Spelling suggestions: "subject:"logic, symbolic anda mathematical"" "subject:"logic, symbolic ando mathematical""
131 |
The logic of sequences a generalization of Principia mathematica /Quine, W. V. January 1990 (has links)
Thesis (Ph. D.)--Harvard University, 1932. / Includes bibliographical references.
|
132 |
Nonlinear approaches to satisfiability problems proefschrift /Warners, Johannes Pieter. January 1900 (has links)
Thesis (Doctoral)--Technische Universiteit Eindhoven, 1996. / Contains summaries in English and Dutch. Vita. Includes bibliographical references (p. 145-154).
|
133 |
Räumliche Vorstellung und mathematisches ErkenntnisvermögenVerloren van Themaat, Willem Anthony. January 1900 (has links)
Vol. 1: the author's thesis. / Summary in Esperanto, English, and Dutch. Bibliography: v. 1, p. [130]-131.
|
134 |
Απόδοση συστημάτων αυτόματης απόδειξης θεωρημάτων: περίπτωση ACT-PΚεραμύδας, Ελευθέριος 31 August 2010 (has links)
- / -
|
135 |
Teoria de conjuntos fuzzy e aplicaçõesSecco, Érica Fernanda Aparecida [UNESP] 16 December 2013 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:27:10Z (GMT). No. of bitstreams: 0
Previous issue date: 2013-12-16Bitstream added on 2014-06-13T20:08:10Z : No. of bitstreams: 1
000734174.pdf: 1301603 bytes, checksum: c022c2b4e049a701b1abb5a9e04fe8e9 (MD5) / Neste traboalho são apresentados alguns conceitos básicos da Teoria de Conjuntos Fuzzy como: operações comu conjunto fuzzy, Princípio de Extensão de Zadeh, números fuzzy e noçoes de lógica fuzzy. As relações são apresentadas com o objetivo de tratarmos de sistemas baseados em regras fuzzy e algumas aplicações / In this paper are presented some basic concepts of Fuzzy Sets Theory: operation with fuzzy sets, Zadeh extension principle, fuzzy numbers and fuzzy logic. The fuzzy relations are presented for the purpose of treating systems based on fuzzy rules and some application
|
136 |
Remarks on formalized arithmetic and subsystems thereofBrink, C January 1975 (has links)
In a famous paper of 1931, Gödel proved that any formalization of elementary Arithmetic is incomplete, in the sense that it contains statements which are neither provable nor disprovable. Some two years before this, Presburger proved that a mutilated system of Arithmetic, employing only addition but not multiplication, is complete. This essay is partly an exposition of a system such as Presburger's, and partly an attempt to gain insight into the source of the incompleteness of Arithmetic, by linking Presburger's result with Gödel's.
|
137 |
Lógica e Informação : uma análise da consequência lógica a partir de uma perspectiva quantitativa da informação / Logic and Information : an approach quantitative informational of logical consequenceAlves, Marcos Antonio, 1975- 21 August 2018 (has links)
Orientador: Ítala Maria Loffredo D'Ottaviano / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Filosofia e Ciências Humanas / Made available in DSpace on 2018-08-21T17:22:51Z (GMT). No. of bitstreams: 1
Alves_MarcosAntonio_D.pdf: 1540719 bytes, checksum: ef2df1bb686bd9200a4eb2597ab54495 (MD5)
Previous issue date: 2012 / Resumo: Nosso objetivo nesta Tese é desenvolver uma definição da consequência lógica a partir de uma perspectiva quantitativa da informação. O trabalho pode ser dividido em duas partes. Na primeira, que consiste dos três capítulos iniciais, fazemos um estudo crítico de algumas das principais concepções usuais de consequência lógica. No primeiro capítulo expomos três das características centrais da consequência lógica, quais sejam, necessidade, formalidade e anterioridade. Apresentamos uma noção geral de consequência lógica, a partir da qual classificamos as diferentes noções de consequência lógica em clássicas e não-clássicas. Nos dois próximos capítulos tratamos da consequência lógica a partir das perspectivas sintática e semântica, analisando em que medida elas satisfazem as três características acima enunciadas. Na segunda parte, constituída dos três últimos capítulos, desenvolvemos a nossa proposta. No quarto capítulo expomos criticamente a concepção de informação a ser utilizada na Tese. No quinto capítulo construímos uma semântica probabilística para a lógica sentencial clássica, mostrando os seus principais resultados. A partir desta semântica, definimos, no sexto capítulo, a quantidade de informação em uma fórmula da lógica sentencial clássica e a consequência lógica probabilística. Feito isso, definimos a consequência lógica informacional, demonstrando os seus principais resultados / Abstract: Our goal in this work is to develop a definition of logical consequence from a quantitative perspective of information. The work can be divided into two parts. The first, consisting of three chapters, we make a critical study of some key concepts usual logical consequence. In the first chapter we expose three of the central features of logical consequence, namely, necessity, formality and apriority. We present a general notion of logical consequence, from which classify the different notions of logical consequence in classical and non-classical. In the next two chapters deal with the logical consequence from the syntactic and semantic perspectives, analyzing the extent to which they meet the three above features. In the second part, which consists of the last three chapters, we developed our proposal. In the fourth chapter critically expose the concept of information to be used in the thesis. In the fifth chapter we build a probabilistic semantics for classical sentential logic, showing its main results. From this semantics, we define, in the sixth chapter, the amount of information in a formula of classical sentence logic and probabilistic logical consequence. That done, we define the informational logical consequence, showing its main results / Doutorado / Filosofia / Doutor em Filosofia
|
138 |
The numbers of the marketplace : commitment to numbers in natural languageSchwartzkopff, Robert January 2015 (has links)
No description available.
|
139 |
Undecidability of intuitionistic theoriesBrierley, William. January 1985 (has links)
No description available.
|
140 |
Algebraïese simbole : die historiese ontwikkeling, gebruik en onderrig daarvanStols, Gert Hendrikus. 06 1900 (has links)
Text in Afrikaans, abstract in Afrikaans and English / Die gebruik van simbole maak wiskunde eenvoudiger en kragtiger, maar ook
moeiliker verstaanbaar. Laasgenoemde kan voorkom word as slegs eenvoudige en
noodsaaklike simbole gebruik word, met die verduidelikings en motiverings in
woorde.
Die krag van simbole le veral in die feit dat simbole as substitute vir konsepte kan
dien. Omdat die krag van simbole hierin le, skuil daar 'n groot gevaar in die gebruik
van simbole. Wanneer simbole los is van sinvolle verstandsvoorstellings, is daar geen
krag in simbole nie. Dit is die geval met die huidige benadering in skoolalgebra.
Voordat voldoende verstandsvoorstellings opgebou is, word daar op die manipulasie
van simbole gekonsentreer.
Die algebraiese historiese-kenteoretiese perspektief maak algebra meer betekenisvol
vir leerders. Hiervolgens moet die leerlinge die geleentheid gegun word om
oplossings in prosavorm te skryf en self hul eie wiskundige simbole vir idees spontaan in te voer. Hulle moet self die voordeel van algebraiese simbole beleef. / The use of symbols in algebra both simplifies and strengthens the subject, but it also
increases its level of complexity.This problem can be prevented if only simple and
essential symbols are used and if the explanations are fully verbalised.
The power of symbols stems from their potential to be used as substitutes for
concepts. As this constitutes the crux of mathematical symbolic representation, it
also presents a danger in that the symbols may not be comprehended. If symbols are
not related to mental representations, the symbols are meaningless. This is the case in
the present approach to algebra. Before sufficient mental representations are built,
there is a concentration on the manipulation of symbols.
The algebraic historical epistemological perspective makes algebra more meaningful
for learners. Learners should be granted the opportunities to write their solutions in prose and to develop their own symbols for concepts. / Mathematics Education / M. Sc. (Wiskunde-Onderwys)
|
Page generated in 0.1418 seconds