• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 37
  • 19
  • 6
  • 5
  • 1
  • Tagged with
  • 77
  • 77
  • 43
  • 39
  • 18
  • 16
  • 16
  • 15
  • 14
  • 13
  • 13
  • 13
  • 12
  • 11
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Propriedades recursivas em sistemas semidinâmicos impulsivos / Recursive properties in impulsive semidynamical systems

Manuel Francisco Zuloeta Jiménez 06 December 2013 (has links)
A teoria de sistemas semidinâmicos impulsivos é um capítulo importante e moderno da teoria de sistemas dinâmicos topológicos. Sistemas impulsivos descrevem processos de evolução que sofrem variações de estado de curta duração e que podem ser consideradas instantâneas. Os sistemas impulsivos admitem vários fenômenos interessantes às vezes, por causa da sua irregularidade, e às vezes por causa da sua regularidade. Para muitos fenômenos naturais, os modelos determinísticos mais realistas são frequentemente descritos por sistemas que envolvem impulsos. Esta teoria vem sendo desenvolvida continuamente. O presente trabalho apresenta resultados originais sobre a teoria de conjuntos minimais, movimentos recorrentes, movimentos quase periódicos e fracamente quase periódicos, teoria de estabilidade de Lyapunov, teoria da quase estabilidade de Zhukovskij e, finalmente, a construção de trajetórias negativas para sistemas semidinâmicos com impulsos. Os resultados novos apresentados neste trabalho estão contidos em três artigos, dos quais dois já foram aceitos para publicação. Veja [13], [14] e [15] / The theory of impulsive semidynamical systems is an important and modern chapter of the theory of topological dynamical systems. Impulsive systems describe the evolution of process whose continuous dynamics are interrupted by abrupt changes of state. This kind of systems admits various interesting phenomena sometimes, because of their irregularity, and sometimes because of their regularity. In many natural phenomena, the real deterministic models are often described by systems which involve impulses. This theory has been developed continuously. This work presents original results involving the theory of minimal sets, recurrent motions, almost periodic and weakly almost periodic motions, the study of Lyapunov stability and Zhukovshij Quasi stability and the construction of negative trajectories for impulsive semidynamical systems. The new results presented in this work are contained in three papers namely [13], [14] and [15]
62

Controle de uma plataforma de movimento de um simulador de vôo / Control of a flight simulator motion base

Mauricio Becerra Vargas 27 November 2009 (has links)
Este trabalho apresenta o desenvolvimento e as análises de técnicas de controle aplicadas a uma base de movimento de um simulador de vôo. Nos primeiros capítulos são abordados aspectos relacionados com a simulação de movimentos. Uma breve descrição da dinâmica da aeronave e o desenvolvimento do algoritmo de movimento (washout filter) são apresentados. O modelo dinâmico da base de movimento é desenvolvido baseado num manipulador paralelo de seis graus de liberdade chamado de plataforma de Stewart acionado eletricamente. As equações de movimento do atuador eletromecânico são incluídas no modelo dinâmico da plataforma. O controle baseado na dinâmica inversa é uma alternativa para abordar o controle de sistema mecânicos não lineares como a plataforma de Stewart. Porém, essa técnica considera o conhecimento exato do modelo dinâmico do sistema, portanto, a dinâmica não modelada, as incertezas paramétricas e as perturbações externas podem degradar o desempenho do controlador. Além disso, o custo computacional pago pelo cálculo do modelo dinâmico realizado online é muito alto. Nesse contexto, duas estratégias de controle foram aplicadas na malha externa da estrutura de controle baseada na dinâmica inversa para o controle de aceleração na presença de incertezas paramétricas e da dinâmica não modelada, os quais foram introduzidas intencionalmente no processo de aproximar o modelo dinâmico com o objetivo de simplificar a implementação do controle baseado na dinâmica inversa. Na primeira estratégia, o termo robusto de controle foi projetado, provando a estabilidade do sistema linearizado por meio da teoria de estabilidade de Lyapunov. Este controle apresenta o fenômeno conhecido como chattering e então foi adotada uma função de saturação para substituir a lei de controle. Na segunda estratégia, o termo robusto de controle foi projetado considerando um problema de rejeição de distúrbio via controle H \'INFINITO\', onde o controlador considera as incertezas como distúrbios afetando o sistema linearizado resultante da aplicação do controle baseado na dinâmica inversa. Finalmente, três tipos de testes foram realizados para avaliar o sistema de controle: função descritiva, limiar dinâmico e algumas manobras da aeronave calculadas a partir do modelo dinâmico e transformadas através do algoritmo de movimento. As duas estratégias de controle foram comparadas. / This work presents the development and analysis of control techniques applied to a flight simulator motion base. The first chapters deal with subjects related to motion simulation. A brief description of the aircraft dynamic model and the development of the motion algorithm (washout filter) are presented. The motion base dynamics is derived based on a six degree of freedom parallel manipulator driven by electromechanical actuators. The six degree of freedom parallel manipulator is called Stewart platform. The motion equations of the electromechanical actuators are included in the motion base dynamics. Inverse dynamics control is an approach to nonlinear control design, nonetheless, this technique is based on the assumption of exact cancellation of nonlinear terms, therefore, parametric uncertainty, unmodeled dynamics and external disturbances may deteriorate the controller performance. In addition, a high computational burden is paid by computing on-line the complete dynamic model of the motion-base. Robustness can be regained by applying robust control tecniques in the outer loop control structure. In this context, two control strategies were applied in the outer loop of the inverse dynamics control structure linearized system for robust acceleration tracking in the presence of parametric uncertainty and unmodeled dynamic, which are intentionally introduced in the process of approximating the dynamic model in order to simplify the implementation of this approach, the inverse dynamic control. Both control strategies consist of introducing an additional term to the inverse dynamics controller which provides robustness to the control system. In the first strategy, the robust control term was designed proving the stability of the linearized system in the presence of uncertainties, using the Lyapunov stability theory. This control term presents a phenomenon known as chattering. Therefore, a saturation function was adopted to replace the control law. In the second strategy, the robust term was designed for a disturbance rejection problem via H \'INFINITE\' control, where the controller considers the uncertaities as disturbances affecting the linearized system resulting from the application of the inverse dynamic control. Finally, describing function, dynamic threshold and some maneuvers computed from the washout filter were used to evaluate the performance of the controllers. Both approaches were compared.
63

Commande locale décentralisée de robots mobiles en formation en milieu naturel / Local decentralized control of a formation of mobile robots in off-road context

Guillet, Audrey 30 October 2015 (has links)
La problématique étudiée dans cette thèse concerne le guidage en formation d’une flotte de robots mobiles en environnement naturel. L’objectif poursuivi par les robots est de suivre une trajectoire connue (totalement ou partiellement) en se coordonnant avec les autres robots pour maintenir une formation décrite comme un ensemble de distances désirées entre les véhicules. Le contexte d’évolution en environnement naturel doit être pris en compte par les effets qu’il induit sur le déplacement des robots. En effet, les conditions d’adhérence sont variables et créent des glissements significatifs des roues sur le sol. Ces glissements n’étant pas directement mesurables, un observateur est mis en place, permettant d’obtenir une estimation de leur valeur. Les glissements sont alors intégrés au modèle d’évolution, décrivant ainsi un modèle cinématique étendu. En s’appuyant sur ce modèle, des lois de commande adaptatives sur l’angle de braquage et la vitesse d’avance d’un robot sont alors conçues indépendamment, asservissant respectivement son écart latéral à la trajectoire et l’interdistance curviligne de ce robot à une cible. Dans un second temps, ces lois de commande sont enrichies par un algorithme prédictif, permettant de prendre en compte le comportement de réponse des actionneurs et ainsi d’éviter les erreurs conséquentes aux retards de la réponse du système aux commandes. À partir de la loi de commande élémentaire en vitesse permettant d’assurer un asservissement précis d’un robot par rapport à une cible, une stratégie de commande globale au niveau de la flotte est établie. Celle-ci décline l’objectif de maintien de la formation en consigne d’asservissement désiré pour chaque robot. La stratégie de commande bidirectionnelle conçue stipule que chaque robot définit deux cibles que sont le robot immédiatement précédent et le robot immédiatement suivant dans la formation. La commande de vitesse de chaque robot de la formation est obtenue par une combinaison linéaire des vitesses calculées par la commande élémentaire par rapport à chacune des cibles. L’utilisation de coefficients de combinaison constants au sein de la flotte permet de prouver la stabilité de la commande en formation, puis la définition de coefficients variables est envisagée pour adapter en temps réel le comportement de la flotte. La formation peut en effet être amenée à évoluer, notamment en fonction des impératifs de sécurisation des véhicules. Pour répondre à ce besoin, chaque robot estime en temps réel une distance d’arrêt minimale en cas d’urgence et des trajectoires d’urgence pour l’évitement du robot précédent. D’après la configuration de la formation et les comportements d’urgence calculés, les distances désirées au sein de la flotte peuvent alors être modifiées en ligne afin de décrire une configuration sûre de la formation. / This thesis focuses on the issue of the control of a formation of wheeled mobile robots travelling in off-road conditions. The goal of the application is to follow a reference trajectory (entirely or partially) known beforehand. Each robot of the fleet has to track this trajectory while coordinating its motion with the other robots in order to maintain a formation described as a set of desired distances between vehicles. The off-road context has to be considered thoroughly as it creates perturbations in the motion of the robots. The contact of the tire on an irregular and slippery ground induces significant slipping and skidding. These phenomena are hardly measurable with direct sensors, therefore an observer is set up in order to get an estimation of their value. The skidding effect is included in the evolution of each robot as a side-slip angle, thus creating an extended kinematic model of evolution. From this model, adaptive control laws on steering angle and velocity for each robot are designed independently. These permit to control respectively the lateral distance to the trajectory and the curvilinear interdistance of the robot to a target. Predictive control techniques lead then to extend these control laws in order to account for the actuators behavior so that positioning errors due to the delay of the robot response to the commands are cancelled. The elementary control law on the velocity control ensures an accurate longitudinal positioning of a robot with respect to a target. It serves as a base for a global fleet control strategy which declines the overall formation maintaining goal in local positioning objective for each robot. A bidirectionnal control strategy is designed, in which each robot defines 2 targets, the immediate preceding and following robot in the fleet. The velocity control of a robot is finally defined as a linear combination of the two velocity commands obtained by the elementary control law for each target. The linear combination parameters are investigated, first defining constant parameters for which the stability of the formation is proved through Lyapunov techniques, then considering the effect of variable coefficients in order to adapt in real time the overall behavior of the formation. The formation configuration can indeed be prone to evolve, for application purposes and to guarantee the security of the robots. To fulfill this latter requirement, each robot of the fleet estimates in real time a minimal stopping distance in case of emergency and two avoidance trajectories to get around the preceding vehicle if this one suddenly stops. Given the initial configuration of the formation and the emergency behaviors calculated, the desired distances between the robots can be adapted so that the new configuration thus described ensures the security of each and every robot of the formation against potential collisions.
64

Optimalizace v řízení dynamických systémů / Optimization in control systems

Daniel, Martin January 2017 (has links)
Master’s thesis deals with using a linear matrix inequality (LMI) in control of a dynamic systems. We can define a stability of a dynamic system with a LMI. We can use a LMI for research if the poles of a system are in a given regions in the left half-plane of the complex plane with a LMI or we can use a LMI for a state feedback control. In the work we describe a desing of a controller minimizing a norm from an input to an output of the system. There is also a desing of a LQ controller with a LMI. In the end of the work, there are two examples of a design a LQ controller, which minimize the norm from the input to the output of the system and moves a poles of a dynamic system in a given regions in the complex plane, with the LMI. We use a LMI for a design a continuos LQ controller in the first example. In the second example we use a LMI for a design a discrete LQ controller.
65

Commande de robots manipulateurs basée sur le modèle de Takagi-Sugeno : nouvelle approche pour le suivi de trajectoire / Control of robots manipulators based the Takagi-Sugeno model : new approach for tracking control

Nguyen, Thi Van Anh 04 October 2019 (has links)
Ce travail présente une nouvelle approche de synthèse de la commande non linéaire en suivi de trajectoire de robots manipulateurs. Malgré la richesse de la littérature dans le domaine, le problème n'a pas encore été traité de manière adéquate : en raison de l'existence inévitable dans les applications pratiques de perturbations et incertitudes telles que les forces de frottement, des perturbations externes ou les variations des paramètres il est difficile d'assurer un suivi de trajectoire de haute précision. Afin de résoudre ce problème, nous proposons tout d'abord une méthode de commande prenant en compte la performance H∞ pour le suivi de trajectoire d'un robot manipulateur. Deuxièmement, nous proposons un nouveau cadre pour la synthèse de lois de commande combinant une action anticipatrice et un retour d'état basée sur une représentation sous forme Takagi-Sugeno descripteur de la dynamique du manipulateur. Un avantage de la représentation choisie est de pouvoir simultanément simplifier le calcul des gains de commande à l'aide de LMI de dimension réduite et de réduire la complexité du correcteur en agissant sur le nombre de règles du modèle de Takagi-Sugeno. Basé sur la théorie de la stabilité de Lyapunov, le réglage du correcteur est formulé comme un problème d'optimisation LMI (inégalité matricielle linéaire). Les résultats obtenus en simulation effectuée avec un modèle de manipulateur série développé dans l'environnement Simscape MultibodyTM de Matlab R démontrent clairement l'efficacité de la méthode proposée en comparaison avec le régulateur PID et la commande CTC (Computed Torque Control). / This work presents a new design approach for trajectory tracking control of robot manipulators. In spite of the rich literature in the field, the problem has not yet been addressed adequately due to the lack of an effective control design. In general, it is difficult to adopt design to achieve high-precision tracking control due to the uncertainties in practical applications, such as friction forces, external disturbances and parameter variations. In order to cope this problem, we propose first control with H∞ performance to reference trajectory tracking control of two degrees of freedom robot. Secondly, we propose a new design framework with parametric uncertainties and unknown disturbances by using the feedback and the feedforward controllers. Using the descriptor Takagi-Sugeno systems, the design goal is to achieve a guaranteed tracking performance while signicantly reducing the numerical complexity of the designed controller through a robust control scheme. Based on Lyapunov stability theory, the control design is formulated as an LMI (linear matrix inequality) optimization problem. Simulation results carried out with a high-fidelity serial manipulator model embedded in the Simscape MultibodyTM environment of MatlabR clearly demonstrate the effectiveness of the proposed method by comparing with PID controller and computed torque controller.
66

Investigation of the Stability of a Molten Salt Fast Reactor

Kraus, Maximilian 30 October 2020 (has links)
This work focusses on analysing the stability of the MSFR – a molten salt reactor with a fast neutron spectrum. The investigations are based on a model, which was published and studied by the Politecnico di Milano using a linear approach. Since linear methods can only provide stability information to a limited extent, this work continues the conducted investigations by applying nonlinear methods. In order to examine the specified reactor model, the system equations were implemented, adjusted and verified using MATLAB code. With the help of the computational tool MatCont, a so-called fixed-point solution was tracked and its stability monitored during the variation of selected control parameters. It was found that the considered fixed point does not change its stability state and remains stable. Coexisting fixed points or periodic solutions could not be detected. Therefore, the analysed MSFR model is considered to be a stable system, in which the solutions always tend towards a steady state.:1. Introduction 2. Molten Salt Reactor Technology 2.1. Introduction 2.2. Historical Development 2.3. Working Principle of Molten Salt Reactors 2.4. Molten Salt Coolants 2.5. Advantages and Drawbacks 2.6. Classification 2.7. Molten Salt Fast Reactor Design 3. Stability Characteristics of Dynamical Systems 3.1. Introduction 3.2. Dynamical Systems 3.3. Stability Concepts 3.3.1. Introduction 3.3.2. Lagrange Stability (Bounded Stability) 3.3.3. Lyapunov Stability 3.3.4. Poincaré Stability (Orbital Stability) 3.4. Fixed-Point Solutions 3.4.1. Stability Analysis of Fixed-Point Solutions 3.4.2. Bifurcations of Fixed-Point Solutions 3.5. Periodic Solutions 3.5.1. Stability Analysis of Periodic Solutions 3.5.2. Bifurcations of Periodic Solutions 4. Analysed Reactor System 4.1. Introduction 4.2. Specified Reactor Model 4.3. Implementation and Verification of the Linearised System of Equations 4.3.1. Linearised System of Delayed Differential Equations 4.3.2. Comparison with Reference Plots 4.3.3. Adaptation of Parameter Values 4.4. Implementation and Verification of the Nonlinear System of Equations 4.4.1. Nonlinear System of Delayed Differential Equations 4.4.2. Delayed Neutron Precursor Equation Adjustments 4.4.3. Salt Temperature Equation Adjustments 4.4.4. Nonlinear System of Ordinary Differential Equations 4.4.5. Verification of the Nonlinear System of Ordinary Differential Equations 5. Conducted Stability Analyses 5.1. Introduction 5.2. Nonlinear Stability Analysis 5.2.1. Implementation 5.2.2. Results 5.2.3. Interpretation 5.3. Linear Stability Analysis 5.3.1. Comparison Between the Linearised and Nonlinearised MSFR System of Equations 5.3.2. Stability Investigations Using a Linear Criterion 5.4. MatCont Reliability Test Using an MSBR Model 6. Conclusions and Recommendations for Future Studies / Im Fokus dieser Arbeit steht die Stabilitätsanalyse des MSFR – eines Flüssigsalzreaktors mit schnellem Neutronenspektrum. Als Grundlage wurde ein Modell verwendet, das am Politecnico di Milano erstellt und dort mittels linearer Methoden untersucht wurde. Da lineare Betrachtungen nur eingeschränkte Stabilitätsaussagen treffen können, erweitert diese Arbeit die Untersuchungen um die nichtlineare Stabilitätsanalyse. Zur Untersuchung des vorgegebenen Reaktormodells wurden die Systemgleichungen in MATLAB übertragen und verifiziert. Mithilfe der Rechensoftware MatCont wurde eine sogenannten Fixpunkt-Lösung des Modells unter der Variation ausgewählter Parameter verfolgt und deren Stabilität überprüft. Es hat sich gezeigt, dass der betrachtete Fixpunkt seinen Stabilitätszustand dabei nicht verändert und stabil bleibt. Koexistierende Fixpunkte oder periodische Lösungen konnten nicht nachgewiesen werden. Daher gilt das betrachtete MSFR-Modell als ein stabiles System, dessen Lösungen immer auf einen stationären Zustand zulaufen.:1. Introduction 2. Molten Salt Reactor Technology 2.1. Introduction 2.2. Historical Development 2.3. Working Principle of Molten Salt Reactors 2.4. Molten Salt Coolants 2.5. Advantages and Drawbacks 2.6. Classification 2.7. Molten Salt Fast Reactor Design 3. Stability Characteristics of Dynamical Systems 3.1. Introduction 3.2. Dynamical Systems 3.3. Stability Concepts 3.3.1. Introduction 3.3.2. Lagrange Stability (Bounded Stability) 3.3.3. Lyapunov Stability 3.3.4. Poincaré Stability (Orbital Stability) 3.4. Fixed-Point Solutions 3.4.1. Stability Analysis of Fixed-Point Solutions 3.4.2. Bifurcations of Fixed-Point Solutions 3.5. Periodic Solutions 3.5.1. Stability Analysis of Periodic Solutions 3.5.2. Bifurcations of Periodic Solutions 4. Analysed Reactor System 4.1. Introduction 4.2. Specified Reactor Model 4.3. Implementation and Verification of the Linearised System of Equations 4.3.1. Linearised System of Delayed Differential Equations 4.3.2. Comparison with Reference Plots 4.3.3. Adaptation of Parameter Values 4.4. Implementation and Verification of the Nonlinear System of Equations 4.4.1. Nonlinear System of Delayed Differential Equations 4.4.2. Delayed Neutron Precursor Equation Adjustments 4.4.3. Salt Temperature Equation Adjustments 4.4.4. Nonlinear System of Ordinary Differential Equations 4.4.5. Verification of the Nonlinear System of Ordinary Differential Equations 5. Conducted Stability Analyses 5.1. Introduction 5.2. Nonlinear Stability Analysis 5.2.1. Implementation 5.2.2. Results 5.2.3. Interpretation 5.3. Linear Stability Analysis 5.3.1. Comparison Between the Linearised and Nonlinearised MSFR System of Equations 5.3.2. Stability Investigations Using a Linear Criterion 5.4. MatCont Reliability Test Using an MSBR Model 6. Conclusions and Recommendations for Future Studies
67

Asservissement des systèmes incertains par des commandes à mode glissant - Application à un robot flexible / Control of Uncertain Systems by Sliding Mode Controls : application to a flexible robot

Braikia, Karim 27 June 2011 (has links)
Nous proposons dans cette thèse d’étudier l’asservissement de systèmes complexes par des commandes à mode glissant à paramètres fixes. L’objectif est de montrer qu’il est possible d’utiliser des commandes robustes tout en gardant une approche de modélisation du système et de synthèse des lois de commande simples.Le système physique considéré est essentiellement un robot manipulateur anthropomorphique flexible à muscles artificiels pneumatiques à sept degrés de liberté.Nous nous intéressons aux commandes robustes et particulièrement aux commandes à régime glissant d’ordre 2, Twisting et Super–twisting, et à la commande équivalente qui leur est généralement associée pour réduire les discontinuées éventuelles de ce type de commandes. Ces commandes sont évaluées à travers des expériences sur un robot flexible. Grâce à ces expériences nous montrons la robustesse de ces commandes, l’influence des incertitudes de la modélisation sur leurs performances et la difficulté de synthétiser leurs paramètres pour un système incertain. Un accélérateur de convergence est proposé afin d’améliorer l’asservissement en régulation et suivi de consigne et la stabilité des systèmes incertains. Ces résultats théoriques sont confirmés expérimentalement grâce au robot flexible.Compte tenu de la difficulté de synthèse des lois de commande Twisting et Super–twisting, une nouvelle approche à base de retours d’états commutés est présentée, l’objectif est de proposer une commande à mode glissant dont la synthèse des paramètres est systématique, et ce, grâce à l’utilisation de conditions de stabilité au sens de Lyapunov. Cette approche baptisée Puma : Polytopic Uncertain Model Approach utilise un modèle polytopique du système, ce qui per- met de garder une modélisation simple en considérant le système, quelque soit sa complexité, comme une boite noire. Cette approche est appliquée au robot flexible en simulation, elle est comparée à une approche similaire pour montrer son intérêt.Afin d’évaluer la pertinence de ces commandes du point de vue performance et simplicité de mise en œuvre, elles sont comparées à l’une des commandes la plus utilisée en industrie : le PID. / This thesis addresses the control of complex systems through fixed parameters sliding modes. The objective being to show that it is possible to use robust control laws while keeping the system model and control law synthesis simple.The considered physical system is a seven d.o.f flexible anthropomorphic manipulator robot driven by pneumatic artificial muscles.We address robust control laws, particularly second order sliding modes, Twisting and Super–twisting together with the equivalent control which is associated to them in order to reduce the discontinuities of these type of controls. These laws are applied onto a flexible robot. Through experiment we show their robustness, the influence of modelling uncertainties on performance and the difficulty in synthesizing their parameters for an uncertain system. A convergence accelerator is proposed for enhancing control quality both in regulation and tracking. These theoretical results are experimentally verified through the flexible robot.Due to the difficulty in synthetizing Twisting and Super–twisting control laws, a new approach based on commuted state feedback is presented. The objective being a sliding mode control law with a systematic parameters synthesis using Lyapunov stability condition. This approach named Puma: Polytopic Uncertain Model Approach uses the system’s polytopic model, which allows keeping modelling simple by considering the system, whatever its complexity may be, as a black box. This approach is applied to a flexible robot in simulation ; it is compared to a similar approach to show its interest.In order to evaluate the relevance of these laws from the point of view of performance and implementation simplicity, they are compared to one of the most popular control law: The PID.
68

Vision-Based Guidance for Air-to-Air Tracking and Rendezvous of Unmanned Aircraft Systems

Nichols, Joseph Walter 13 August 2013 (has links) (PDF)
This dissertation develops the visual pursuit method for air-to-air tracking and rendezvous of unmanned aircraft systems. It also shows the development of vector-field and proportional-integral methods for controlling UAS flight in formation with other aircraft. The visual pursuit method is a nonlinear guidance method that uses vision-based line of sight angles as inputs to the algorithm that produces pitch rate, bank angle and airspeed commands for the autopilot to use in aircraft control. The method is shown to be convergent about the center of the camera image frame and to be stable in the sense of Lyapunov. In the lateral direction, the guidance method is optimized to balance the pursuit heading with respect to the prevailing wind and the location of the target on the image plane to improve tracking performance in high winds and reduce bank angle effort. In both simulation and flight experimentation, visual pursuit is shown to be effective in providing flight guidance in strong winds. Visual pursuit is also shown to be effective in guiding the seeker while performing aerial docking with a towed aerial drogue. Flight trials demonstrated the ability to guide to within a few meters of the drogue. Further research developed a method to improve docking performance by artificially increasing the length of the line of sight vector at close range to the target to prevent flight control saturation. This improvement to visual pursuit was shown to be an effective method for providing guidance during aerial docking simulations. An analysis of the visual pursuit method is provided using the method of adjoints to evaluate the effects of airspeed, closing velocity, system time constant, sensor delay and target motion on docking performance. A method for predicting docking accuracy is developed and shown to be useful for predicting docking performance for small and large unmanned aircraft systems.
69

Improved Robust Stability Bounds for Sampled Data Systems with Time Delayed Feedback Control

Kurudamannil, Jubal J. 15 May 2015 (has links)
No description available.
70

Switched observers and input-delay compensation for anti-lock brake systems / Observateurs commutés et compensation de retard pour les systèmes d’antiblocage des roues

Hoang, Trong bien 04 April 2014 (has links)
Depuis l'introduction du premier système ABS par Bosch, en 1978, de nombreux algorithmes de commande pour les systèmes ABS ont été proposés dans la littérature. En général, ces algorithmes peuvent être divisés en deux catégories : ceux basés sur une logique de régulation déterminée par des seuils sur l'accélération angulaire des roues et ceux basés sur la régulation du taux de glissement. Chaque approche a ses avantages et ses inconvénients. D'une manière simplifiée, on peut dire que le point fort du premier type est sa robustesse ; tandis que ceux du deuxième type sont leur courte distance de freinage (sur les terrains secs) et leur absence de cycles limite. Au milieu de cette dichotomie industrielle/académique, en se basant sur un concept appelé extended braking stiffness (XBS), une classe complètement différente de stratégies de commande pour l'ABS a été proposée par certains chercheurs. Ce concept combine les avantages des deux approches. Néanmoins, puisque l’XBS n'est pas directement mesurable, elle introduit la question de son estimation en temps réel. La première partie de cette thèse est consacrée à l'étude de ce problème d'estimation et à une généralisation de la technique proposée à une plus grande classe de systèmes. D'un point de vue technologique, la conception des systèmes de contrôle pour l'ABS est fortement dépendante des caractéristiques physiques du système et des performances de l'actionneur. Les algorithmes de commande actuels pour l'ABS sur les véhicules, par exemple l'algorithme ABS de Bosch, sont basés sur des approches heuristiques qui sont profondément liées à la nature hydraulique de l'actionneur. Ils ne fonctionnent correctement qu'en présence d'un retard spécifique associé à la nature hydraulique de l'actionneur. Pour les systèmes de freinage qui ont un retard différent de ceux des actionneurs hydrauliques, comme les moteurs-roues électriques par exemple (un retard plus court) ou les freins pneumatiques des semi-remorques (un retard plus grand), ils ne sont plus appropriés et ont un fonctionnement déficient. Par conséquent, l'adaptation des algorithmes standards de l'ABS pour d'autres actionneurs avancés devient un objectif primordial dans l'industrie automobile. Cet objectif peut être atteint par la compensation des retards induits par les actionneurs. La deuxième partie de cette thèse se concentre sur cette question, et à la généralisation de la technique proposée à une classe particulière de systèmes non linéaires.Tout au long de cette thèse, nous utilisons deux techniques de linéarisation différentes : la linéarisation de la dynamique d'erreur dans la construction des observateurs basés sur des modèles et la linéarisation basée sur le retour d'état restreint. La première est l'une des façons les plus simples pour synthétiser un observateur pour des systèmes dynamiques avec sortie et pour analyser sa convergence. L'idée principale est de transformer le système non linéaire original via un changement de coordonnées en un système différemment formalisé, qui admette un observateur avec une dynamique d'erreur linéaire et les gains de l'observateur peuvent donc être facilement calculés pour en assurer la convergence. Cette dernière est une méthode classique pour commander des systèmes non linéaires en les convertissant en une équation d'état linéaire contrôlable via l'annulation de leurs non-linéarités. Il convient de mentionner que les résultats existants pour la synthèse des observateurs par la linéarisation de l'erreur dans la littérature ne sont appliqués que pour le cas des changements réguliers de l'échelle de temps. Cette thèse explique comment les étendre aux cas des changements singuliers de l'échelle de temps. Par ailleurs, la thèse combine la linéarisation classique par retour d'état avec une nouvelle méthode de compensation du retard de l'entrée pour résoudre le problème de suivi de la sortie pour des systèmes linéarisables par retour d'état restreint avec des retards de l'entrée. / Many control algorithms for ABS systems have been proposed in the literature since the introduction of this equipment by Bosch in 1978. In general, one can divide these control algorithms into two different types: those based on a regulation logic with wheel acceleration thresholds that are used by most commercial ABS systems; and those based on wheel slip control that are preferred in the large majority of academic algorithms. Each approach has its pros and cons [Shida 2010]. Oversimplifying, one can say that the strength of the first ones is their robustness; while that of the latter ones their short braking distances (on dry grounds) and their absence of limit cycles. At the midpoint of this industry/academy dichotomy, based on the concept of extended braking stiffness (XBS), a quite different class of ABS control strategies has been proposed by several researchers (see, e.g., [Sugai 1999] and [Ono 2003]). This concept combines the advantages from both the industrial and academic approaches. Nevertheless, since the slope of the tyre characteristic is not directly measurable, it introduces the question of real-time XBS estimation. The first part of this thesis is devoted to the study of this estimation problem and to a generalization of the proposed technique to a larger class of systems. From the technological point of view, the design of ABS control systems is highly dependent on the ABS system characteristics and actuator performance. Current ABS control algorithms on passenger cars, for instance the Bosch ABS algorithm, are based on heuristics that are deeply associated to the hydraulic nature of the actuator. An interesting observation is that they seem to work properly only in the presence of a specific delay coming from the hydraulic actuation [Gerard 2012]. For brake systems that have different delays compared to those of hydraulic actuators, like electric in-wheel motors (with a smaller delay) or pneumatic trailer brakes (with a bigger delay), they might be no longer suitable [Miller 2013]. Therefore, adapting standard ABS algorithms to other advanced actuators becomes an imperative goal in the automobile industry. This goal can be reached by the compensation of the delays induced by actuators. The second part of this thesis is focused on this issue, and to the generalization of the proposed technique to a particular class of nonlinear systems. Throughout this thesis, we employ two different linearization techniques: the linearization of the error dynamics in the construction of model-based observers [Krener 1983] and the linearization based on restricted state feedback [Brockett 1979]. The former is one of the simplest ways to build an observer for dynamical systems with output and to analyze its convergence. The main idea is to transform the original nonlinear system via a coordinate change to a special form that admits an observer with a linear error dynamics and thus the observer gains can be easily computed to ensure the observer convergence. The latter is a classical method to control nonlinear systems by converting them into a controllable linear state equation via the cancellation of their nonlinearities. It is worth mentioning that existing results for observer design by error linearization in the literature are only applied to the case of regular time scalings ([Guay 2002] and [Respondek 2004]). The thesis shows how to extend them to the case of singular time scalings. Besides, the thesis combines the classical state feedback linearization with a new method for the input delay compensation to resolve the output tracking problem for restricted feedback linearizable systems with input delays.

Page generated in 0.4592 seconds