• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 24
  • 14
  • 11
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 64
  • 64
  • 25
  • 20
  • 18
  • 18
  • 15
  • 14
  • 13
  • 13
  • 13
  • 10
  • 10
  • 10
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Desenvolvimento de sistemas magn?ticos com potencialidades terap?uticas para vetoriza??o de f?rmacos

Silva, Erica Lira da 31 March 2010 (has links)
Made available in DSpace on 2014-12-17T14:13:45Z (GMT). No. of bitstreams: 1 SilvaEL_DISSERT.pdf: 2857936 bytes, checksum: 9a0ed46e2b6c06e351eff5810e5f24d8 (MD5) Previous issue date: 2010-03-31 / Coordena??o de Aperfei?oamento de Pessoal de N?vel Superior / Magnetic targeting is being investigated as a means of local delivery of drugs, combining precision, minimal surgical intervention, and satisfactory concentration of the drug in the target region. In view of these advantages, it is a promising strategy for improving the pharmacological response. Magnetic particles are attracted by a magnetic field gradient, and drugs bound to them can be driven to their site of action by means of the selective application of magnetic field on the desired area. Helicobacter pylori is the commonest chronic bacterial infection. The treatment of choice has commonly been based upon a triple therapy combining two antibiotics and an anti-secretory agent. Furthermore, an extended-release profile is of utmost importance for these formulations. The aim of this work was to develop a magnetic system containing the antibiotic amoxicillin for oral magnetic drug targeting. First, magnetic particles were produced by coprecipitation of iron salts in alkaline medium. The second step was coating the particles and amoxicillin with Eudragit? S-100 by spray-drying technique. The system obtained demonstrated through the characterization studies carried out a possible oral drug delivery system, consisting in magnetite microparticles and amoxicillin, coated with a polymer acid resistant. This system can be used to deliver drugs to the stomach for treatment of infections in this organ. Another important finding in this work is that it opens new prospects to coat magnetic microparticles by the technique of spray-drying. / A vetoriza??o magn?tica tem sido investigada como uma forma de entrega local de f?rmacos combinando precis?o, m?nima interven??o cir?rgica e concentra??o satisfat?ria do f?rmaco na regi?o de interesse. Part?culas magn?ticas s?o atra?das a partir da aplica??o de um campo magn?tico e f?rmacos associados a essas part?culas podem ser direcionados ao seu s?tio de a??o atrav?s de uma aplica??o seletiva do campo na regi?o de interesse. Helicobacter pylori ? a mais comum causa de infec??o bacteriana cr?nica no est?mago. O tratamento padr?o ? a tripla terapia oral contendo dois antibi?ticos e um inibidor da bomba de pr?tons. Sendo assim, um perfil de libera??o prolongada ? de suma import?ncia para essas formula??es. O objetivo deste trabalho foi desenvolver um sistema magn?tico com potencial emprego na vetoriza??o de antibi?tico por via oral. Inicialmente, part?culas magn?ticas foram produzidas por co-precipita??o de sais de ferro em meio alcalino. Em seguida, as part?culas foram revestidas a partir da dispers?o da suspens?o magn?tica em uma solu??o contendo o pol?mero dissolvido e a amoxicilina, e ent?o submetido ? secagem por aspers?o (spray-drying). Atrav?s das caracteriza??es realizadas p?de-se verificar a obten??o de um potencial sistema para vetoriza??o de f?rmacos por via oral contendo micropart?culas de magnetita e amoxicilina revestidos por um pol?mero gastro-resistente. Adicionalmente, um importante aspecto nesse trabalho ? a abertura de novas perspectivas para o revestimento de micropart?culas magn?ticas atrav?s da t?cnica de spray-drying.
32

Synthesis and Applications of Size and Shape Controlled Magnetic Oxide Particles for Magnetorheological Fluids

Anupama, A V January 2017 (has links) (PDF)
Magnetorheological fluids (MRFs) are non-colloidal stable suspensions of polarizable mesoscale soft magnetic particles, usually metallic Fe-particles, in a carrier liquid such as oil or water; the solidity of which can be tuned by varying the applied magnetic field strength. Magnetorheological fluids are agile candidates for impact mitigation due to their tunable “solidity”, quick and complete reversibility of physical states, durability and reusability in comparison to their mechanical counterparts. The highly desirable property of an MRF is its yield strength and hence the conventional MRFs are Fe-based. However, uncoated Fe-particles suffer from poor chemical and thermo-oxidative stabilities, poor sedimentation stability and redispersibilities necessitating the coatings / additives; which always lead to compromised performance when used in MRFs. An alternative (to Fe) magnetic filler phase is the use of magnetic oxide particles. Soft magnetic spinel ferrites and garnets (though with moderate yield strength in an MRF) with their excellent chemical, thermo-oxidative and sedimentation stabilities, ready-redispersibility, less stringent synthesis and preservation conditions, lower cost, need no stabilizers and additives make them potential contenders for use in MRFs which can provide reliable MR performance. As the microstructure and magnetic nature of particles have direct influence on the MR property, the effects of these were studied by preparing MRFs with magnetic oxide particles of different sizes and shapes. These MRFs were simple bi-phasic as magnetic oxide particles were dispersed in versatile carrier fluid (silicone oil) without any additives; where the magnetic fill fraction was decided based on off state viscosity and the wettability criteria. As the MRFs in a device can undergo different stress / strain conditions of varying amplitudes and frequencies during their service, such a response was studied in laboratory using magnetorheometer via different modes of operation which mimic the service conditions. By varying the applied magnetic field strength and applied shear conditions, the performance of MRFs was evaluated and correlated to the physical and magnetic properties of the particles. Such a study provides a basis for the choice of magnetic phase in MRFs and their required concentration in the base fluid to provide highest efficiency. The dynamic yield strengths (field dependent yield stress) of MRFs extracted from steady shear measurements showed that the yield strength was strongly dependent on the saturation magnetization as well as on the microstructure of the particles used in MRF. The yield strength scaled with the saturation magnetization, magnetic fill fraction and applied magnetic field strength due to stronger magnetic column formation. The stability of MRFs (via the absence of wall slip) was found to depend predominantly on the microstructure of magnetic particles in the fluid such that MRFs containing structured particles showed the absence of wall slip while the MRFs containing irregular shaped powder particles showed poor stability via the occurrence of wall slip. The steady shear tests highlight the importance of using particles of definite shape with superior magnetic properties at a certain magnetic fill fraction for an efficient and reliable MR performance. The MRFs subjected to different oscillatory shear conditions showed that sturdier structures form in-field (exhibited via high gain modulus or low loss factor) when the particles have certain shapes (and size distribution) which result in high surface contact and are highly magnetic. Hence, the MRF containing Fe3O4 micro-octahedrons with high magnetization and large surface area for contact with other octahedron showed the large value of gain modulus and low loss factor compared to all other MRF samples. Poly-dispersity in spheres was found to be advantageous over monodisperse spherical magnetic particles due to void-bridging effects that strengthen the magnetic structuration. The irregular shaped particles based MRFs showed lower gain (higher loss factor) due to weak structuration. Anomalously high loss factor observed for rod shaped LZFP particles based MRF at medium strains and low field strengths is attributed to the rotation hindrance and low density of particles. The polydisperse particles based MRFs showed need for higher applied field strengths to decrease the loss and irregular particles based MRFs showed noisy response. The magnetosweep results showed that shape anisotropic particles based MRFs respond faster to applied field manifested as a faster decrease in loss factor with field. With magnetorheological parameters showing high dependence on the physical and magnetic nature of particles, oscillatory shear tests can serve as a means to select and assess the suitability of these particles for magnetorheological fluid for specific applications. The time dependent magneto-mechanical behaviour such as creep-recovery in MRFs showed that the strain recovery was dependent on the microstructure and magnetic nature of the particles such that fluids containing structured particles with high saturation magnetization showed higher recovery (due to better in-field structuration) compared to the irregular shaped and lower magnetization particles based MRF counterparts. The endurance of the MRFs (sustenance of strength of the MRF) under sustained stress conditions were estimated by a novel method which showed that MRFs containing ‘structured’ particles with high saturation magnetization showed high creep strength. In case of spherical particles based MRFs, the polydispersity of particles was found to aid in better column strength due to void-filling. The high surface contact between rod-shaped particles in the fluid resulted in good creep-strength among all MRFs. Among all the particles, the octahedron shaped Fe3O4 particles with large surface contact coupled with high saturation magnetization makes the Fe3O4 micro-octahedron particles based MRF the best amongst all the MRFs studied in this work. In case of irregular shaped particles based MRFs, the creep strength lagged behind the yield strength suggesting that such MRFs are not suitable for applications which demand sustained strength over prolonged action of stresses. Thus, the present work highlights the importance of considering the physical and magnetic properties of magnetic particles while selecting them for application specific MRFs where high endurance is sought. The stress relaxation behaviour of MRFs showed an overall high strength (via relaxation moduli) for MRFs containing particles with definite shape and high magnetization values (increased structure strength). However, the rod shaped particles based MRF did not witness increased strain limit with increased field strength, probably due to the mass flow in fluid due to higher inter-particle interaction than the interaction with applied field. The observation of increase in critical strain with increase in field for MRFs containing irregular shaped particles is only due to the higher number of particles resulting in overall increase in viscosity with field. Among all the MRFs, octahedron Fe3O4 particles with superior magnetic properties and large surface contact between facets showed highest critical strain for flow, which is in corroboration with other magnetorheological studies discussed so far. The creep-recovery and stress relaxation behaviours of MRFs are rarely studied, yet very important when selecting an MRF for an application which seeks high retention of MR strength over prolonged action of stress or strains. A comparison of particle shapes used in the MRFs suggests that although both octahedron shaped and rod shaped particles make high surface contact during structuration, the former is better due to lack of rotation hindrance, thus useful for preparing quickly responding MRFs. The inadequacies in th e conventio nal FOMs are address ed by a new FOM which is based o n a wholistic approach formulated consideri ng all relev ant physical and magnetic paramete rs of the particles. Also, the individ ual terms of this FOM help in selecting a particular MRF for a specific application. The FOM is as follows: λ – sedimentation constant (time taken by the MRF to sediment to about 1/eth of its total volume) With the MRFs containing octahedron shape d Fe3O4 pa rticles showing the highest FOM followed by s pheres (mod erate value ) which are succeeded by irregular powder samples based MRFs, the FO M observed in all MRF cases follow the same trend as observed by results from different magnetorheologi cal studies. Hence, the highest F4 (or FAB) observed for Fe3O4 octahedron particles based MR F in comparison to a ll other MR Fs (including Fe-based) is justified by the o Mbserved large yield strength, creep-resistance, low density and ready-redispersibilities, validating the FOM. The entire thesis is organized as follows. Chapter 1 details the motivation for the present research work, introduction to the material of interest (Magnetorheological fluid) with overview of different areas of potential applications, important properties of MRF, the current status of MRF, the challenges / issues needed to be addressed followed by choice of alternate materials for addressal of these drawbacks faced by conventional (Fe based) MRFs. Chapter 2 explains the synthesis of magnetic-oxide particles of different sizes and shapes by following different synthesis techniques. This is followed by the structural, microstructural and magnetic properties characterizations carried out by employing different, standard characterization techniques. The procedure for preparation of MRFs from the synthesized magnetic oxide particles is discussed. The basis of carrier fluid selection and magnetic particle concentration in MRF is explained. Chapter 3 gives a background to magnetorheology, in terms of the instrumentation (magnetorheometer), the relation between the magnetorheological parameters and the instrumental parameters (conversion factors), the different operating modes and the relevance of characterization modes in terms of practical applications, the procedure of different characterizations and the standard response behavior of MRFs to the characterizations. Chapter 4 is comprehensive characterization of all the MRFs subjected to steady shear conditions at various applied fields. The detailed analyses in terms of MR response are given with respect to the structure, microstructure, magnetic nature, and magnetic fill fraction of the magnetic particle in the fluid. Chapter 5 is extensive study of all the MRFs subjected to dynamical shear conditions at various applied fields. The magnetorheological responses of MRFs under different dynamical conditions (amplitude sweep, frequency sweep and magnetosweep) are analyzed in regard to role of microstructure, magnetic nature and magnetic fill fraction of the magnetic particle in the fluid. Chapter 6 explains the creep-recovery response of MRFs for the best magnetic fill fraction, decided from the steady and dynamical shear responses for all concentrations of MRFs. The recovered strain is analyzed with respect to a range of applied field strength and stress values. The creep strength determined from this study is correlated to the microstructure and magnetic nature of particles constituting the MRFs. Chapter 7 elaborates the stress relaxation behaviour of MRFs for the best magnetic fill fraction, decided from the steady and dynamical shear responses for all concentrations of MRFs. The stress relaxation (plateau values) moduli for the MRFs extracted at various applied field strength and strain values are analyzed to estimate the critical stress for flow in MRFs. This relationship between the critical stress that an MRF can withstand and the microstructure and magnetic nature of the particles in the fluid are investigated. Chapter 8 is about the study of sedimentation stability (and the redispersibility) of magnetic oxide particles based MRFs and the comparison of these properties with Fe- based MRFs. The role of mass-density and microstructure of particles in the fluid on sedimentation rate is briefly explained. Chapter 9 compares the important outcome of all the magnetorheological characterizations for all the studied MRFs in terms of extent and speed of response, the sedimentation stability and eases of redispersibility, and relates the observations to the physical and magnetic properties of the magnetic particles. The method of developing a new figure of merit based on a wholistic approach for assessing the efficiency and reliability of MRF is discussed which overcomes the shortcomings of conventional figures of merit. Chapter 10 summarizes the important findings of research work and highlights the validity of the new figure of merit in assessing ‘reliability and performance’ of MRFs.
33

Peptidové inhibitory imobilizované na magnetické nosiče a Sepharosu aplikované na separaci žaludečních aspartátových proteinas / Peptide inhibitors immobilized on magnetic particles and Sepharose used for separation of stomach aspartate proteinases

Rajčanová, Michaela January 2014 (has links)
IN ENGLISH Human gastric juice contains mainly aspartate proteinases: pepsin A and pepsin C. Both pepsins are produced by gastric mucosa as inactive pepsinogens and they are activated to the corresponding pepsins in the acidic environment of the gastric lumen. The levels of pepsinogens in serum reflect the morphological and functional status of gastric mucosa. A subject of this thesis is a part of a long-term investigation that focuses on the elaboration of methods for separation gastric aspartate proteainases that would be suitable for diagnostic purposes. The preparation of new type ligands was a concrete subject of PhD. thesis that after their immobilization they can enable the separation of aspartate proteinases. Four heptapeptides containing D-leucinyl residue were synthetized (Val-D-Leu-Pro-Phe-Phe-Val- D-Leu, Val-D-Leu-Pro-Tyr-Phe-Val-D-Leu, Val-D-Leu-Pro-Tyr-Tyr-Val-D-Leu and Val-D- Leu-Pro-Phe-Tyr-Val-D-Leu. The prepared heptapeptides immobilized on agarose magnetic particles were used for the study of their interaction with porcine pepsin A and rat pepsin C. While porcine pepsin A was adsorbed to all heptapeptides immobilized to magnetic particles, rat pepsin C was not retarded. Similar results were obtained using heptapeptides immobilized to Sepharose. The situation was more complicated...
34

Development of magnetic particle based biosensors and microreactors for drug analysis and biotransformation studies

Yu, DONGHUI 02 June 2008 (has links)
In the first part of this work, magnetized nanoporous silica based microparticles (MMPs) are used for horseradish peroxidase (HRP) immobilization and applied in amperometric peroxidase-based biosensors. A homemade magnetized carbon paste electrode permits the MMPs attraction close to the electrode surface. The resulting original biosensor is applied to the investigation of enzymatic oxidation of model drug compounds namely, clozapine (CLZ) and acetaminophen (APAP) by HRP in the presence of hydrogen peroxide. The biosensor operates at a low applied potential and the signal corresponds to the electro-reduction of electroactive species enzymatically generated. The biosensor allows performing the quantitation of the two drug compounds in the micromolar concentration range. It allows also the study of thiol compounds based on the inhibition of the biosensor response. Interestingly, distinct inhibition results are observed for HRP entrapped in the silica microparticles compared to the soluble HRP.<p>We expect that this type of biosensors holds high promise in quantitative analysis and in biotransformation studies of drug compounds.<p><p>In the second part of this thesis work, HRP immobilized magnetic nanoparticles are injected on-line and magnetically retained, as a microreactor, in the capillary of a CE setup. The purpose of such a configuration is to develop an analytical tool for studying “in vitro” drug biotransformation. The advantages expected are (i) minimum sample (drug compound) and biocomponent (enzyme) consumption, (ii) high analysis throughput, (iii) selectivity and sensitivity. In order to illustrate the potential of such an instrumental configuration, it has been applied to study acetaminophen as model drug compound. The mechanistic information obtained by the HRP/H2O2 system is in agreement with literature data on acetaminophen metabolization. Horseradish peroxidase kinetic studies are realized by this setup and the apparent Michaelis constant is determined. Capillary electrophoresis permitted the identification of APAP off-line biotransformed products such as N-acetyl-p-benzoquinone imine (NAPQI), the APAP dimer and APAP polymers as inferred from literature data. The formation of the APAP dimer was further confirmed by electrospray ionization mass spectrometry.<p> / Doctorat en Sciences biomédicales et pharmaceutiques / info:eu-repo/semantics/nonPublished
35

Dispersions de nanoparticules magnétiques de structure coeur/coquille : propriétés magnétiques et thermodiffusion / Dispersions of core-shell magnetic nanoparticles : magnetic properties and thermodiffusion

Cabreira Gomes, Rafael 17 December 2014 (has links)
Nos objectifs sont ici de comprendre comment les propriétés magnétiques de nanoparticules (NPs) sont affectées par la diminution de leur taille et par leur composition chimique, et comprendre ce qui régit leur mouvement thermophorétique et l'effet magnéto-calorique. Des ferrofluides composés de NPs de structure cœur-couronne sont synthétisés ici avec un cœur de ferrite de Mn, de Co ou de ferrite mixte Zn-Mn, recouvert d'une couronne de maghémite. Les mesures magnétiques révèlent une composition magnétique mixte conduisant à l'observation d'un exchange bias qui se manifeste par des cycles d'hystérésis décalés à basses températures. Nous comparons ce phénomène dans le cas de NPs à cœur magnétiquement dur (CoFe2O4) et à cœur magnétiquement mou (MnFe2O4). Indépendamment de la nature du cœur, ce champ d'échange augmente jusqu'à un maximum, obtenu quand le champ de refroidissement est de l'ordre de la moitié du champ d'anisotropie. Les propriétés thermophorétiques des dispersions, sondées par diffusion Rayleigh forcée, sont gouvernées par la physico-chimie du colloïde (ligand de surface, contre-ions, interactions entre NPs) indépendamment de la composition chimique et des propriétés magnétiques en champ nul. Le coefficient Soret est ici négatif (NPs thermophiles) et est relié à la compressibilité osmotique donnée par un formalisme de Carnahan-Starling effectif. On modélise la friction en régime dilué par la loi d'Einstein et en régime concentré, à l'approche de la transition vitreuse, par un modèle de Vogel-Fulcher. Les mesures de l’effet magnéto-calorique démontrent une similarité avec les matériaux commerciaux, avec une forte influence de la composition chimique du cœur. / Our objective is to understand how the magnetic properties of nanoparticles (NPs) can be affected by their size reduction and their chemical composition, and also to determine their role on their thermophoretic motion and on the magneto-caloric effect. For this purpose, aqueous ferrofluids are synthesized with core-shell NPs based on a core of Mn-ferrite, Co-ferrite and mixed Zn-Mn ferrites, coated with a maghemite shell. The magnetic measurements evidence a ferrimagnetic core, covered with disordered frozen spins (SGL), driving an exchange bias phenomenon shifting the hysteresis loops, when the system is cooled under a field Hfc. This exchange bias is measured as a function of Hfc, in samples with NPs having either a hard (CoFe2O4) or a soft (MnFe2O4) magnetic core. Whatever the nature of the magnetic core, the exchange bias field grows up to reach a maximum, always found at Hfc of the order of half of the anisotropy field. The thermophoretic properties of the dispersions, probed by Forced Rayleigh Scattering, are ruled by colloidal physico-chemical features (surface ligand, counter ions, interparticle interactions) whatever the chemical composition and the magnetic properties in zero magnetic field. The Soret coefficient is found here negative (thermophilic NPs) and is related to the osmotic compressibility, modeled by an effective Carnahan-Staring formalism. In the dilute regime, the friction follows an Einstein law, while a Vogel-Fulcher formalism describes the concentrated regime, at the approach of the glass transition. The magneto-caloric measurements demonstrate a similarity with commercial materials. They are strongly influenced by the core composition.
36

Izolace DNA z vybraných zeleninových výrobků (paprika) / DNA isolation from selected vegetable products (paprika)

Gőghová, Sabína January 2018 (has links)
The diploma thesis deals with micromethod of DNA isolation from ten differently processing food products containing pepper (Capsicum annum). PCR ready DNA was isolated by magnetic particles PGMA functionalized by carboxyl groups from homogenates prepared in lysis buffer with CTAB. Quantity and quality of DNA was estimated using spectrophotometric measurements and verified using PCR methods with primers specific for plant rDNA. Quality of isolated DNA varied depending on processing technology. DNA isolated from smoked grinded peppers and from heat treated food products was degraded and amplified with primers F_26S and R_26S (PCR product 220 bp) in contrary to the primers F_18S and R_5.8S (PCR product 700 bp). DNA isolated from the other food products was amplified with primers F_18S and R_5.8S (PCR product 700 bp). PCR product from one grinded pepper (Žitavská paprika) was cloned and sequenced.
37

Identifikace vybraných druhů bakterií mléčného kvašení v mléčných výrobcích / Identification of selected species of lactic acid bacteria in dairy products

Vystavělová, Růžena January 2012 (has links)
Lactic acid bacteria are natural part of the human gastrointestinal tract. They are often used in food supplements and for the production of fermented dairy products. This thesis focuses on the identification of selected species of lactic acid bacteria and bifidobacteria in cheese and dairy products. Bacterial DNA was isolated by magnetic particles P(HEMA-co-GMA) from crude cell lysates from 9 products. Isolated DNA was amplified in genus-specific and species-specific polymerase chain reactions (PCR). The obtained amplicons were detected by agarose gel electrophoresis. The results of PCR were compared with those provided by the manufacturers and there has been declared a match.
38

Využití magnetických nano- a mikro částic při izolaci DNA z vybraných druhů potravin / The application of magnetic nano- and microparticles for the isolation of DNA from selected foods

Ráčková, Lucie January 2017 (has links)
In thesis was verified micromethod for isolation of plant DNA from different vegetable (onion and broccoli) and plant food products in quality for application in polymerase chain reaction (PCR). The micromethod allows isolation DNA using magnetic particles from crude lysates of cells obtained by direct homogenization of plant tissues. Various methods of processing homogenates were compared. Homogenization was performed by lysis buffer containing cetyltrimethylammonium bromide (CTAB). The effect of the organic extraction agents was tested (chloroform-octanol and isopropanol). DNA was purified from homogenates by reversible adsorption on magnetic particles (four different types of magnetic particles were tested). The quality of isolated DNA was verified by UV spectrophotometry. The amplificabilty of DNA was tested by polymerase chain reaction (PCR). Specific primers for plant ribosomal DNA (rDNA) were used. PCR products of lenght 700 and 220 bp were detected by agarose gel electrophoresis. Differences in yield and quality of DNA were depended on the homogenate processing and magnetic particles used. The proposed procedure with two magnetic particles was tested for the isolation DNA from plan food products (spreads). DNA was amplified in PCR. Micromethod is suitable for DNA analysis of foods.
39

Peptidové inhibitory imobilizované na magnetické nosiče a Sepharosu aplikované na separaci žaludečních aspartátových proteinas / Peptide inhibitors immobilized on magnetic particles and Sepharose used for separation of stomach aspartate proteinases

Rajčanová, Michaela January 2014 (has links)
IN ENGLISH Human gastric juice contains mainly aspartate proteinases: pepsin A and pepsin C. Both pepsins are produced by gastric mucosa as inactive pepsinogens and they are activated to the corresponding pepsins in the acidic environment of the gastric lumen. The levels of pepsinogens in serum reflect the morphological and functional status of gastric mucosa. A subject of this thesis is a part of a long-term investigation that focuses on the elaboration of methods for separation gastric aspartate proteainases that would be suitable for diagnostic purposes. The preparation of new type ligands was a concrete subject of PhD. thesis that after their immobilization they can enable the separation of aspartate proteinases. Four heptapeptides containing D-leucinyl residue were synthetized (Val-D-Leu-Pro-Phe-Phe-Val- D-Leu, Val-D-Leu-Pro-Tyr-Phe-Val-D-Leu, Val-D-Leu-Pro-Tyr-Tyr-Val-D-Leu and Val-D- Leu-Pro-Phe-Tyr-Val-D-Leu. The prepared heptapeptides immobilized on agarose magnetic particles were used for the study of their interaction with porcine pepsin A and rat pepsin C. While porcine pepsin A was adsorbed to all heptapeptides immobilized to magnetic particles, rat pepsin C was not retarded. Similar results were obtained using heptapeptides immobilized to Sepharose. The situation was more complicated...
40

Anisotropic hard magnetic nanoparticles and nanoflakes obtained by surfactant-assisted ball milling

Pal, Santosh Kumar 16 February 2016 (has links) (PDF)
The research work in this thesis has been devoted to understand the formation mechanism of single-crystalline and textured polycrystalline nanoparticles and nanoflakes of SmCo5 and Nd2Fe14B prepared by surfactant-assisted (SA) ball milling and to study their microstructural and magnetic properties. The nanoparticles and nanoflakes are promising candidates to be used as hard magnetic phase for the fabrication of high-energy-density exchange-coupled nanocomposite magnets. The influence of a range of different surfactants, solvents and milling parameters on the characteristics of ball-milled powder has been systematically investigated. Small fraction (~10 wt.%) of SmCo5 nanoparticles of average diameter 15 nm along with textured polycrystalline nanoflakes of average diameter 1 µm and average thickness of 100 nm were obtained after SA – ball milling of SmCo5 powder. Isolated single-crystalline particles (200-500 nm) and textured polycrystalline flakes (0.2-1.0 µm) of Nd2Fe14B have been prepared in bulk amount (tens of grams), after SA – ball milling of dynamic-hydrogen-disproportionation-desorption-recombination (d-HDDR) processed Nd2Fe14B powder. These single-crystalline Nd2Fe14B particles are promising for their microstructure for the fabrication of exchange-coupled nanocomposite permanent magnets. The SmCo5 and Nd2Fe14B flakes and particles were well aligned in magnetic field: the former showed [001] out-of-plane orientation while the latter showed [001] in-plane orientation. A maximum degree of texture values of 93 % and 88 % have been obtained for the magnetically-oriented SmCo5 flakes and Nd2Fe14B single-crystalline particles, respectively. SA – ball milling resulted in an increase of coercivity of SmCo5 particles from 0.45 T for un-milled powder to a maximum value of 2.3 T after 1 h of milling, further milling resulted in a decrease of the coercivity. The coercivity of SA – ball-milled Nd2Fe14B particles decreased drastically from 1.4 T for un-milled d-HDDR powder to 0.44 T after 0.5 h of milling, isolated single-crystalline particles (200-500 nm size) obtained after 4 h of SA – ball milling showed a coercivity of 0.34 T. The drastic decrease in coercivity of ball-milled Nd2Fe14B particles is attributed to the morphological change because the demagnetization in Nd2Fe14B magnets is governed by nucleation mechanism. A remarkable enhancement in coercivity from 0.26 T to 0.70 T for ethanol-milled sample and from 0.51 T to 0.71 T for oleic-acid-milled samples has been obtained after an optimum heat-treatment at 400 0C. An increase of α-Fe and Nd2O3 phase contents and a sharp change of lattice parameter c of Nd2Fe14B was observed when heat-treating above 400 0C. The change in lattice parameter at higher temperature is thought to be due to partial substitution of carbon atoms present in the surfactant or solvent, for boron atoms. / Das Ziel dieser Arbeit ist es, den Mechanismus der Herstellung von einkristallinen und texturierten polykristallinen Nanopartikeln und Nanoflakes aus SmCo5 und Nd2Fe14B durch Tensid-gestütztes Kugelmahlen zu verstehen. Des Weiteren soll deren Gefüge und magnetische Eigenschaften untersucht werden. Die Nanopartikel sind vielversprechende Kandidaten zur Verwendung als hartmagnetische Phase in hochentwickelten, austauschgekoppelten Nanokomposit-Magneten. Der Einfluß der Art der verwendeten Tensid, Lösungsmittel sowie Mahlparameter auf die Eigenschaften der kugelgemahlenen Pulver wurde systematisch untersucht. Ein kleiner Anteil (~10 m.%) von SmCo5 Nanopartikeln mit mittlerem Durchmesser von 15 nm zusammen mit texturierten polykristallinen Plättchen mit mittlerem Durchmesser von 1 µm und mittlerer Dicke von 100 nm wurden nach Tensid-gestütztes Kugelmahlen erzeugt. Alleinstehende einkristalline Partikel (200-500 nm) und texturierte polykristalline Plättchen (0,2-1,0 µm) aus Nd2Fe14B wurden in größeren Mengen (einige 10 g) hergestellt. Das verwendete Ausgangspulver wurde hierbei durch dynamisches-Hydrierung-Disproportionierung-Desorption-Rekombination (d-HDDR) hergestellt und anschließend Tensid-gestütztes Kugelmahlen. Die genannten einkristallinen Nd2Fe14B Partikel sind ebenfalls vielversprechend als hartmagnetischer Bestandteil von austauschgekoppelten Nanokomposit-Magneten. Die SmCo5- und Nd2Fe14B-Plättchen und -Partikel wurden alle in einem Magnetfeld ausgerichtet: erstere zeigten aus der Ebende herauszeigende und letztere in der Ebene liegende [001]-Orientierung. Ein maximaler Texturgrad von 93% wurde für im Magnetfeld ausgerichtete SmCo5 flakes bzw. 88% für einkristalline Nd2Fe14B Partikel erzielt. Tensid-gestütztes Kugelmahlen führte zu einem Anstieg der Koerzitivfeldstärke von SmCo5 Partikeln von 0,45 T für ungemahlenes Pulver auf 2,3 T nach einer Mahldauer von 1 h. Weiteres Mahlen führte zu einem Abfall der Koerzitivfeldstärke. Die Koerzitivfeldstärke von Tensid-gestütztes Kugelmahlen Nd2Fe14B Partikeln verringerte sich stark von 1,4 T von ungemahlenem d-HDDR Pulver auf 0,44 T nach 0,5 h Mahlen. Freistehende einkristalline Partikel (200-500 nm groß), welche nach 4 h Tensid-gestütztes Kugelmahlen erhalten wurden, zeigten eine Koerzitivfeldstärke von 0,34 T. Der starke Abfall der Koerzitivfeldstärke von gemahlenen Nd2Fe14B Partikeln wird die morphologischen Veränderungen zurückgeführt, da die Ummagnetisierung nukleationsgesteuert ist. Ein bemerkenswerter Anstieg der Koerzitivfeldstärke von 0,26 T auf 0,70 T wurde für eine in Ethanol gemahlene Probe verzeichnet, sowie ein Anstieg von 0,51 auf 0,71 T für eine Probe, welche mit einer Zugabe von Oleinsäure gemahlen wurde. Beide Proben wurden einer optimierten Wärmebehandlung bei 400°C unterzogen. Bei höheren Temperaturen wurde für Nd2Fe14B ein Anstieg der Menge an α-Fe und Nd2O3 gefunden und eine sprungartige Veränderung des Gitterparameters c der Nd2Fe14B Phase. Die Veränderung des Gitterparameters wird auf die partielle Substitution von Kohlenstoffatomen des Tensid oder Lösungsmittels gegen Boratome zurückgeführt.

Page generated in 0.0442 seconds