Spelling suggestions: "subject:"1inear operators."" "subject:"cinear operators.""
71 |
Normal Spectrum of a Subnormal OperatorKumar, Sumit January 2013 (has links) (PDF)
Let H be a separable Hilbert space over the complex field. The class
S := {N|M : N is normal on H and M is an invariant subspace for Ng of subnormal operators. This notion was introduced by Halmos. The minimal normal extension Ň of a subnormal operator S was introduced by
σ (S) and then Bram proved that
Halmos. Halmos proved that σ(Ň)
(S) is obtained by filling certain number of holes in the spectrum (Ň) of the minimal normal extension Ň of a subnormal operator S.
Let σ (S) := σ (Ň) be the spectrum of the minimal normal extension Ň of S; which is called the normal spectrum of a subnormal operator S: This notion is due to Abrahamse and Douglas. We give several well-known characterization of subnormality. Let C* (S1) and C* (S2) be the C*- algebras generated by S1 and S2 respectively, where S1 and S2 are bounded operators on H:
Next we give a characterization for subnormality which is purely C - algebraic. We also establish an intrinsic characterization of the normal spectrum for a subnormal operator, which enables us to answer the fol-lowing two questions.
Let II be a *- representation from C* (S1) onto C* (S2) such that II(S1) = S2.
If S1 is subnormal, then does it follow that S2 is subnormal? What is the relation between σ (S1) and σ (S2)?
The first question was asked by Bram and second was asked by Abrahamse and Douglas. Answers to these questions were given by Bunce and Deddens.
|
72 |
Normal Spectrum of a Subnormal OperatorKumar, Sumit January 2013 (has links) (PDF)
Let H be a separable Hilbert space over the complex field. The class
S := {N|M : N is normal on H and M is an invariant subspace for Ng of subnormal operators. This notion was introduced by Halmos. The minimal normal extension Ň of a subnormal operator S was introduced by
σ (S) and then Bram proved that
Halmos. Halmos proved that σ(Ň)
(S) is obtained by filling certain number of holes in the spectrum (Ň) of the minimal normal extension Ň of a subnormal operator S.
Let σ (S) := σ (Ň) be the spectrum of the minimal normal extension Ň of S; which is called the normal spectrum of a subnormal operator S: This notion is due to Abrahamse and Douglas. We give several well-known characterization of subnormality. Let C* (S1) and C* (S2) be the C*- algebras generated by S1 and S2 respectively, where S1 and S2 are bounded operators on H:
Next we give a characterization for subnormality which is purely C - algebraic. We also establish an intrinsic characterization of the normal spectrum for a subnormal operator, which enables us to answer the fol-lowing two questions.
Let II be a *- representation from C* (S1) onto C* (S2) such that II(S1) = S2.
If S1 is subnormal, then does it follow that S2 is subnormal? What is the relation between σ (S1) and σ (S2)?
The first question was asked by Bram and second was asked by Abrahamse and Douglas. Answers to these questions were given by Bunce and Deddens.
|
73 |
Well-posedness and mathematical analysis of linear evolution equations with a new parameterMonyayi, Victor Tebogo 01 1900 (has links)
Abstract in English / In this dissertation we apply linear evolution equations to the Newtonian derivative, Caputo
time fractional derivative and $-time fractional derivative. It is notable that the
most utilized fractional order derivatives for modelling true life challenges are Riemann-
Liouville and Caputo fractional derivatives, however these fractional derivatives have
the same weakness of not satisfying the chain rule, which is one of the most important
elements of the match asymptotic method [2, 3, 16]. Furthermore the classical bounded
perturbation theorem associated with Riemann-Liouville and Caputo fractional derivatives
has con rmed not to be in general truthful for these models, particularly for solution
operators of evolution systems of a derivative with fractional parameter ' that
is less than one (0 < ' < 1) [29]. To solve this problem, we introduce the derivative
with new parameter, which is de ned as a local derivative but has a fractional order
called $-derivative and apply this derivative to linear evolution equation and to support
what we have done in the theory, we utilize application to population dynamics and we provide the numerical simulations for particular cases. / Mathematical Sciences / M.Sc. (Applied Mathematics)
|
74 |
Funções s-assintoticamente periódicas em espaços de Banach e aplicações à equações diferenciais funcionais / S-asymptotically periodic functions on Banach spaces and applications for functional differential equationsHernandez, Michelle Fernanda Pierri 13 April 2009 (has links)
Este trabalho está voltado para o estudo de uma classe de funções contínuas e limitadas f : [0; \'INFINITO\') \'SETA\' X para as quais existe \'omega\' \'> OU =\' 0 tal que \'lim IND. t\' \'SETA\' \'INFINITO\' (f(t + \'omega\') - f(t)) = 0. No decorrer do trabalho, chamaremos estas funções de S-assintoticamente \'omega\'-periódicas. Nós discutiremos propriedades qualitativas para estas funções e algumas relações entre este tipo de funções e a classe de funções assintoticamente \'omega\'-periódicas. Também estudaremos a existência de soluções fracas S-assintoticamente \'omega\'-periódicas para uma classe de primeira ordem de um problema de Cauchy abstrato bem como para algumas classes de equações diferenciais funcionais parciais neutras com retardo não limitado. Algumas aplicações para equações diferenciais parciais serão consideradas / This work is devoted to the study of the class of continuous and bounded functions f : [0 \'INFINIT\') \'ARROW\' X for which there exists \'omega\' > 0 such that \'limt IND.t \'ARROW\' \'INFINIT\'(f(t + \'omega\'!) - f(t)) = 0 (in the sequel called S-asymptotically !-periodic functions). We discuss qualitative properties and establish some relationships between this type of functions and the class of asymptotically \'omega\'-periodic functions. We also study the existence of S-asymptotically \'omega\'-periodic mild solutions for a first-order abstract Cauchy problem in Banach spaces and for some classes of abstract neutral functional differential equations with infinite delay. Furthermore, applications to partial differential equations are given
|
75 |
Stability Rates for Linear Ill-Posed Problems with Convolution and Multiplication OperatorsHofmann, B., Fleischer, G. 30 October 1998 (has links) (PDF)
In this paper we deal with the `strength' of ill-posedness for ill-posed linear operator equations Ax = y in Hilbert spaces, where we distinguish according_to_M. Z. Nashed [15] the ill-posedness of type I if A is not compact, but we have R(A) 6= R(A) for the range R(A) of A; and the ill-posedness of type II for compact operators A: From our considerations it seems to follow that the problems with noncompact operators A are not in general `less' ill-posed than the problems with compact operators. We motivate this statement by comparing the approximation and stability behaviour of discrete least-squares solutions and the growth rate of Galerkin matrices in both cases. Ill-posedness measures for compact operators A as discussed in [10] are derived from the decay rate of the nonincreasing sequence of singular values of A. Since singular values do not exist for noncompact operators A; we introduce stability rates in order to have a common measure for the compact and noncompact cases. Properties of these rates are illustrated by means of convolution equations in the compact case and by means of equations with multiplication operators in the noncompact case. Moreover using increasing rearrangements of the multiplier functions specific measures of ill-posedness called ill-posedness rates are considered for the multiplication operators. In this context, the character of sufficient conditions providing convergence rates of Tikhonov regularization are compared for compact operators and multiplication operators.
|
76 |
Boundary Value Problems For Higher Order Linear Impulsive Differential EquationsUgur, Omur 01 January 2003 (has links) (PDF)
_I
The theory of impulsive di® / erential equations has become an important area of
research in recent years. Linear equations, meanwhile, are fundamental in most
branches of applied mathematics, science, and technology. The theory of higher
order linear impulsive equations, however, has not been studied as much as the cor-
responding theory of ordinary di® / erential equations.
In this work, higher order linear impulsive equations at ¯ / xed moments of impulses
together with certain boundary conditions are investigated by making use of a Green' / s
formula, constructed for piecewise di® / erentiable functions. Existence and uniqueness
of solutions of such boundary value problems are also addressed.
Properties of Green' / s functions for higher order impulsive boundary value prob-
lems are introduced, showing a striking di® / erence when compared to classical bound-
ary value problems of ordinary di® / erential equations. Necessarily, instead of an or-
dinary Green' / s function there corresponds a sequence of Green' / s functions due to
impulses.
Finally, as a by-product of boundary value problems, eigenvalue problems for
higher order linear impulsive di® / erential equations are studied. The conditions for
the existence of eigenvalues of linear impulsive operators are presented. Basic properties of eigensolutions of self-adjoint operators are also investigated. In particular,
a necessary and su± / cient condition for the self-adjointness of Sturm-Liouville opera-
tors is given. The corresponding integral equations for boundary value and eigenvalue
problems are also demonstrated in the present work.
|
77 |
Funções s-assintoticamente periódicas em espaços de Banach e aplicações à equações diferenciais funcionais / S-asymptotically periodic functions on Banach spaces and applications for functional differential equationsMichelle Fernanda Pierri Hernandez 13 April 2009 (has links)
Este trabalho está voltado para o estudo de uma classe de funções contínuas e limitadas f : [0; \'INFINITO\') \'SETA\' X para as quais existe \'omega\' \'> OU =\' 0 tal que \'lim IND. t\' \'SETA\' \'INFINITO\' (f(t + \'omega\') - f(t)) = 0. No decorrer do trabalho, chamaremos estas funções de S-assintoticamente \'omega\'-periódicas. Nós discutiremos propriedades qualitativas para estas funções e algumas relações entre este tipo de funções e a classe de funções assintoticamente \'omega\'-periódicas. Também estudaremos a existência de soluções fracas S-assintoticamente \'omega\'-periódicas para uma classe de primeira ordem de um problema de Cauchy abstrato bem como para algumas classes de equações diferenciais funcionais parciais neutras com retardo não limitado. Algumas aplicações para equações diferenciais parciais serão consideradas / This work is devoted to the study of the class of continuous and bounded functions f : [0 \'INFINIT\') \'ARROW\' X for which there exists \'omega\' > 0 such that \'limt IND.t \'ARROW\' \'INFINIT\'(f(t + \'omega\'!) - f(t)) = 0 (in the sequel called S-asymptotically !-periodic functions). We discuss qualitative properties and establish some relationships between this type of functions and the class of asymptotically \'omega\'-periodic functions. We also study the existence of S-asymptotically \'omega\'-periodic mild solutions for a first-order abstract Cauchy problem in Banach spaces and for some classes of abstract neutral functional differential equations with infinite delay. Furthermore, applications to partial differential equations are given
|
78 |
Stability Rates for Linear Ill-Posed Problems with Convolution and Multiplication OperatorsHofmann, B., Fleischer, G. 30 October 1998 (has links)
In this paper we deal with the `strength' of ill-posedness for ill-posed linear operator equations Ax = y in Hilbert spaces, where we distinguish according_to_M. Z. Nashed [15] the ill-posedness of type I if A is not compact, but we have R(A) 6= R(A) for the range R(A) of A; and the ill-posedness of type II for compact operators A: From our considerations it seems to follow that the problems with noncompact operators A are not in general `less' ill-posed than the problems with compact operators. We motivate this statement by comparing the approximation and stability behaviour of discrete least-squares solutions and the growth rate of Galerkin matrices in both cases. Ill-posedness measures for compact operators A as discussed in [10] are derived from the decay rate of the nonincreasing sequence of singular values of A. Since singular values do not exist for noncompact operators A; we introduce stability rates in order to have a common measure for the compact and noncompact cases. Properties of these rates are illustrated by means of convolution equations in the compact case and by means of equations with multiplication operators in the noncompact case. Moreover using increasing rearrangements of the multiplier functions specific measures of ill-posedness called ill-posedness rates are considered for the multiplication operators. In this context, the character of sufficient conditions providing convergence rates of Tikhonov regularization are compared for compact operators and multiplication operators.
|
79 |
Asymptotics of the Fredholm determinant corresponding to the first bulk critical universality class in random matrix modelsBothner, Thomas Joachim 06 November 2013 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / We study the one-parameter family of determinants $det(I-\gamma K_{PII}),\gamma\in\mathbb{R}$ of an integrable Fredholm operator $K_{PII}$ acting on the interval $(-s,s)$ whose kernel is constructed out of the $\Psi$-function associated with the Hastings-McLeod solution of the second Painlev\'e equation. In case $\gamma=1$, this Fredholm determinant describes the critical behavior of the eigenvalue gap probabilities of a random Hermitian matrix chosen from the Unitary Ensemble in the bulk double scaling limit near a quadratic zero of the limiting mean eigenvalue density. Using the Riemann-Hilbert method, we evaluate the large $s$-asymptotics of $\det(I-\gamma K_)$ for all values of the real parameter $\gamma$.
|
80 |
Preconditioned Newton methods for ill-posed problems / Vorkonditionierte Newton-Verfahren für schlecht gestellte ProblemeLanger, Stefan 21 June 2007 (has links)
No description available.
|
Page generated in 0.0786 seconds