• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 164
  • 57
  • 55
  • 17
  • 13
  • 12
  • 10
  • 9
  • 5
  • 4
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 388
  • 97
  • 62
  • 54
  • 46
  • 36
  • 33
  • 31
  • 27
  • 26
  • 26
  • 25
  • 24
  • 22
  • 21
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Níveis de expressão de miR-33a e miR-122 em pacientes cronicamente infectados pelo vírus da Hepatite C genótipos 1 e 3 / G.mir-33a and mir-122 levels in patients chronically infected with hcv genotype 1 and 3

Oliveira, Ketti Gleyzer de 10 November 2015 (has links)
Estima-se que 3% da população mundial esteja infectada pelo vírus da hepatite C (HCV). O HCV tem como alvo o tecido hepático e a maioria dos pacientes infectados desenvolvem infecção crônica. Nos últimos anos, estudos in vitro têm demonstrado interações entre o miRNA-122 (miR-122) da célula hospedeira e dois sítios localizados na região 5\' UTR do genoma do vírus da hepatite C (HCV), os quais são essenciais ao processo de replicação viral. O miR-122 é altamente expresso no fígado, onde atua na regulação do metabolismo de lipídios juntamente com outro miRNA, o miRNA-33a (miR-33a), porém, o mecanismo envolvido nesta regulação ainda é pouco conhecido. Sabe-se que a infecção pelo HCV altera a expressão de genes envolvidos na biossíntese e transporte de lipídios, resultando na estimulação do metabolismo de lipídios e criando um ambiente favorável para sua replicação. Neste contexto os objetivos deste trabalho foram avaliar a expressão de miR-33a e miR-122 em indivíduos cronicamente infectados pelo HCV-1 e HCV-3 em amostras obtidas antes do início da terapia. Os miRNAs foram isolados a partir de amostras de sangue periférico e de tecido hepático. A quantificação da expressão relativa de ambos miRNAs foi pela técnica de PCR em tempo real. Os níveis de miR-33a no sangue periférico foram mais elevados do que no tecido hepático em indivíduos infectados pelo HCV-1(p < 0,0001) e HCV-3 (p=0,0025). Observou-se uma correlação inversa entre os níveis de miR-33a no sangue periférico e tecido hepático dos indivíduos infectados pelo HCV-1 (r=-0,281, p=0,039) e correlação positiva para os indivíduos infectados pelo HCV-3 (r=0,9286, p < 0,0001). Correlação inversa entre os níveis hepáticos de miR-33a com o nível sérico de insulina (r=-0,371, p =0,005) nos indivíduos infectados pelo HCV-1 e correlação positiva entre os níveis no sangue periférico com os níveis séricos de GGT (r=0,553, p=0,049) foram observadas. Em relação ao miR-122, de maneira geral o nível hepático foi mais elevado do que o sérico (p < 0,0001). Entretanto, o nível hepático de miR-122 em indivíduos infectados pelo HCV-3 foi maior quando comparado aos infectados pelo HCV-1 (6,22 vezes, p < 0,001). Uma correlação inversa entre os níveis séricos de ApoA-II e os níveis de expressão de miR-122 no sangue (r=-0,330; p=0,014) e tecido hepático (r=-0,311; p=0,020) foi observada nos pacientes infectados pelo HCV-1. Os pacientes infectados pelo HCV- 3 mostraram correlação positiva entre os níveis hepáticos de miR-122 e os níveis de HDL (r=0,412, p=0,036) e insulina (r=0,478, p=0,044). O miR-33a e o miR-122 atuam regulando genes que controlam o metabolismo dos lipídios no fígado. Até o presente momento, não existem relatos que associem a expressão do miR-33a e do miR-122 com o perfil lipídico na infecção pelo HCV. Além disso, o acúmulo de lipídio (esteatose) intensamente descrito na infecção pelo HCV-3 pode sugerir interação diferenciada desse genótipo com os mecanismos envolvidos na regulação do metabolismo lipídico, envolvendo o miR-33a e miR-122 / The prevalence of infection by hepatitis C virus (HCV) is about 3% of the world population. HCV targets the liver tissue and the majority of infected patients develop chronic infection. In recent years, in vitro studies have demonstrated interactions between miRNA-122 (miR-122) the host cell to two places located in the 5\' untranslated region of the HCV genome which are essential for virus replication process. miR-122 is highly expressed in the liver, which has been implicated as a fatty acid metabolism regulator. Another mine has also been described as a key regulator of lipid metabolism, miRNA-33a (miR-33a), however, the mechanisms involved in this regulation are still little known. It is known that HCV infection changes the expression of genes involved in the biosynthesis and transport of lipids, resulting in stimulation of the lipid metabolism and creating a favorable environment for replication of the virus. To our knowledge, there are no reports linking the expression of miR-33a with lipid profile in HCV infection. In this context the objectives of this study were to evaluate the expression of miR-33a and miR-122 in chronically infected individuals with HCV-1 and HCV-3 in samples obtained prior to initiation of therapy. MiRNAs were isolated from peripheral blood samples and liver tissue. The quantification of relative expression of both miRNAs was by PCR in real time. MiR-33a levels in peripheral blood were higher than in liver tissue in patients infected with HCV-1 (p < 0.0001) and HCV-3 (p=0.0025). Levels in the peripheral blood of miR-33a were lower in patients infected with HCV-3 (p=0.0169). There was an inverse correlation between hepatic levels of miR-33a with serum insulin levels (p=0.005) in individuals infected with HCV-1 and a positive correlation between the levels in the peripheral blood serum levels of GGT (p=0.049). Hepatic levels of miR-122 were higher than the levels in the peripheral blood of individuals infected by HCV-1 and HCV-3 (p < 0.0001). Hepatic miR-122 levels were higher in patients infected with HCV-3 than those infected with HCV-1 (6.22 times, p < 0.001). There was a positive correlation between miR-122 levels in the blood and liver tissue of patients infected with HCV-1 (r=0.302, p=0.026). An inverse correlation between serum ApoA-II was observed in these patients the levels of expression of miR-122 in blood (r=-0.330; p =0.014) and liver tissue (r=-0.311; p=0.020). Patients infected with HCV-3 showed a positive correlation between hepatic miR-122 levels to HDL levels (r=0.412, p=0.036) and insulin levels (r=0.478, p=0.044). The miR-33a and miR-122 act by regulating genes that control lipid metabolism in the liver. The different interactions with lipid metabolism exerted by HCV-3 may explain why his relationship with the miR-33a and miR-122 was different when compared with HCV-1
42

Zur Rolle von epigenetisch dysregulierten microRNAs beim klarzelligen Nierenzellkarzinom

Liep, Julia 04 July 2016 (has links)
Etwa 25 % der Nierenzellkarzinome (RCC) weisen bei Diagnosestellung bereits Metastasen auf. Aufgrund der schlechten Prognose des metastasierten RCC besteht ein dringender Bedarf an neuen Therapieformen sowie an prognostischen und diagnostischen Markern. microRNAs (miRNAs) bieten sich dabei als vielversprechende molekulare Biomarker an. Für den klarzelligen RCC-Subtypen (ccRCC) wurde bereits ein umfangreiches miRNA Expressionsprofil erstellt, mit dem ccRCC-relevante, vorwiegend herunterregulierte miRNAs identifiziert werden konnten. In der vorliegenden Arbeit wurde gezeigt, dass die Expression der miR-141 und miR-145 in RCC-Zelllinien durch epigenetische Mechanismen gehemmt ist und die Promotorbereiche dieser miRNAs stark methyliert vorliegen. In RCC-Zellen konnte eine tumorsuppressive Wirkung dieser miRNAs durch Hemmung der Migration (beide) und Invasion (miR-141) nachgewiesen werden. Durch die gleichzeitige Überexpression der beiden miRNAs kam es zu einer kooperativen Wirkung und so zu einer verstärkten Hemmung der Zellmigration. Weitere Untersuchungen konnten eine Reihe neuer onkogener Targets der miR 141 und miR 145 identifizieren. Dabei zeigte sich ein kooperativer Effekt durch Kombination beider miRNAs auf die Expression der Targets HS6ST2 und LOX. Die Targets LOX und MAP4K4 waren in ccRCC Gewebe auf mRNA-Ebene stark überexprimiert im Vergleich zum umliegenden Normalgewebe. Bei der anschließenden Tissue-Mikroarray-Analyse der Expression auf Proteinebene zeigte sich zudem ein prognostisches Potenzial der Targets LOX und MAP4K4 für das Gesamtüberleben von ccRCC Patienten. Diese Daten verdeutlichen den enormen Einfluss von epigenetisch dysregulierten miRNAs und deren spezifischen Targets auf tumorassoziierte Prozesse. Zudem bietet das Netzwerk aus Epigenetik, miRNAs und deren jeweiligen Targets nicht nur eine Reihe von diagnostischen und prognostischen Möglichkeiten, sondern liefert auch viele Ansatzpunkte für die Entwicklung von neuen therapeutischen Strategien. / Approximately 25 % of diagnosed renal cell carcinoma (RCC) have already metastasized. Due to poor prognosis of metastatic RCC, there is an urgent need for new therapies and prognostic and diagnostic markers to identify high-risk patients. Here microRNAs (miRNAs) might be promising new molecular biomarkers. For the clear cell RCC subtype (ccRCC) a comprehensive miRNA expression profile was already established. In this profiling several ccRCC-associated, predominantly down-regulated miRNAs were identified. In the present study, epigenetic mechanisms were identified to play a significant role in the down regulation of miR-141 and miR-145 in RCC cell lines. In addition, a strong methylation of the corresponding promoter regions was detected at molecular level. In RCC cells a tumor suppressive effect of these miRNAs was shown by decreasing migration (both) and invasion (miR-141) and furthermore, co overexpression of both miRNAs resulted in a cooperative effect with increased inhibition of cell migration. Several new oncogenic targets of miR-141 and miR-145 were identified by further investigations. Here the two miRNAs again showed a cooperative effect, as demonstrated by a significantly increased inhibition of HS6ST2 and LOX expression. In ccRCC tissue the expression of LOX and MAP4K4 was strongly enhanced on mRNA level compared to normal tissue. In the subsequent tissue microarray analysis of protein expression, LOX and MAP4K4 showed a prognostic impact for the overall survival of patients with ccRCC. These results illustrate a huge impact of epigenetically dysregulated miRNAs and of their specific targets on tumor-associated processes. Furthermore, the network of epigenetics, miRNAs and their respective targets will offer a number of diagnostic and prognostic capabilities, but will also provide many opportunities for the development of new therapeutic strategies.
43

Implication du collagène XXV dans la myogenèse chez la souris / Role of collagen XXV in mouse myogenesis

Gonçalves, Tristan 15 December 2017 (has links)
La matrice extracellulaire (MEC) est impliquée dans les mécanismes de prolifération, migration, différenciation et d’adhésion cellulaire. La membrane basale (MB), MEC entourant le muscle, sert de soutien aux fibres musculaires durant la contraction donnant ainsi une élasticité aux fibres musculaires. La MB est composée de collagènes dont majoritairement le collagène IV, de laminines, de nidogène (entactine), de perlecan (heparan sulphate proteoglycan), et de protéoglycans. Au cours de la myogenèse, la modulation de la MEC est indispensable au bon déroulement des processus de délamination, migration et fusion des cellules musculaires. Le collagène XXV est un collagène de la famille MACIT (Membrane Associated Collagens with Interrupted Triple Helices). Cette famille de collagènes transmembranaires contient 3 autres membres : le collagène XIII, le collagène XVII et le collagène XXIII. Le collagène XIII est impliqué dans les processus de migration cellulaire, le collagène XXIII dans ceux d’adhésion cellulaire. Le collagène XXV est impliqué dans la maladie d’Alzheimer, par sa fixation aux agrégats de peptides Aβ. D’autre part, il a été montré qu’il est nécessaire à la mise en place de la jonction neuromusculaire dans le muscle du diaphragme. La souris col25a1-/- présente une aplasie et une atrophie du diaphragme à E18.5 probablement dues au défaut d’innervation. L’expression du collagène est précoce dans la myogenèse, puisqu’il est fortement exprimé dans le bourgeon de membre d’embryons de souris dès E12.5, bien avant l’innervation des muscles des membres. Le rôle du collagène XXV dans la myogenèse précoce n’est pas connu. Le but de mon travail est de démontrer le rôle du collagène XXV durant la myogenèse. Pour ce faire, des études in vivo et in vitro ont été menées. In vitro, nous montrons l’implication du collagène XXV dans la différenciation myogénique. In vivo, la souris col25a1-/- présente des défauts de formation de fibres plurinucléées dans les bourgeons de membre d'embryons prélevés à E12.5 et E14.5, ce qui démontre le rôle de ce collagène dans les processus de fusion des myoblastes en myotubes au cours de la myogenèse primaire. Nous démontrons aussi la régulation de l’ARNm de ce collagène par deux microARN : miR-208b et miR-499, sans effet additionnel ou synergique de ces deux miRs. Nos résultats complémentaires suggèrent que l'expression de col25a1 est probablement régulée par le facteur de transcription NFATc2. En effet, chez les embryons de souris nfatc2-/- prélevés à E12.5, nous observons une diminution de l’expression de col25a1, ce qui pourrait expliquer l’atrophie musculaire observée chez la souris nfatc2-/-. Il serait intéressant de restaurer ce défaut musculaire chez la souris nfatc2-/- en surexprimant ce collagène XXV chez cette souris. / Extracellular matrix is involved in cellular proliferation, migration, differentiation and adhesion. Muscle extracellular matrix, called the basement membrane, serves as support for muscle fibers during contraction, thus giving elasticity to the muscle fibers. Basement membrane is composed by collagen mainly collagen IV, laminin, nidogen, perlecan (heparan sulphate proteoglycan) and proteoglycan. During myogenesis, the modulation of extracellular matrix is very important for muscle cells to delaminate, migrate and fuse. Collagen XXV is part of the MACIT (Membrane Associated Collagens with Interrupted Triple Helices) collagen family together with collagen XIII, collagen XVII and collagen XXIII. Collagen XIII is involved in cell migration and collagen XXIII in cell adhesion. Collagen XXV was first described in Alzheimer disease, as a component of the Aβ amyloid aggregates. Furthermore, Collagen XXV is necessary for the formation of neuromuscular junctions in diaphragm. At E18.5, col25a1-/- embryos show muscle aplasia and atrophy in diaphragm, probably due to lack of innervation. This collagen is strongly expressed during primary myogenesis in limb buds from E12.5 embryos, long before innervation of limb muscles. But the role of this collagen during early myogenesis has never been analyzed. In this work, I demonstrated the role of collagen XXV during early myogenesis. In vitro assays showed that collagen XXV is involved in the muscle differentiation process. In vivo, limb muscles from E12.5 and E14.5 col25a1-/- embryos have defects in the formation of plurinucleated myofibers, suggesting a role of this collagen in the fusion of myoblasts into myotubes during mouse myogenesis. In this work, I demonstrated that col25a1 transcripts are down-regulated by miR-208b and miR-499 without synergic or additional effects. Complementary results suggest that col25a1 expression could be regulated by the transcription factor, NFATc2. In E12.5 nfatc2-/- embryos, col25a1 expression is decreased. This result could explain the muscle atrophy observed in nfatc2-/- mice. It could be interesting to restore muscle atrophy in nfatc2-/- mouse by overexpressing col25a1 in these mice.
44

Análise da expressão de miR-10b e miR-7 potencialmente associados à expressão de BRCA1 em carcinomas de mama

Bastos, Daniel Rodrigues de 04 May 2017 (has links)
Submitted by admin tede (tede@pucgoias.edu.br) on 2018-06-19T18:25:16Z No. of bitstreams: 1 DANIEL RODRIGUES DE BASTOS.pdf: 1922893 bytes, checksum: 51e3aa82ceb630f944c3c65627dcffaa (MD5) / Made available in DSpace on 2018-06-19T18:25:16Z (GMT). No. of bitstreams: 1 DANIEL RODRIGUES DE BASTOS.pdf: 1922893 bytes, checksum: 51e3aa82ceb630f944c3c65627dcffaa (MD5) Previous issue date: 2017-05-04 / Introduction: Breast cancer is the most frequent neoplasm among women worldwide and represents the leading cause of death in this population. Important biomarkers have been studied in order to better define the prognosis of patients affected by this cancer. MicroRNAs are small molecules of non-coding RNAs composed of 21 to 25 nucleotides that play an important role in the post-transcriptional regulation of several genes. Objective: The objective of this study was to evaluate the expression of microRNAs (miRNAs: hsa-miR-7 and hsa-miR-10b) and BRCA1 protein in breast cancer samples, as well as the possible associations between expression of these markers with clinicopathological and prognostic aspects. Method: The study included 92 cases of breast carcinoma from Hospital Araújo Jorge, Associação de Combate ao Câncer em Goiás. Formalin fixed paraphin embedded samples were used for the analisis. MicroRNA was extracted from the samples and used for cDNA synthesis. The cDNA samples were adjusted to the same concentration and submitted to quantitative real-time PCR (qRT-PCR). Samples were further evaluated by immunohistochemistry for BRCA1 expression. Results: From a group of 234 immunohistochemical records, 56 cases of non-triple-negative and 36 triple-negative breast carcinomas were selected. Five-year overall survival was significantly associated to triple negative phenotype (p = 0.044), advanced stages (p = 0.005), lymph node involvement (p = 0.038), presence of distant metastasis (p = 0, 0008) and absence of BRCA1 expression (p = 0.039). Significant associations were demonstrated between the absence of BRCA1 and the triple-negative phenotype (p = 0.0346), as well as the absence of estrogen receptor expression (p = 0.006) and absence of progesterone receptor expression (p = 0.0163). The analysis by qRTPCR demonstrated different levels of miR-10b and miR-7 expression in the tumors, with significant associations with triple-negative phenotype (p = 0.021, p = 0.042) and the absence of BRCA1 (p = 0.039, p = 0.006). The comparison between absence and presence of human epidermal growth factor receptor expression showed a significant difference for miR-7 (p = 0.031), and the expression of miR-10b in these cases was not statistically different (p = 0.926). Conclusion: Significant associations were demonstrated between the absence of BRCA1 and the triple-negative phenotype. Five-year overall survival was reduced for the triple-negative phenotype patients, clinical stages III and IV, the presence of lymph node metastasis, the presence of distant metastasis and the absence of BRCA1 expression. This study also demonstrated that hsa-miR-7 and hsa-miR-10b are significantly associated with the absence of BRCA1 expression and triple-negative phenotype, with poorer survival in these patient profiles. Studies with more cases and with cell lines should be performed in order to confirm the role of hsa-miR-7 and hsa-miR-10b in the modulation of BRCA1 expression. / Introdução: O câncer de mama é a neoplasia mais frequente entre as mulheres de todo o mundo e representa a principal causa de morte nesta população. Importantes biomarcadores têm sido estudados, a fim de definir melhor o prognóstico de pacientes acometidas por esta doença. Os microRNAs são pequenas moléculas de RNAs não codificantes, compostos por 21 a 25 nucleotídeos e desempenham importante papel na regulação pós-transcricional de diversos genes. Objetivo: O objetivo do estudo foi avaliar a expressão de microRNAs (miRNAs: hsa-miR-7 e hsamiR- 10b) e da proteína BRCA1 em amostras de câncer de mama, bem como as possíveis associações entre a expressão desses marcadores e os aspectos clinicopatológicos e prognósticos. Método: O estudo foi composto por 92 casos de carcinoma de mama, provenientes do Hospital Araújo Jorge, da Associação de Combate ao Câncer em Goiás. Foram utilizados fragmentos de tumores incluídos em parafina. A extração de microRNA das amostras foi realizada e o produto gerado foi utilizado para a síntese de cDNA. As amostras de cDNA foram ajustadas para igual concentração e submetidas à PCR quantitativa em tempo real (qRT-PCR). As amostras foram avaliadas ainda por meio de imuno-histoquímica para expressão de BRCA1. Resultados: Um total de 234 registros de imuno-histoquímica foi avaliado, resultando em 56 casos de carcinomas de mama apresentando fenótipo não triplonegativo e 36 com fenótipo triplo-negativo. A sobrevida das pacientes em função das características clinicopatológicas demonstrou associações com os casos triplonegativos (p=0,044), estádios mais avançados (p=0,005), acometimento linfonodal (p=0,038), presença de metástase à distância (p=0,0008) e ausência da expressão de BRCA1 (p=0,039). Associações significativas foram demonstradas entre a ausência de BRCA1 e o fenótipo triplo-negativo (p=0,0346), entre a ausência da expressão do receptor de estrógeno e ausência da expressão de BRCA1 (p=0,006), e entre o receptor de progesterona e a ausência da expressão de BRCA1 (p=0,0163). A análise por qRT-PCR demonstrou diferentes níveis de expressão de miR-10b e de miR-7, com associações significativas ao fenótipo triplo-negativo (p=0,021; p=0,042) e à ausência de BRCA1 (p=0,039; p=0,006). A comparação entre ausência e presença da expressão do receptor do fator de crescimento epidérmico humano demonstrou diferença significativa para miR-7 (p=0,031), sendo que a expressão de miR-10b nestes casos não foi estatisticamente diferente (p=0,926). Conclusão: Associações significativas foram demonstradas entre a ausência de BRCA1 e o fenótipo triplo-negativo. A sobrevida em cinco anos foi inversamente associada ao fenótipo triplo-negativo, aos estádios clínicos III e IV, à presença de metástase linfonodal, à presença de metástase à distância e à ausência da expressão de BRCA1. Este estudo demonstrou ainda que hsa-miR-7 e hsa-miR- 10b estão significativamente associados à ausência da expressão de BRCA1 e ao fenótipo triplo-negativo, sendo observada pior sobrevida nestes perfis de pacientes. Estudos com maior número de casos e com linhagens celulares devem ser realizados para constatar o papel de hsa-miR-7 e hsa-miR-10b na modulação da expressão de BRCA1.
45

Einfluss von microRNAs auf die Sensibilität von kolorektalen Tumorzellen gegenüber einer 5-FU-basierten Radiochemotherapie / Influence of microRNA on the sensivity of colorectal cancer cells on a 5-FU-based radiochemotherapy

Templin, Robert Hans-Joachim 18 September 2019 (has links)
No description available.
46

The roles of Dicer and TRBP in HCV replication

Zhang, Chao 24 September 2010
MicroRNAs (miRNAs) are non-coding small RNAs that regulate eukaryotic gene activity at the post-transcriptional level by a process termed miRNA gene suppression. MicroRNA-122 (miR-122) is predominantly expressed in human liver cells and recent studies indicated that miR-122 promotes Hepatitis C Virus (HCV) replication and translation through physical interaction with two tandem binding sites located in the 5 untranslated region (5UTR) of the HCV genome (Jopling, et al., 2006; Jopling, et al., 2008). It has been reported that host genes that are also implicated in the miRNA gene suppression pathway are key regulators of HCV replication (Randall, et al., 2007). Two proteins, Dicer, a key RNaseIII enzyme, and its binding partner TRBP are essential proteins for miRNA activity. They are part of a protein complex called the RNA induced silencing complex (RISC) which also includes Argonaute proteins, and function in miRNA biogenesis loading the miRNA into RISC. As such, they are intriguing targets to study host-viral interplay during HCV replication.<p> In our study, we designed siRNAs to knock down Dicer and TRBP and then observed the effects of gene knockdown on full length J6/JFH-1-RLuc HCV (genotype 2a chimeric genome) replication and translation. The results showed that knocking down Dicer and TRBP reduced wild type (wt) J6/JFH-1-RLuc replication but had almost no effects on HCV translation in human liver cells. However, since knocking down Dicer and TRBP did not significantly alter miR-122 levels in the cell, it appears that the role of Dicer and TRBP was not solely the biogenesis of miR-122. This was confirmed by an experiment in which we observed that knocking down Dicer and TRBP also attenuated replication of a mutant virus in which replication is dependent on a exogenously supplied miRNA instead of endogenous miR-122.<p> Taken together, the results supported the hypotheses that Dicer and TRBP facilitate HCV infection mainly through HCV replication but not translation. The effects of Dicer and TRBP on HCV replication are not solely due to miR-122 biogenesis, and may be due to RISC loading functions in steps of miRNA gene suppression.<p> This study has set some essential groundwork for investigating potential roles of host factors in the RNAi machinery modulating HCV replication/translation and exploring novel antiviral targets.
47

Delelopment of an x-ray prism for a combined diffraction enhanced imaging and fluorescence imaging system

Bewer, Brian Edward 25 February 2011
Analyzer crystal based imaging techniques such as diffraction enhanced imaging (DEI) and multiple imaging radiography (MIR) utilize the Bragg peak of perfect crystal diffraction to convert angular changes into intensity changes. These X-ray techniques extend the capability of conventional radiography, which derives image contrast from absorption, by providing a large change in intensity for a small angle change introduced by the X-ray beam traversing the sample. Objects that have very little absorption contrast may have considerable refraction and ultra small angle X-ray scattering (USAXS) contrast thus improving visualization and extending the utility of X-ray imaging. To improve on the current DEI technique this body of work describes the design of an X-ray prism (XRP) included in the imaging system which allows the analyzer crystal to be aligned anywhere on the rocking curve without moving the analyzer from the Bragg angle. By using the XRP to set the rocking curve alignment rather than moving the analyzer crystal physically the needed angle sensitivity is changed from ìradians for direct mechanical movement of the analyzer crystal to milliradian control for movement the XRP angle. In addition to using an XRP for the traditional DEI acquisition method of two scans on opposite sides of the rocking curve preliminary tests will be presented showing the potential of using an XRP to scan quickly through the entire rocking curve. This has the benefit of collecting all the required data for image reconstruction in a single fast measurement thus removing the occurrence of motion artifacts for each point or line used during a scan. The XRP design is also intended to be compatible with combined imaging systems where more than one technique is used to investigate a sample. Candidates for complimentary techniques are investigated and measurements from a combined X-ray imaging system are presented.
48

The roles of Dicer and TRBP in HCV replication

Zhang, Chao 24 September 2010 (has links)
MicroRNAs (miRNAs) are non-coding small RNAs that regulate eukaryotic gene activity at the post-transcriptional level by a process termed miRNA gene suppression. MicroRNA-122 (miR-122) is predominantly expressed in human liver cells and recent studies indicated that miR-122 promotes Hepatitis C Virus (HCV) replication and translation through physical interaction with two tandem binding sites located in the 5 untranslated region (5UTR) of the HCV genome (Jopling, et al., 2006; Jopling, et al., 2008). It has been reported that host genes that are also implicated in the miRNA gene suppression pathway are key regulators of HCV replication (Randall, et al., 2007). Two proteins, Dicer, a key RNaseIII enzyme, and its binding partner TRBP are essential proteins for miRNA activity. They are part of a protein complex called the RNA induced silencing complex (RISC) which also includes Argonaute proteins, and function in miRNA biogenesis loading the miRNA into RISC. As such, they are intriguing targets to study host-viral interplay during HCV replication.<p> In our study, we designed siRNAs to knock down Dicer and TRBP and then observed the effects of gene knockdown on full length J6/JFH-1-RLuc HCV (genotype 2a chimeric genome) replication and translation. The results showed that knocking down Dicer and TRBP reduced wild type (wt) J6/JFH-1-RLuc replication but had almost no effects on HCV translation in human liver cells. However, since knocking down Dicer and TRBP did not significantly alter miR-122 levels in the cell, it appears that the role of Dicer and TRBP was not solely the biogenesis of miR-122. This was confirmed by an experiment in which we observed that knocking down Dicer and TRBP also attenuated replication of a mutant virus in which replication is dependent on a exogenously supplied miRNA instead of endogenous miR-122.<p> Taken together, the results supported the hypotheses that Dicer and TRBP facilitate HCV infection mainly through HCV replication but not translation. The effects of Dicer and TRBP on HCV replication are not solely due to miR-122 biogenesis, and may be due to RISC loading functions in steps of miRNA gene suppression.<p> This study has set some essential groundwork for investigating potential roles of host factors in the RNAi machinery modulating HCV replication/translation and exploring novel antiviral targets.
49

Delelopment of an x-ray prism for a combined diffraction enhanced imaging and fluorescence imaging system

Bewer, Brian Edward 25 February 2011 (has links)
Analyzer crystal based imaging techniques such as diffraction enhanced imaging (DEI) and multiple imaging radiography (MIR) utilize the Bragg peak of perfect crystal diffraction to convert angular changes into intensity changes. These X-ray techniques extend the capability of conventional radiography, which derives image contrast from absorption, by providing a large change in intensity for a small angle change introduced by the X-ray beam traversing the sample. Objects that have very little absorption contrast may have considerable refraction and ultra small angle X-ray scattering (USAXS) contrast thus improving visualization and extending the utility of X-ray imaging. To improve on the current DEI technique this body of work describes the design of an X-ray prism (XRP) included in the imaging system which allows the analyzer crystal to be aligned anywhere on the rocking curve without moving the analyzer from the Bragg angle. By using the XRP to set the rocking curve alignment rather than moving the analyzer crystal physically the needed angle sensitivity is changed from ìradians for direct mechanical movement of the analyzer crystal to milliradian control for movement the XRP angle. In addition to using an XRP for the traditional DEI acquisition method of two scans on opposite sides of the rocking curve preliminary tests will be presented showing the potential of using an XRP to scan quickly through the entire rocking curve. This has the benefit of collecting all the required data for image reconstruction in a single fast measurement thus removing the occurrence of motion artifacts for each point or line used during a scan. The XRP design is also intended to be compatible with combined imaging systems where more than one technique is used to investigate a sample. Candidates for complimentary techniques are investigated and measurements from a combined X-ray imaging system are presented.
50

Regulation of Skp2 by Bcr-ABL oncogene in chronic meyloid leukemia cells and its therapeutic significance

Chen, Jing-yi 02 August 2010 (has links)
Part I BCR-ABL fusion oncogene results fromt(9;22)(q34;q11) translocation of chromosome is the most common genetic abnormality found in chronic myeloid leukemia (CML) cells . The encoded protein of this fusion gene exhibits constitutively active tyrosinekinase activity which is required for the pathogenesis of CML. We addressed how BCR-ABL oncoprotein increased Skp2 expression. Treatment of Imatinib or LY294002 reduced Skp2mRNA in BCR-ABL-positive K562 cells. Knockdown of AKT by small hairpin RNAalso reduced Skp2 expression. We found that BCR-ABL up-regulated Skp2 via Sp1 because (1) the Sp1 site located at the −386/−380 promoter region was important for BCR-ABL-induced Skp2 promoter activity, (2) chromatin immunoprecipitation assay demonstrated that Imatinib inhibited the recruitment of p300 to the Sp1 site of Skp2 promoter and (3) knockdown of Sp1 reduced Skp2 expression in K562 cells. These results suggest that BCR-ABL controls Skp2 gene transcription via the PI3K/AKT/Sp1 pathway. In addition to transcriptional regulation of Skp2, Bcr-Abl also modulates Skp2 protein stability in these cells. Treatment of Bcr-Abl kinase inhibitor imatinib led to G1 growth arrest accompanied with reduced Skp2 expression. Interestingly, reduction of Skp2 protein occurred prior to down-regulation of Skp2 mRNA suggesting a post-translational control. The half-life of Skp2 protein was significantly attenuated in imatinib-treated cells. Knockdown of Bcr-Abl similarly caused Skp2 protein instability. The decrease of Skp2 was induced by increased protein degradation through the ubiquitin/ proteasome pathway. Our results demonstrated that imatinib treatment or Bcr-Abl knockdown reduced Emi1, an endogenous inhibitor of the E3 ligase APC/Cdh1 which mediated the degradation of Skp2 protein. We found that Emi1 stability was regulated by phosphorylation and mutation of tyrosine 142 significantly reduced the stability. Lines of evidence suggested Bcr-Abl-induced Emi1 phosphorylation was mediated by Src kinase. (1) Src inhibitor SU6656 inhibited Emi1 tyrosine phosphorylation in Bcr-Abl-positive K562 cells. (2) Transfection of v-Src rescued the reduction of Emi1 by imatinib. (3) Mutation of tyrosine 142 to phenylalanine (Y142F) abolished the phosphorylation of Emi1 by recombinant Src kinase. In addition, ectopic expression of wild type but not Y142F mutant Emi1 could counteract imatinib-caused G1 growth arrest. Collectively, our results suggest that Bcr-Abl fusion oncogene increases Emi1 phosphorylation and stability to prevent Skp2 protein degradation via APC/Cdh1-induced ubiquitination and to enhance proliferation of CML cells. Part II Although imatinib therapy of chronic myelogenous leukemia is effective, the resistance to imatinib challenges the treatment of this disease. Therefore, search of novel drugs to overcome imatinib resistance is a critical issue in clinic. Withaferin A (WA), an extract of Withania somniferia, exhibits anti-cancer activity on a number of solid tumors. In this study, we investigate the effect of WA on imatinib-sensitive and -resistant CML cells. WA at low concentrations induced autophagy in imatinib-sensitive K562 cells. Co-treatment of chloroquine suppressed autophagy and switched WA-treated K562 cells to apoptosis. This data indicated that autophagy protected K562 cells from apoptosis induced by WA. However, we found that WA triggered caspase activation and apoptosis in imatinib-resistant T315I-positive cells and this effect was associated with down-regulation of Akt activity. Treatment of the AKT inhibitor LY294002 also caused apoptosis in imatinib-resistant T315I-positive cells. Ectopic expression of constitutively active Akt reversed WA-induced apoptosis and caspase activation in imatinib-resistant T315I-positive cells. Molecular study demonstrates that WA repressed the Akt signaling pathway by decreasing Akt expression. We found that WA abolished formation of the hsp90/cdc37/Akt complex to cause Akt degradation through the ubiquitin- and proteasome-dependent pathway. More importantly, WA also induced AKT down-regulation and apoptosis in primary CML cells. Taken together, our results suggested that imatinib-resistant T315I-positive cells were more addicted to Akt-dependent survival pathway and were more sensitive to WA. Therefore, WA could be useful for the treatment of imatinib-resistant CML. Part III Suberoylanilide hydroxamic acid (SAHA) is undergoing clinical trial for the treatment of various cancers including chronic myeloid leukemia (CML). We study the potential miRNAs which involved in the anti-cancer effect of SAHA. Microarray analysis revealed that the expression of 57 and 63 miRNAs was significantly changed in K562 cells treated with SAHA for 8h and 24h respectively. Five miRNAs(miR-92a, miR-199b-5p, miR-223, miR-627 and miR-675) were highly expressed in K562 cells and continuously repressed by SAHA. miR-92a and miR-223 known to play important roles in normal and hematopoisis were further characterized. Up-regulation of miR-92a was found in K562 cells and in primary CML cells. Inhibition of miR-92a with SAHA led to increase of the tumor suppressor Fbxw7. Conversely, ectopic expression of pri-miR-92a reversed SAHA-induced apoptosis of K562 cells, increase of Fbxw7 3¡¦-UTR reporter activity and up-regulation of Fbxw7. Collecively, miR-92a is up-regulated in CML cells, and SAHA downregulated the expression of miR-92a to result in apoptosis of CML cells.

Page generated in 0.0135 seconds