Spelling suggestions: "subject:"longtime bvehavior"" "subject:"longtime cobehavior""
1 |
Comportements en temps long et à grande échelle de quelques dynamiques de collision. / Long time and large scale behaviour of a few collisional dynamicsReygner, Julien 24 November 2014 (has links)
Cette thèse comporte trois parties essentiellement indépendantes, dont chacune est consacrée à l'étude d'un système de particules, suivant une dynamique déterministe ou aléatoire, et à l'intérieur duquel les interactions se font uniquement aux collisions entre les particules.La Partie I propose une étude numérique et théorique des états stationnaires hors de l'équilibre du Modèle d'Échange Complet, introduit en physique pour comprendre le transport de la chaleur dans certains matériaux poreux.La Partie II est consacrée à un système de particules browniennes évoluant sur la droite réelle et interagissant à travers leur rang. Le comportement limite de ce système, en temps long et à grand nombre de particules, est décrit, puis les résultats sont appliqués à l'étude d'un modèle de marché financier dit modèle d'Atlas en champ moyen.La Partie III introduit une version multitype du système de particules étudié dans la partie précédente, qui permet d'approcher des systèmes paraboliques d'équations aux dérivées partielles non-linéaires. La limite petit bruit de ce système est appelée dynamique des particules collantes multitype et approche cette fois des systèmes hyperboliques. Une étude détaillée de cette dynamique donne des estimations de stabilité en distance de Wasserstein sur les solutions de ces systèmes. / This thesis contains three independent parts, each one of which is dedicated to the study of a particle system, following either a deterministic or a stochastic dynamics, and in which interactions only occur at collisions. Part I contains a numerical and theoretical study of nonequilibrium steady states of the Complete Exchange Model, which was introduced by physicists in order to understand heat transfer in some porous materials. Part II is dedicated to a system of Brownian particles evolving on the real line and interacting through their ranks. The long time and mean-field behaviour of this system is described, then the results are applied to the study of a model of equity market called the mean-field Atlas model. Part III introduces a multitype version of the particle system studied in the previous part, which allows to approximate parabolic systems of nonlinear partial differential equations. The small noise limit of of this system is called multitype sticky particle dynamics and now approximates hyperbolic systems. A detailed study of this dynamics provides stability estimates in Wasserstein distance for the solutions of these systems.
|
2 |
Numerical Analysis for Data-Driven Reduced Order Model ClosuresKoc, Birgul 05 May 2021 (has links)
This dissertation contains work that addresses both theoretical and numerical aspects of reduced order models (ROMs). In an under-resolved regime, the classical Galerkin reduced order model (G-ROM) fails to yield accurate approximations. Thus, we propose a new ROM, the data-driven variational multiscale ROM (DD-VMS-ROM) built by adding a closure term to the G-ROM, aiming to increase the numerical accuracy of the ROM approximation without decreasing the computational efficiency.
The closure term is constructed based on the variational multiscale framework. To model the closure term, we use data-driven modeling. In other words, by using the available data, we find ROM operators that approximate the closure term. To present the closure term's effect on the ROMs, we numerically compare the DD-VMS-ROM with other standard ROMs. In numerical experiments, we show that the DD-VMS-ROM is significantly more accurate than the standard ROMs. Furthermore, to understand the closure term's physical role, we present a theoretical and numerical investigation of the closure term's role in long-time integration. We theoretically prove and numerically show that there is energy exchange from the most energetic modes to the least energetic modes in closure terms in a long time averaging.
One of the promising contributions of this dissertation is providing the numerical analysis of the data-driven closure model, which has not been studied before. At both the theoretical and the numerical levels, we investigate what conditions guarantee that the small difference between the data-driven closure model and the full order model (FOM) closure term implies that the approximated solution is close to the FOM solution. In other words, we perform theoretical and numerical investigations to show that the data-driven model is verifiable.
Apart from studying the ROM closure problem, we also investigate the setting in which the G-ROM converges optimality. We explore the ROM error bounds' optimality by considering the difference quotients (DQs). We theoretically prove and numerically illustrate that both the ROM projection error and the ROM error are suboptimal without the DQs, and optimal if the DQs are used. / Doctor of Philosophy / In many realistic applications, obtaining an accurate approximation to a given problem can require a tremendous number of degrees of freedom. Solving these large systems of equations can take days or even weeks on standard computational platforms. Thus, lower-dimensional models, i.e., reduced order models (ROMs), are often used instead. The ROMs are computationally efficient and accurate when the underlying system has dominant and recurrent spatial structures.
Our contribution to reduced order modeling is adding a data-driven correction term, which carries important information and yields better ROM approximations. This dissertation's theoretical and numerical results show that the new ROM equipped with a closure term yields more accurate approximations than the standard ROM.
|
3 |
Comportement en temps long des solutions de quelques équations de Hamilton-Jacobi du premier et second ordre, locales et non-locales, dans des cas non-périodiques / Long time behavior of solutions of some first and second order, local and nonlocal Hamilton-Jacobi equations in non-periodic settingsNguyen, Thi Tuyen 01 December 2016 (has links)
La motivation principale de cette thèse est l'étude du comportement en temps grand des solutions non-bornées d'équations de Hamilton-Jacobi visqueuses dans RN en présence d'un terme d'Ornstein-Uhlenbeck. Nous considérons la même question dans le cas d'une équation de Hamilton-Jacobi du premier ordre. Dans le premier cas, qui constitue le cœur de la thèse, nous généralisons les résultats de Fujita, Ishii et Loreti (2006) dans plusieurs directions. La première est de considérer des opérateurs de diffusion plus généraux en remplaçant le Laplacien par une matrice de diffusion quelconque. Nous considérons ensuite des opérateurs non-locaux intégro-différentiels de type Laplacien fractionnaire. Le second type d'extension concerne le Hamiltonien qui peut dépendre de x et est seulement supposé sous-linéaire par rapport au gradient. / The main aim of this thesis is to study large time behavior of unbounded solutions of viscous Hamilton-Jacobi equations in RN in presence of an Ornstein-Uhlenbeck drift. We also consider the same issue for a first order Hamilton-Jacobi equation. In the first case, which is the core of the thesis, we generalize the results obtained by Fujita, Ishii and Loreti (2006) in several directions. The first one is to consider more general operators. We first replace the Laplacian by a general diffusion matrix and then consider a non-local integro-differential operator of fractional Laplacian type. The second kind of extension is to deal with more general Hamiltonians which are merely sublinear.
|
4 |
Stabilité de solutions régulières pour des systèmes d'Euler-Maxwell et de Navier-Stokes-Maxwell compressibles / Stabilities of smooth solutions for compressible Euler-Maxwell and Navier-Stokes-Maxwell systemsFeng, Yuehong 05 September 2014 (has links)
Cette thèse est essentiellement composée de deux parties traitant des problèmes de Cauchy ou des problèmes périodiques. Dans la première partie, on étudie la stabilité de solutions régulières au voisinage d'états d'équilibre non constants pour un système d'Euler-Maxwell isentropique compressible bipolaire. Par des estimations d'énergie classiques et un argument de récurrence sur l'ordre des dérivées des solutions, on montre l'existence globale et l'unicité des solutions régulières du système lorsque les données initiales sont proches des états d'équilibre. On obtient aussi le comportement asymptotique des solutions quand le temps tend vers l'infini. Dans la deuxième partie, on considère la stabilité en temps long des solutions régulières de systèmes d'Euler-Maxwell et de Navier-Stokes-Maxwell compressibles dans le cas non isentropique lorsque les états d'équilibre sont constants. Grâce à des choix convenables de symétriseurs des systèmes et à des estimations d'énergie, on montre l'existence globale et l'unicité des solutions régulières des systèmes avec données initiales petites. De plus, par le principe de Duhamel et l'outil d'analyse de Fourier, on obtient des taux de décroissance des solutions quand le temps tend vers l'infini. / This thesis is essentially composed of two parts dealing with Cauchy problems and periodic problems. In the first part, we study the stability of smooth solutions near non constant equilibrium states for a two-fluid isentropic compressible Euler-Maxwell system.By classical energy estimates together with an induction argument on the order of the derivatives of solutions, we prove the existence and uniqueness of global solutions to the system when the given initial data are near the equilibrium states. We also obtain the asymptotic behavior of solutions when the time goes to infinity. In the second part, we consider the long time stability of the global smooth solutions for compressible Euler-Maxwell and Navier-Stokes-Maxwell systems in non isentropic case when the equilibrium solutions are constants. With the help of suitable choices of symmetrizers and energy estimates, we prove the existence and uniqueness of global solutions to the systems with given small initial data. Furthermore, using the Duhamel principle and the Fourier analysis tool, we obtain the decay rates of smooth solutions as the time goes to infinity.
|
5 |
Étude de modèles de champ de phase de type Caginalp / Study of Caginalp type phase-field modelsDoumbé Bangola, Brice Landry 03 May 2013 (has links)
Ce rapport de thèse est consacré à l'étude de modèles de champ de phase de type Caginalp. Nous considérons ici, deux modèles : le premier étant une généralisation du modèle de champ de phase de Caginalp basée sur une généralisation de la loi de Maxwell-Cattaneo et le second une généralisation provenant de la théorie de la conduction de chaleur introduite par Chen et Gurtin. L'étude du premier modèle est faite aussi bien dans un domaine borné (avec un potentiel régulier puis dans le cas d'un potentiel non régulier), que dans un domaine non borné, en l'occurrence R3. Le second modèle est un problème de champ de phase avec un couplage (linéaire et non linéaire). Tout d'abord, l'existence, l'unicité et la régularité des solutions sont analysées aux moyens d'arguments classiques. Ensuite, l'existence d'ensembles bornés absorbants et compacts attractifs est établie, assurant ainsi l'existence de l'attracteur global. Enfin, dans certains cas, l'existence d'attracteurs exponentiels, ainsi que le comportement spatial des solutions lorsque le domaine spatial est un cylindre semi-infini tri-dimensionnel, sont analysés. / This thesis report is dedicated to the study of Caginalp type phase-field Models. Here, we consider two models: the first one being a generalization of the field phase Caginalp based on a generalization of the Maxwell-Cattaneo law and the second one coming from the theory of heat conduction involving two temperatures. We study the first model in bounded (with regular and irregular potentials) and unbounded (i.e. R3) domains. The second model is a phase-field one with coupling term (linear and nonlinear). Firstly, the existence, uniqueness and regularity of solutions are analyzed by means of classical arguments. Secondly, the existence of bounded absorbing sets and attractive compact is established. Such results ensures the existence of the global attractor. Finally, in some cases, the existence of exponential attractors, as well as the spatial behavior of solutions when the spatial domain is a three-dimensional semi-infinite cylinder, are analyzed.
|
6 |
Étude asymptotique de modèles en transition de phase / Asymptotic study of phase transition modelsWehbe, Charbel 05 December 2014 (has links)
Ce rapport de thèse est consacré à l'étude de modèles de champ de phase de type Caginalp. Nous considérons ici, deux parties : la première étant une généralisation du modèle de champ de phase de Caginalp basée sur la loi de Maxwell-Cattaneo et la seconde traite le même modèle dans sa version conservative. L'étude dans les deux parties est faite dans un domaine borné. De plus, dans la première partie on distingue les cas de conditions aux bords de type Dirichlet ainsi que Neumann, tandis que dans la deuxième partie le modèle est étudié uniquement avec les conditions Dirichlet (avec un potentiel régulier puis un potentiel singulier). Tout d'abord, l'existence, l'unicité, et la régularité des solutions sont analysées aux moyens d'arguments classiques. Ensuite, l'existence d'ensembles bornés absorbants est établie. Enfin, dans certains cas, l'existence de l'attracteur global et d'attracteurs exponentiels sont analysés. / This thesis report is devoted to the study of Caginalp type phase-field Models. Here, we consider two parts : the first is a generalization of the Caginalp type phase-field model based on a generalization of the Maxwell-Cattaneo law and the second with the same model in its conservative version. The study in the two parts is made in a bounded domain. In addition, in the first part we distinguish cases of boundary conditions of Dirichlet and Neumann, while in the second part the model is studied only with Dirichlet conditions (with a regular potential and a singular potential). First, the existence, uniqueness, and regularity of solutions are analyzed by means of classical arguments. Then, the existence of bounded absorbing sets is established. Finally, in some cases, the existence of the global attractor and exponential attractors are analyzed.
|
Page generated in 0.0485 seconds