliary cleavage reaction by NMR-spectroscopy. Additionally, the 2-mercapto-2-phenethyl auxiliary was utilised for a novel method of chemical protein synthesis, which delivered the desired proteins without a single HPLC-purification in high purity. Finally, a selenol-functionalized Nα-auxiliary is described for the first time by introducing the 2-selenol-2-phenethyl mojety. This scaffold enabled execptionally rapid peptide ligations and is readily removed with high selectivity.

Page generated in 0.0689 seconds