Spelling suggestions: "subject:"rysy"" "subject:"nyss""
1 |
Biochemical and structural studies of the CysB protein from Klebsiella aerogenesTyrrell, Richard January 1995 (has links)
No description available.
|
2 |
Molecular mechanisms involved in secondary metabolite production and biocontrol of Pseudomonas chlororaphis PA23Poritsanos, Nicole Joanna 01 March 2006 (has links)
ABSTRACT
Sclerotinia sclerotiorum is a ubiquitous ascomycetous fungal pathogen that causes disease in over 400 crop species, specifically in soybean and canola plants, where stem rot is the most common disease symptom. Pseudomonas chlororaphis PA23 was previously isolated from the rhizosphere of soybean and has demonstrated excellent antifungal activity against S. sclerotiorum in vitro, greenhouse and field experiments. To elucidate the molecular mechanisms involved in PA23 biocontrol, random mutagenesis experiments were initiated. Several mutants were isolated that could be divided into three general classes.
Biocontrol activity of various Pseudomonas spp. is highly regulated by a GacS/GacA two-component global regulatory system. Class I PA23 mutants harboured Tn5 insertions in the gacS-coding region, resulting in pleiotropic defects including deficiency in secondary metabolite production and biocontrol activity. Complementation with the wild type gacS allele in trans restored wild type phenotypes. These findings suggest that the ability of P. chlororaphis PA23 to suppress S. sclerotiorum causing stem rot in canola is dependent on a functional GacS/GacA global regulatory system. This is the first study assessing disease symptoms on canola (Brassica napus L.) plants inoculated with a gacS minus strain of P. chlororaphis.
Phenazine compounds are considered to be a key secondary metabolite contributing to the antagonistic and antifungal activity of P. chlororaphis. In P. chlororaphis PA23, mutations in phenazine biosynthetic genes exhibited equal or more antifungal activity in vitro, compared to the wild type. To assess the effect of the deficiency in phenazine production, a Class II mutant , harbouring a Tn5 insertion in phzE was tested for a number of biocontrol traits including secondary metabolite production, motility, and suppression of Sclerotinia pathogenic traits. Since no other traits were markedly affected beyond phenazine production, it was concluded that phenazine is not the major product contributing to S. sclerotiorum biocontrol.
A single Class III mutant was isolated harbouring a Tn5 insertion in a gene encoding a transcriptional regulator of the LysR family. This mutant exhibited no antifungal activity on plate assays and was unable to protect against S. sclerotiorum in green house assays. A number of secondary metabolites were no longer produced by this mutant, suggesting that this LysR-type transcriptional regulator is either directly or indirectly involved in controlling several genes in P. chlororaphis PA23. / February 2006
|
3 |
Oligomerization of the lysr-type transcriptional regulators in Escherichia ColiKnapp, Gwendowlyn Sue 15 May 2009 (has links)
Protein-protein interactions regulate and drive biological processes and
understanding the assembly of these interactions is important. The LysR-Type
Transcriptional Regulators (LTTRs) are a large family of transcriptional regulators
found in prokaryotes. I have used the LTTRs as a model for protein specificity. In order
to understand a residue’s contribution to oligomerization, alanine-scanning mutagenesis
was used to probe the contribution of residues identified from in silico analysis of two
proteins: OxyR and CynR. The contribution of the residues to oligomerization was
characterized using lcI repressor fusions. In OxyR, seven residues were identified as
hot spots. Moreover, these hot spots are not especially conserved. The interaction surface
of OxyR was mapped onto a multiple sequence alignment of the LTTR family. This
mapping identified putative contacts in the CynR regulatory domain dimer interface.
Combined with the in vivo testing, three residues were identified as hot spots. The
residues identified in OxyR and CynR do not overlap. To investigate the assembly of the
LTTRs I used a negative-dominance assay with lcI repressor fusions. Taken together, I
show that the LTTRs in E. coli K-12 are mostly specific in their interactions.
|
4 |
Functional characterization of two divergently transcribed genes: ptrA, encoding a LysR-type transcriptional regulator, and scd, encoding a short-chain dehydrogenase in Pseudomonas chlororaphis PA23Klaponski, Natasha 10 April 2014 (has links)
Pseudomonas chlororaphis PA23 inhibits several root pathogens in both the greenhouse and field. A LysR-type transcriptional regulator (LTTR) called PtrA (Pseudomonas transcriptional regulator A) that is essential for Sclerotinia sclerotiorum antifungal activity was discovered through transposon mutagenesis. P. chlororaphis PA23 produces the antibiotics phenazine 1-carboxylic acid, 2-hydroxyphenazine and pyrrolnitrin, and several additional products that contribute to biocontrol. Phenotypic assays and proteomic analysis have revealed that production of these secondary metabolites are markedly reduced in a ptrA mutant. Most LTTRs regulate genes that are upstream of and divergently transcribed from the LTTR locus. A short chain dehydrogenase (scd) gene lies immediately upstream of ptrA in the opposite orientation. Characterization of an scd mutant, however, has revealed no significant changes in antifungal activity compared to wild-type PA23. Gene expression analysis of the ptrA mutant indicates that ptrA may exert its regulatory effects through the Gac-Rsm network, and may be controlling expression of the scd gene. Collectively these findings indicate that PtrA is an essential regulator of PA23 biocontrol and is connected to other regulators involved in fungal antagonism.
|
5 |
Molecular mechanisms involved in secondary metabolite production and biocontrol of Pseudomonas chlororaphis PA23Poritsanos, Nicole Joanna 01 March 2006 (has links)
ABSTRACT
Sclerotinia sclerotiorum is a ubiquitous ascomycetous fungal pathogen that causes disease in over 400 crop species, specifically in soybean and canola plants, where stem rot is the most common disease symptom. Pseudomonas chlororaphis PA23 was previously isolated from the rhizosphere of soybean and has demonstrated excellent antifungal activity against S. sclerotiorum in vitro, greenhouse and field experiments. To elucidate the molecular mechanisms involved in PA23 biocontrol, random mutagenesis experiments were initiated. Several mutants were isolated that could be divided into three general classes.
Biocontrol activity of various Pseudomonas spp. is highly regulated by a GacS/GacA two-component global regulatory system. Class I PA23 mutants harboured Tn5 insertions in the gacS-coding region, resulting in pleiotropic defects including deficiency in secondary metabolite production and biocontrol activity. Complementation with the wild type gacS allele in trans restored wild type phenotypes. These findings suggest that the ability of P. chlororaphis PA23 to suppress S. sclerotiorum causing stem rot in canola is dependent on a functional GacS/GacA global regulatory system. This is the first study assessing disease symptoms on canola (Brassica napus L.) plants inoculated with a gacS minus strain of P. chlororaphis.
Phenazine compounds are considered to be a key secondary metabolite contributing to the antagonistic and antifungal activity of P. chlororaphis. In P. chlororaphis PA23, mutations in phenazine biosynthetic genes exhibited equal or more antifungal activity in vitro, compared to the wild type. To assess the effect of the deficiency in phenazine production, a Class II mutant , harbouring a Tn5 insertion in phzE was tested for a number of biocontrol traits including secondary metabolite production, motility, and suppression of Sclerotinia pathogenic traits. Since no other traits were markedly affected beyond phenazine production, it was concluded that phenazine is not the major product contributing to S. sclerotiorum biocontrol.
A single Class III mutant was isolated harbouring a Tn5 insertion in a gene encoding a transcriptional regulator of the LysR family. This mutant exhibited no antifungal activity on plate assays and was unable to protect against S. sclerotiorum in green house assays. A number of secondary metabolites were no longer produced by this mutant, suggesting that this LysR-type transcriptional regulator is either directly or indirectly involved in controlling several genes in P. chlororaphis PA23.
|
6 |
Molecular mechanisms involved in secondary metabolite production and biocontrol of Pseudomonas chlororaphis PA23Poritsanos, Nicole Joanna 01 March 2006 (has links)
ABSTRACT
Sclerotinia sclerotiorum is a ubiquitous ascomycetous fungal pathogen that causes disease in over 400 crop species, specifically in soybean and canola plants, where stem rot is the most common disease symptom. Pseudomonas chlororaphis PA23 was previously isolated from the rhizosphere of soybean and has demonstrated excellent antifungal activity against S. sclerotiorum in vitro, greenhouse and field experiments. To elucidate the molecular mechanisms involved in PA23 biocontrol, random mutagenesis experiments were initiated. Several mutants were isolated that could be divided into three general classes.
Biocontrol activity of various Pseudomonas spp. is highly regulated by a GacS/GacA two-component global regulatory system. Class I PA23 mutants harboured Tn5 insertions in the gacS-coding region, resulting in pleiotropic defects including deficiency in secondary metabolite production and biocontrol activity. Complementation with the wild type gacS allele in trans restored wild type phenotypes. These findings suggest that the ability of P. chlororaphis PA23 to suppress S. sclerotiorum causing stem rot in canola is dependent on a functional GacS/GacA global regulatory system. This is the first study assessing disease symptoms on canola (Brassica napus L.) plants inoculated with a gacS minus strain of P. chlororaphis.
Phenazine compounds are considered to be a key secondary metabolite contributing to the antagonistic and antifungal activity of P. chlororaphis. In P. chlororaphis PA23, mutations in phenazine biosynthetic genes exhibited equal or more antifungal activity in vitro, compared to the wild type. To assess the effect of the deficiency in phenazine production, a Class II mutant , harbouring a Tn5 insertion in phzE was tested for a number of biocontrol traits including secondary metabolite production, motility, and suppression of Sclerotinia pathogenic traits. Since no other traits were markedly affected beyond phenazine production, it was concluded that phenazine is not the major product contributing to S. sclerotiorum biocontrol.
A single Class III mutant was isolated harbouring a Tn5 insertion in a gene encoding a transcriptional regulator of the LysR family. This mutant exhibited no antifungal activity on plate assays and was unable to protect against S. sclerotiorum in green house assays. A number of secondary metabolites were no longer produced by this mutant, suggesting that this LysR-type transcriptional regulator is either directly or indirectly involved in controlling several genes in P. chlororaphis PA23.
|
7 |
Characterizing the AbcR/VtlR system in the RhizobialesSheehan, Lauren Marie 30 July 2018 (has links)
Rhizobiales encompass a diverse group of microbes, ranging from free-living, soil-dwelling bacteria to disease-causing, intracellular pathogens. Although the lifestyle of these organisms vary, many genetic systems are well conserved. One system, named the AbcR/VtlR system, is found throughout rhizobiales, and even extends to bacteria in other orders within the Alphaproteobacteria.
The AbcR sRNAs are an example of sibling sRNAs, where two copies of the abcR gene are typically present in the genome. The AbcRs are involved in the negative regulation of ABC-type transport systems, which are important components for nutrient acquisition. Although the AbcRs share several features amongst organisms, major differences can be found in their functional and regulatory redundancy, the targets they regulate and how they regulate them. Specifically, one major difference in the AbcRs lies in the nucleotide sequences utilized by the sRNAs to bind mRNA targets. In the present studies, the regulatory mechanisms of the AbcR sRNAs were further characterized in the mammalian pathogen Brucella abortus, and the full regulatory profiles of the AbcRs were defined in the plant pathogen Agrobacterium tumefaciens.
As mentioned above, the AbcR sRNAs are important for the proper regulation of nutrient-acquiring transport systems in the Rhizobiales. Since these sRNAs are critical to the lifestyle of a bacterium, proper regulation of this system is key to survival. A LysR-type transcriptional regulator, named VtlR, was found to be the bonefide transcriptional activator of abcR1 in B. abortus. Furthermore, VtlR has been shown to be a key component in host interactions in several rhizobiales. The preset work has shed light on the evolutionary divergence of this regulator in bacteria, and further defined the regulatory capacity of VtlR in Agrobacterium.
Overall, the studies described here have made significant advances in our knowledge of the AbcR/VtlR-regulatory systems in the Rhizobiales, and have further defined this system as being a vital part of host-microbe interactions. / PHD / Understanding the genetic systems utilized by microbes to cause infection is key for developing therapeutics that can be administered to fight against them. Moreover, identifying and characterizing these essential microbial systems can be exploited for the development of drugs to target and shut down these systems, thus causing cell death. The present work took a basic molecular biology approach and characterized a highly conserved genetic system, named the AbcR/VtlR system, in two pathogenic bacteria: the plant pathogen Agrobacterium and the mammalian pathogen Brucella. Overall, the work described here shows this system to be an important component in acquiring nutrients for the microbe, and, most importantly, found the AbcR/VtlR system to be essential for host-microbial interactions.
|
8 |
Régulation de la synthèse des facteurs de virulence par la température chez la bactérie phytopathogène Dickeya dadantii / Regulation of the synthesis of virulence factors by temperature in the plant pathogenic bacterium Dickeya dadantiiHérault, Elodie 12 December 2013 (has links)
L’entérobactérie Dickeya dadantii est responsable de la maladie de la pourriture molle sur de nombreux hôtes végétaux. Ce symptôme est essentiellement dû à la production d’un arsenal d’enzymes qui dégradent la pectine, ciment des parois des cellules végétales. Parmi ces enzymes, les pectate lyases (Pels) ont un rôle majeur dans le pouvoir pathogène en raison de leur capacité àreproduire, sous forme purifiée, le symptôme de la pourriture molle. La synthèse des Pels est soumise à un contrôle très fin qui fait intervenir différents régulateurs agissant de manière intégrée via un réseau de régulation. De nombreuses conditions environnementales modulent la synthèse des Pels via l’action de ces régulateurs. La température est un facteur qui agit sur leur synthèse et pour lequel les mécanismes moléculaires restaient non élucidés. Lors de cette étude, nous avons montré que le régulateur PecT, un répresseur du réseau de régulation, intervient dans la thermorégulation de la synthèse des Pels. PecT s’est avéré être également impliqué dans la thermorégulation de deux autres fonctions de virulence : la mobilité et la synthèse desexopolysaccharides de surface. La quantification des transcrits des gènes de ces 3 fonctions de virulence a permis de montrer que l’action de PecT dans ce contrôle a lieu au niveau transcriptionnel. Le mécanisme moléculaire de la thermorégulation exercée par PecT a été étudié plus en détail sur les gènes pel. Des résultats obtenus in vivo ont montré que la fixation de PecT sur les régionsrégulatrices des gènes pel est plus efficace quand la température augmente. La croissance de D. dadantii à hautes températures induit un relâchement de l’ADN. De manière remarquable, un relâchement artificiel de l’ADN par un traitement inhibant la gyrase entraine une augmentation de la fixation de PecT sur les gènes pel même pour des cellules cultivées à basses températures. De plus, la délétion de PecT se traduit par une augmentation de la capacité de D. dadantii à induire la pourriture molle à hautes températures. Ainsi la topologie de l’ADN et PecT agissent de manière concertée pour moduler la synthèse des Pels en fonction de la température.L’ensemble de ces données apporte une preuve supplémentaire de l’importance de la dynamique structurale de la chromatine dans l’ajustement de la physiologie bactérienne en réponse aux variations des conditions environnementales. / Bacteria are colonizers of various environments and host organisms, and they are often subjected to drastic temperature variations. Dickeya dadantii is a Gram-negative pathogen infecting a wide range of plant species. Soft rot, the visible symptom, is mainly due to the production of pectate lyases (Pels) that can destroy the plant cell walls. Production of Pels is controlled by a complex regulation system and responds tovarious stimuli, such as presence of pectin, plant extracts, growth phase, temperature or iron concentration. Although many studies have been carried out, the mechanisms of control of Pels production by temperature have not yet been elucidated. In bacteria, thermoregulation acting at the level of transcription initiation occurs usually both via transcription factors and DNA topology. We show that PecT, a previously identified repressor, is involved in the thermoregulation of the pel gene expression. Using in vivo Chromatin ImmunoPrecipitation (ChIP) coupled to quantitative RT-PCR(qRT-PCR), we reveal that PecT binding to the pel gene promoters is modulated by temperature. By manipulating the DNA topology in vivo, we further show that DNA supercoiling state is involved in the thermoregulation of pel gene expression by PecT. In addition, we show that the development of the pathogenicity of the pecT mutant according to changes in temperature is different from that of the parental strain. This report presents a new example of how plant pathogenic bacteria use transcription factor and DNA topology to adjust synthesis of virulence factors in response to temperature variation.
|
9 |
Adaptive Responses by Transcriptional Regulators to small molecules in Prokaryotes : Structural studies of two bacterial one-component signal transduction systems DntR and HpNikRDian, Cyril January 2007 (has links)
<p>Prokaryotes are continually exposed to variations in their environment. Survival in unstable milieu requires a wide range of transcriptional regulators (TRs) that respond to specific environmental and cellular signals by modulating gene expression and provide an appropriate physiological response to external stimuli. These adaptive responses to environmental signals are mostly mediated by TRs from one of two families: the single or the two component signal transduction systems (1CSTS; 2CSTS). In this thesis the structural analysis of two 1CSTS – DntR and NikR − are presented. One study was carried out to try to develop a bacterial biosensor for synthetic dinitrotulenes compounds, the other to characterise the Ni-sensing mechanism that contributes to the acid adaptation of the human pathogen<i> Helicobacter pylori.</i> DntR belongs to the LysR family and the crystal structures obtained have allowed the proposal a model of the interaction of DntR with salicylate inducer as well as giving insights into the signal propagation mechanism in LysR-type transcription factors (<b>paper I</b>). DntR mutant crystal structures combined with the modelling of DntR-2,4-dnt interactions led to the design of a DntR mutant that has a limited response to 2,4-dnt in a whole cell biosensor system (<b>paper 2</b>). Crystal structures of apo-NikR from <i>H. pylori </i>(HpNikR) and of Ni-bound intermediary states of the protein were obtained. The latter have helped in unravelling the Ni incorporation and selectivity mechanisms of NikRs and have shown a strong cooperativity between conformational changes in the Ni binding domain with movements of the DNA binding domain (<b>paper 3</b>). Biochemical studies and comparisons of the HpNikR crystal structures with those of NikR homologues strongly suggest that HpNikR has evolved different surface properties (<b>paper 4</b>) and a new mode of DNA binding. </p>
|
10 |
Adaptive Responses by Transcriptional Regulators to small molecules in Prokaryotes : Structural studies of two bacterial one-component signal transduction systems DntR and HpNikRDian, Cyril January 2007 (has links)
Prokaryotes are continually exposed to variations in their environment. Survival in unstable milieu requires a wide range of transcriptional regulators (TRs) that respond to specific environmental and cellular signals by modulating gene expression and provide an appropriate physiological response to external stimuli. These adaptive responses to environmental signals are mostly mediated by TRs from one of two families: the single or the two component signal transduction systems (1CSTS; 2CSTS). In this thesis the structural analysis of two 1CSTS – DntR and NikR − are presented. One study was carried out to try to develop a bacterial biosensor for synthetic dinitrotulenes compounds, the other to characterise the Ni-sensing mechanism that contributes to the acid adaptation of the human pathogen Helicobacter pylori. DntR belongs to the LysR family and the crystal structures obtained have allowed the proposal a model of the interaction of DntR with salicylate inducer as well as giving insights into the signal propagation mechanism in LysR-type transcription factors (<b>paper I</b>). DntR mutant crystal structures combined with the modelling of DntR-2,4-dnt interactions led to the design of a DntR mutant that has a limited response to 2,4-dnt in a whole cell biosensor system (<b>paper 2</b>). Crystal structures of apo-NikR from H. pylori (HpNikR) and of Ni-bound intermediary states of the protein were obtained. The latter have helped in unravelling the Ni incorporation and selectivity mechanisms of NikRs and have shown a strong cooperativity between conformational changes in the Ni binding domain with movements of the DNA binding domain (<b>paper 3</b>). Biochemical studies and comparisons of the HpNikR crystal structures with those of NikR homologues strongly suggest that HpNikR has evolved different surface properties (<b>paper 4</b>) and a new mode of DNA binding.
|
Page generated in 0.0398 seconds