• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 38
  • 30
  • 7
  • 3
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 95
  • 95
  • 34
  • 26
  • 20
  • 20
  • 14
  • 12
  • 12
  • 11
  • 11
  • 11
  • 10
  • 10
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Rigidez e semi-rigidez dos expoentes de Lyapunov em dimensão mais alta e folheações patológicas / Rigidity and semi rigidity of Lyapunov exponents i n higher dimension and pathological foliations

José Santana Campos Costa 24 April 2017 (has links)
Neste trabalho nós estudamos os expoentes de Lyapunov de aplicações f : Td → Td homotópicas a uma aplicação Anosov linear e a continuidade absoluta de folheações. Nós mostramos para algumas classes de homotopia de aplicações que a soma dos expoentes de Lyapunov está limitado pela soma dos expoentes de Lyapunov da aplicação Anosov linear. Além disso, admitindo uma propriedade conhecida como densidade uniformemente limitada (UBD) nas folheações, mostramos uma igualdade entre a soma dos expoentes de Lyapunov de f e do Anosov linear. Também construímos um conjunto C1 aberto de difeomorfismos parcialmente hiperbólicos do toro T4, preservando volume, com folheação central bidimensional não compacta e não absolutamente contínua. Ainda construímos um exemplo parcialmente hiperbólico com folhas centrais bidimensionais, não compactas onde a desintegração do volume ao longo da folheação central não é nem Lebesgue nem atômica. / In this work we study the Lyapunov exponents of maps f : Td → Td homotopic to a linear Anosov map. We proof for some homotopic classes of maps which the sum of Lyapunov exponents is bounded by the sum of the Lyapunov exponents of the linear Anosov map. Moreover, by assuming a property known as uniformly bounded density (UBD) in the foliations, we show an equality between the sum of the Lyapunov exponents of f and the linear Anosov. We also construct an C1 open set of volume preserving partially hyperbolic diffeomorphisms with non compact two dimensional center foliation and non absolutely continuous. We still build an example of partially hyperbolic diffeomorphism with non compact bidimensional center leaves where the disintegration of volume along the center foliation is neither Lebesgue nor atomic.
52

Chaos and Momentum Diffusion of the Classical and Quantum Kicked Rotor

Zheng, Yindong 08 1900 (has links)
The de Broglie-Bohm (BB) approach to quantum mechanics gives trajectories similar to classical trajectories except that they are also determined by a quantum potential. The quantum potential is a "fictitious potential" in the sense that it is part of the quantum kinetic energy. We use quantum trajectories to treat quantum chaos in a manner similar to classical chaos. For the kicked rotor, which is a bounded system, we use the Benettin et al. method to calculate both classical and quantum Lyapunov exponents as a function of control parameter K and find chaos in both cases. Within the chaotic sea we find in both cases nonchaotic stability regions for K equal to multiples of π. For even multiples of π the stability regions are associated with classical accelerator mode islands and for odd multiples of π they are associated with new oscillator modes. We examine the structure of these regions. Momentum diffusion of the quantum kicked rotor is studied with both BB and standard quantum mechanics (SQM). A general analytical expression is given for the momentum diffusion at quantum resonance of both BB and SQM. We obtain agreement between the two approaches in numerical experiments. For the case of nonresonance the quantum potential is not zero and must be included as part of the quantum kinetic energy for agreement. The numerical data for momentum diffusion of classical kicked rotor is well fit by a power law DNβ in the number of kicks N. In the anomalous momentum diffusion regions due to accelerator modes the exponent β(K) is slightly less than quadratic, except for a slight dip, in agreement with an upper bound (K2/2)N2. The corresponding coefficient D(K) in these regions has three distinct sections, most likely due to accelerator modes with period greater than one. We also show that the local Lyapunov exponent of the classical kicked rotor has a plateau for a duration that depends on the initial separation and then decreases asymptotically as O(t-1lnt), where t is the time. This behavior is consistent with an upper bound that is determined analytically.
53

Avaliação da estabilidade do sincronismo entre sistemas dinâmicos não-lineares : aspectos teóricos e aplicações / Analysis of the stability the synchronism between nonlinear dynamical systems : theoretical aspects and applications

Santos, Odair Vieira dos, 1973- 26 February 2015 (has links)
Orientadores: Romis Ribeiro de Faissol Attux, Diogo Coutinho Soariano, Filipe Ieda Fazanaro / Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de Computação / Made available in DSpace on 2018-08-27T04:17:12Z (GMT). No. of bitstreams: 1 Santos_OdairVieirados_D.pdf: 3365036 bytes, checksum: 967476ee0acb26bf5197de95e344c6c9 (MD5) Previous issue date: 2015 / Resumo: O problema de análise do sincronismo entre sistemas dinâmicos se reveste de enorme importância prática, uma vez que ocorre em uma miríade de contextos naturais e artificiais. Para avaliar a ocorrência desse fenômeno, é usual lançar mão dos expoentes de Lyapunov condicionados, que refletem, em sua definição, o acoplamento entre sistemas. Nesta tese, é proposto um novo método para cálculo desses expoentes, que pode ser extremamente útil quando há descontinuidades ou quando o cálculo da matriz jacobiana é proibitivo. Esse método tem por base o método das dinâmicas clonadas para estimação do espectro convencional de Lyapunov. A nova proposta é validada em diversos cenários, partindo de sistemas clássicos e chegando aos modelos neuronais de Hindmarsh-Rose e Hodgkin-Huxley. O estudo do sincronismo uni- e bidirecional desses modelos, aliás, constitui também uma contribuição original do trabalho / Abstract: The problem of analyzing synchronism between dynamical systems is of enormous practical significance, as this phenomenon arises in several natural and artificial domains. To characterize the occurrence of synchronism, it is usual to employ the conditioned Lyapunov exponents, which reflect, in their definition, the coupling between systems. In this thesis, a new method for calculating these exponents is proposed, which can be extremely useful in the presence of discontinuities or when to calculate the Jacobian matrix is prohibitive. This method is based on the cloned dynamics approach for estimating the conventional Lyapunov spectrum. The new proposal is validated in a number of scenarios, ranging from classical systems to the Hindmarsh-Rose and Hodgkin-Huxley neuron models. The study of the uniand bidirectional synchronism of these models are apropos also an original contribution of this work / Doutorado / Automação / Doutor em Engenharia Elétrica
54

Contraction de cônes complexes multidimensionnels / Contraction of complex multidimensional cones

Novel, Maxence 30 November 2018 (has links)
L'objet de cette thèse est l'introduction, l'étude et l'utilisation des cônes complexes multidimensionnels. Dans un premier temps, nous étudions la grassmannienne des espaces de Banach. Nous définissons une notion de bonne décomposition pour les espaces de dimension p et nous démontronsl'équivalence entre la distance de Hausdorff sur la grassmannienne et la distance fournie par une norme sur l'algèbre extérieure.Dans un deuxième temps, nous définissons les cônes complexes p-dimensionnels ainsi qu'une jauge sur les sous-espaces de dimension p de ces cônes. Nous montrons alors un principe de contraction pour cette jauge. Cela nous permet de prouver, pour un opérateur contractant un tel cône, l'existence d'un trou spectral séparant les p valeurs propres dominantes du reste du spectre. Nous utilisons cette théorie pourdémontrer un théorème de régularité analytique pour les exposants de Lyapunov d'un produit aléatoire d'opérateurs contractant un même cône.Nous donnons également une comparaison entre la distance de Hausdorff entre espaces vectoriels et notre jauge.Enfin, nous introduisons une notion de cône dual pour les cônes p-dimensionnels. Dans ce cadre, nous prouvons que les propriétéstopologiques d'un cône se traduisent en propriétés topologiques sur son dual, et réciproquement. Nous complétons le théorème de régularitéprécédent en démontrant l'existence et la régularité d'une décomposition de l'espace en "espace lent" et "espace rapide". / The subject of this thesis is the introduction, the study and the applications of multidimensional complex cones. First, we study the grassmannian of Banach space. We define a notion of right decomposition for p-dimensional spaces and we prove the equivalence between theHausdorff distance on the grassmannian and the distance given by a norm on the exterior algebra.Then, we define p-dimensional complex cones and a gauge on the subspaces of dimension p of these cones. We show a contraction principle for thisgauge. This allows us to prove, for an operator contracting such a cone, the existence of a spectral gap which isolate the p leading eigenvaluesfrom the rest of the spectrum. We use this theory to prove a theorem of analytic regularity for Lyapunov exponents of a random product ofoperators contracting a cone. We also give a comparison between the Hausdorff distance for vector spaces and our gauge.Finally, we introduce a notion of dual cone for p-dimensional cones. In this setting, we prove that the topological properties of a cone translateinto topological properties for its dual and conversely. We complete the previous regularity theorem by proving the existence and the regularity ofa dominated splitting of the space into a "fast space" and a "slow space".
55

On the dynamics of a family of critical circle endomorphisms / Om dynamiken av en familj kritiska cirkel-endomorfier

Hemmingsson, Nils January 2019 (has links)
In this thesis we study two seperate yet related three parameter-families of continuously differentiable maps from the unit circle to unit circle which have a single critical point. For one of the families we show that there is a set of positive measure of parameters such that there is a set of positive measure for which all points in the latter set, the derivative experiences exponential growth. We do so by applying a similar methodology to what Michael Benedicks and Lennart Carleson used to study the quadratic family. For the other family we attempt to show a similar but weaker result using a similar method, but do not manage to do so. We expound on what difficulties the latter family provides and what features Benedicks and Carleson used for the quadratic family that we do not have available. / I den här uppsatsen studerar vi två olika men relaterede treparameterfamiljer av kontinuerligt differentierbara avbildningar från enhetscirkeln till enhetscirkeln som har exakt en kritisk punkt. For den ena familjen visar vi att det finns en mängd av positivt mått av parametrar sådana att det finns en mängd av positivt mått så att för varje punkt i den senarenämnde mängden erfar derivatan exponentiell tillväxt. Vi uppnår detta genom att använda en metod som liknar den som Michael Benedicks och Lennart Carleson använde för att studera den kvadratiska familjen. För den andra familjen försöker vi visa ett liknande men svagare resultat genom att använda en liknande metodik men misslyckas. Vi diskuterar och förklarar vilka svårigheter den senare familjen ger och vilka egenskaper som Benedicks och Carleson använder sig av hos den kvadratiska familjen som vår familj saknar
56

Identifying dynamical boundaries and phase space transport using Lagrangian coherent structures

Tallapragada, Phanindra 22 September 2010 (has links)
In many problems in dynamical systems one is interested in the identification of sets which have qualitatively different fates. The finite-time Lyapunov exponent (FTLE) method is a general and equation-free method that identifies codimension-one sets which have a locally high rate of stretching around which maximal exponential expansion of line elements occurs. These codimension-one sets thus act as transport barriers. This geometric framework of transport barriers is used to study various problems in phase space transport, specifically problems of separation in flows that can vary in scale from the micro to the geophysical. The first problem which we study is of the nontrivial motion of inertial particles in a two-dimensional fluid flow. We use the method of FTLE to identify transport barriers that produce segregation of inertial particles by size. The second problem we study is the long range advective transport of plant pathogen spores in the atmosphere. We compute the FTLE field for isobaric atmospheric flow and identify atmospheric transport barriers (ATBs). We find that rapid temporal changes in the spore concentrations at a sampling point occur due to the passage of these ATBs across the sampling point. We also investigate the theory behind the computation of the FTLE and devise a new method to compute the FTLE which does not rely on the tangent linearization. We do this using the 925 matrix of a probability density function. This method of computing the geometric quantities of stretching and FTLE also heuristically bridge the gap between the geometric and probabilistic methods of studying phase space transport. We show this with two examples. / Ph. D.
57

Análise da dinâmica caótica de pêndulos com excitação paramétrica no suporte / Analysis of chaotic dynamics of pendulums with parametric excitation of the support

Andrade, Vinícius Santos 08 July 2003 (has links)
Este trabalho apresenta a modelagem de um problema representado por um pêndulo elástico com excitação paramétrica vertical do suporte e a análise de estabilidade do sistema pendular que se obtém desconsiderando a elasticidade do pêndulo. A modelagem dos pêndulos e a obtenção das equações do movimento são feitas a partir da equação de Lagrange, utilizando as leis de Newton e para a análise de estabilidade do sistema pendular são apresentados os diagramas de bifurcações, multiplicadores de Floquet, mapas e seções de Poincaré e expoentes de Lyapunov. O comportamento do sistema pendular com excitação paramétrica vertical do suporte é investigado através de simulação computacional e apresentam-se resultados para diferentes faixas de valores da amplitude de excitação externa. / This work presents the modeling of an elastic pendulum with parametric excitation of the support and the analysis of the stability of the pendulum that one obtains disregarding the elasticity of the pendulum. The modeling of the pendulum and the equation of motions are obtained from the Lagrange\'s equations, using Newton\'s law. The concepts of bifurcation, Floquet\'s multipliers, Poincaré maps and sections and Lyapunov exponent are presented for the analysis of stability. The behavior of the pendulum with parametric excitation of the suport is investigated through computational simulation and results for different intervals of values of the external excitation amplitude are presented.
58

Análise de séries temporais aeroelásticas experimentais não lineares / Nonlinear experimental aeroelastic time series analysis

Simoni, Andreia Raquel 25 April 2008 (has links)
A análise de sistemas dinâmicos não lineares pode ser baseada em séries obtidas de modelos matemáticos ou de experimentos. Modelos matemáticos para respostas aeroelásticas associadas ao estol dinâmico são muito difíceis de obter. Neste caso, experimentos e ensaios em vôo parecem fornecer uma base mais apropriada para a análise da dinâmica não linear. Técnicas de sistemas dinâmicos baseadas em análise de séries temporais podem ser aplicadas para a aeroelasticidade não linear. Quando tem-se disponível apenas séries experimentais, as técnicas de reconstrução do espaço de estados têm sido extensivamente utilizadas. Além disso, os expoentes de Lyapunov fornecem uma caracterização qualitativa e quantitativa do comportamento caótico de sistemas não lineares, assim, um expoente de Lyapunov positivo é um forte indicativo de caos. Medidas de entropia também fornecem informações importantes da complexidade do sistema não linear, consequentemente sua aplicação às séries temporais aeroelásticas representam uma forma apropriada para identificar movimentos caóticos. Este trabalho apresenta a aplicação de técnicas da análise de séries temporais, tais como, reconstrução do espaço de estados, expoentes de Lyapunov e medidas de entropia para respostas aeroelásticas não lineares para prever o comportamento caótico. Um modelo de asa flexível foi construído e testado em túnel de vento de circuito fechado com velocidade do escoamento variando entre 9,0 e 17,0 m/s. O modelo foi montado sobre uma plataforma giratória que produzia variações no ângulo de incidência. Deformações estruturais foram capturadas por meio de extensômetros que forneciam informações da resposta aeroelástica. O método da defasagem é utilizado para reconstruir o espaço de estados das séries temporais obtidas no experimento. Para obter a defasagem utilizada na reconstrução foi usada a análise da função de autocorrelação. Para determinar a dimensão do atrator é calculada a integral de correlação. A evolução do espectro de frequências e do espaço de estados reconstruído é analisada com as variações da velocidade do escoamento e da frequência de oscilação da plataforma. Os expoentes de Lyapunov e a entropia de Rényi foram obtidos para identificar o comportamento caótico. Os resultados foram analisados com a variação da velocidade do escoamento e da frequência de oscilação da plataforma. As técnicas utilizadas foram eficientes para observar o aparecimento de mudanças no sistema e do comportamento caótico com uma escala de interação fluido-estrutura complexa para movimentos com altos ângulos de incidência. / The analysis of non-linear dynamical systems can be based on data from either a mathematical model or an experiment. Mathematical models for aeroelastic response associated to the dynamic stall behavior are very hard to obtain. In this case, experimental or in flight data seems to provide suitable basis for non-linear dynamical analysis. Dynamic systems techniques based on time series analysis can be adequately applied to non-linear aeroelasticity. When experimental data are available, state space reconstruction methods have been widely considered. Moreover, the Lyapunov exponents provides qualitative and quantitative characterization of nonlinear systems chaotic behavior, since positive Lyapunov exponent is a strong signature of chaos. Entropy measures also provide important information on the complexity of nonlinear system, therefore its application to aeroelastic time series represent a proper way to seek for chaotic motions. This work presents the application techniques from time series analysis, such as, state space reconstruction, Lyapunov exponents and entropy measures to nonlinear aeroelastic responses, in order to predict chaotic behavior. A flexible wing model has been constructed and tested in a closed circuit wind tunnel with freestream between 9,0 and 17,0 m/s. The wing model has been mounted on a turntable that allows variations to the wing incidence angle. Structural deformation is captured by means of strain gages, thereby providing information on the aeroelastic response. The method of delays has been used to identify an embedded attractor in the state space from experimentally acquired aeroelastic response time series. To obtain the time delay value to manipulate the time series during reconstruction, the autocorrelation function analysis has been used. For the attractor embeeding dimension calculation the correlation integral approach has been considered. The evolution of frequency spectra and the reconstrueted state space is analyzed for variations of the freestream and the frequency of oscilIation of the turntable. Lyapunov exponents and Rényi entropy have been achieved in order to seek for chaotic behavior. The results were analyzed with the variation of the freestream and the frequency of oscillation of the turntable. The used techniques had been efficient to observe the occurence of changes and chaotic behavior withim a range of complex fluid-structure interaction at higher angle of incidence motions.
59

Introdução de quantidades efetivas para o estudo da sincronização e criptografia baseada em sistemas não-síncronos

Szmoski, Romeu Miquéias 31 January 2013 (has links)
Made available in DSpace on 2017-07-21T19:26:03Z (GMT). No. of bitstreams: 1 Romeu Miqueias.pdf: 9797233 bytes, checksum: d4b08f71cb22063247e9bb495366dd55 (MD5) Previous issue date: 2013-01-31 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Synchronization is a dynamical behavior exhibited by a wide range of systems. Neurons, firefly and Josephson junctions are examples of these systems. It is defined as an adjustment of rhythms of oscillating objects due to weak interaction between them, and it is studied using different mathematical models including the coupled map lattices (CMLs). In CML the synchronization corresponds to process in which all state variables become identical at the same instant. Usually we study the CML synchronization by calculating the conditional Lyapunov exponents. However, if the coupling or network topology is time-varying, this exponents are not readily determined. In this work we propose new quantities to study the synchronization in these CMLs. These quantities are defined as weighted averages over all possible topologies and, if the topology is constant, they are equivalent to the usual Lyapunov exponents. We find an analytical expression for the effective quantities when the topology is invariant over translation on the network and demonstrate that an ensemble of short time observations can be used to predict the long-term behavior of the lattice. Also we point that, if network has constant and homogeneous structure, the effective quantities correspond to the projection on the eigenvectors associated with this structure. We show the availability of effective quantities using them to build a lattice with constant topology that exhibits the same synchronization critical properties of the lattice with time-varying topology. Finally, we present a cryptosystem for communication systems based on two replica synchronized networks whose elements are not synchronous. We investigate it as to operation time, robustness and security against intruders. Our results suggest that it is safe and efficient for a wide range of parameters. / A sincronização é um comportamento dinâmico exibido por uma ampla variedade de sistemas naturais tais como neurônios, vaga-lumes e junções Josephson. Ela é definida como um ajuste de ritmos de objetos oscilantes devido a uma fraca interação entre eles, e é estudada usando diferentes modelos matemáticos tais como as redes de mapas acoplados (RMAs). Em uma RMA, o processo de sincronização representa uma evolução conjunta entre todas variáveis de estados. Este processo é geralmente investigado com base nos expoentes de Lyapunov condicionais. No entanto, para redes com topologia variável tais expoentes não são facilmente determinados. Neste trabalho propomos novas quantidades para estudar a sincronização nestas redes. Estas quantidades são definidas como médias ponderadas sobre todas as topologias possíveis e, no caso em que a topologia é constante, equivalem aos expoentes de Lyapunov usuais. Encontramos uma expressão analítica para as quantidades efetivas para o caso em que a topologia é invariante sobre translação na rede e demonstramos que um conjunto de observações sobre um intervalo curto de tempo pode ser usado para predizer o comportamento da rede a longo prazo. Também verificamos que, se a rede possui uma estrutura constante e homogênea, as quantidades efetivas podem ser obtidas considerando a projeção sobre os autovetores associados a esta estrutura. Mostramos a eficácia das quantidades efetivas usando-as para construir uma rede com topologia constante que exibe as mesmas propriedades de sincronização da rede com topologia variável. Por último apresentamos um criptossistema para sistemas de comunicação que é baseado em duas réplicas de redes sincronizadas cujos elementos são não-síncronos. Investigamos este sistema quanto ao tempo de operação, a robustez e a segurança contra intrusos. Nossos resultados sugerem que ele é seguro e eficiente para uma amplo intervalo de parâmetros.
60

Autour de l'entropie des difféomorphismes de variétés non compactes / On the entropy of diffeomorphisms of non compact manifolds

Riquelme, Felipe 23 June 2016 (has links)
Dans ce mémoire, nous étudions l'entropie des systèmes dynamiques différentiables définis sur des variétés riemanniennes non compactes. Dans un premier temps, nous éclaircissons les liens entre différentes notions d'entropie dans ce cadre non compact. Ensuite, nous utilisons ces premiers résultats pour y étudier la validité de l'inégalité de Ruelle. Rappelons ici que cette inégalité, pour des difféomorphismes de variétés riemanniennes compactes, nous dit que l'entropie est majorée par la somme des exposants de Lyapounov positifs. Nous montrons que, lorsque nous enlevons l'hypothèse de compacité, l'inégalité de Ruelle n'est pas toujours satisfaite. Nous obtenons ce résultat en construisant une famille explicite de contre-exemples. En revanche, nous montrons, dans le cas d'un difféomorphisme de comportement asymptotique linéaire, ou du flot géodésique sur le fibré unitaire tangent d'une variété riemannienne à courbure négative, que l'inégalité de Ruelle est toujours satisfaite. Pour finir, nous nous intéressons au problème de la perte possible de masse d'une suite de mesures de probabilité d'une variété riemannienne non compacte. Dans le cas du flot géodésique, nous montrons que l'entropie permet de contrôler la masse d'une limite vague de mesures de probabilité invariantes par le flot pour une classe particulière de variétés géométriquement finies. Plus précisément, nous montrons qu'une suite de mesures d'entropie assez grande ne peut pas perdre la totalité de sa masse. De plus, le minorant optimal de l'entropie dans ce résultat est lié à la géométrie de la partie non compacte de la variété: c'est l'exposant critique maximal des sous-groupes paraboliques du groupe fondamental. / In this work, we study the entropy of smooth dynamical systems defined on non compact Riemannian manifolds. First, we clarify some relations between different notions of entropy in this setting. Second, we use these first results in order to study the validity of Ruelle's inequality. This inequality, for diffeomorphisms defined on compact Riemannian manifolds, says that the measure-theoretic entropy is bounded from above by the sum of the positive Lyapunov exponents. We show that without the compactness assumption, Ruelle's inequality is not always satisfied. We obtain this result by constructing an explicit family of counterexamples. On the other hand, we prove, in the case of diffeomorphisms with linear asymptotic behavior, or that one of the geodesic flow on the unit tangent bundle of a Riemannian manifold with negative curvature, that Ruelle's inequality is always satisfied. Finally, we are interested in the problem of the possible escape of mass of a sequence of probability measures on a non compact Riemannian manifold. In the case of the geodesic flow, we show that the entropy allows to control the mass of a weak$^\ast$-limit of a sequence of probability measures, on the unit tangent bundle of a particular class of geometrically finite manifolds, which are also invariant by the flow. More precisely, we show that a sequence of measures with large enough entropy cannot lose the whole mass. Moreover, the optimal lower bound of the entropy in this result is related to the geometry of the non compact part of the manifold: it is the maximal critical exponent of the parabolic subgroups of the fundamental group.

Page generated in 0.085 seconds