• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 36
  • 11
  • 9
  • 5
  • 5
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 90
  • 26
  • 14
  • 14
  • 14
  • 13
  • 12
  • 12
  • 12
  • 11
  • 11
  • 11
  • 10
  • 10
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Factors affecting neuropsychological assessment in a group of South Asian older adults

Parveen, F. Choudhry January 2021 (has links)
The accuracy of neuropsychological assessment is critical in the diagnosis of cognitive impairments in older adults. However, existing neuropsychological tests may not be suitable for minority populations. This thesis aimed to address this issue by recruiting cognitively-healthy South Asian older adults and assessing cognitive function in this group. Results showed that typically used assessments, despite being translated, were not suitable for this cohort. Furthermore, skills required for test completion such as mathematics and writing/hand dexterity (which are related to education levels) influenced test scores. Therefore, new assessments of general cognitive function and associative memory were developed to improve the accuracy of neuropsychological test scores. The new tests were not affected by education and they achieved high internal and test re-test reliability. Time of day (TOD) that testing takes place is also known to affect cognition. Interestingly, no TOD effects were observed in this cohort. It was hypothesised that engagement in the daily five Islamic prayers may have contributed to this lack of a TOD effect. However, the results did not confirm this. The thesis then looked at overall prayer engagement and cognition. Results showed that engagement in the daily five prayers and Quran recitation significantly increased scores on assessments of processing speed. This thesis demonstrates that accurately assessing cognition in South Asian older adults is challenging and that the cognitive tests used must be suitable for this cohort. Interesting findings emerged for prayer engagement which may have wider implications for the field of cognitive reserve.
72

MIMO discrete wavelet transform for the next generation wireless systems

Asif, Rameez, Ghazaany, Tahereh S., Abd-Alhameed, Raed, Noras, James M., Jones, Steven M.R., Rodriguez, Jonathan, See, Chan H. January 2013 (has links)
No / Study is presented into the performance of Fast Fourier Transform (FFT) and Discrete Wavelet Transform (DWT) and MIMO-DWT with transmit beamforming. Feedback loop has been used between the equalizer at the transmitter to the receiver which provided the channel state information which was then used to construct a steering matrix for the transmission sequence such that the received signals at the transmitter can be combined constructively in order to provide a reliable and improved system for next generation wireless systems. As convolution in time domain equals multiplication in frequency domain no such counterpart exist for the symbols in space, means linear convolution and Intersymbol Interference (ISI) generation so both zero forcing (ZF) and minimum mean squared error (MMSE) equalizations have been employed. The results show superior performance improvement and in addition allow keeping the processing, power and implementation cost at the transmitter which has less constraints and the results also show that both equalization algorithms perform alike in wavelets and the ISI is spread equally between different wavelet domains.
73

Die Bedeutung von Aquaporin1- und Aquaporin4-Konzentrationen im Liquor cerebrospinalis für Patienten mit Normaldruckhydrozephalus und Pseudotumor cerebri / The significance of AQP1 and AQP4 concentration in cerebrospinal fluid of patients with normal pressure hydrocephalus and pseudotumor cerebri

Elster, Judith 14 December 2011 (has links)
No description available.
74

Récepteur itératif pour les systèmes MIMO-OFDM basé sur le décodage sphérique : convergence, performance et complexité / Iterative receiver for MIMO-OFDM systems based on sphere decoding : convergence, performance and complexity tradeoffs

El chall, Rida 22 October 2015 (has links)
Pour permettre l’accroissement de débit et de robustesse dans les futurs systèmes de communication sans fil, les processus itératifs sont de plus considérés dans les récepteurs. Cependant, l’adoption d’un traitement itératif pose des défis importants dans la conception du récepteur. Dans cette thèse, un récepteur itératif combinant les techniques de détection multi-antennes avec le décodage de canal est étudié. Trois aspects sont considérés dans un contexte MIMOOFDM: la convergence, la performance et la complexité du récepteur. Dans un premier temps, nous étudions les différents algorithmes de détection MIMO à décision dure et souple basés sur l’égalisation, le décodage sphérique, le décodage K-Best et l’annulation d’interférence. Un décodeur K-best de faible complexité (LC-K-Best) est proposé pour réduire la complexité sans dégradation significative des performances. Nous analysons ensuite la convergence de la combinaison de ces algorithmes de détection avec différentes techniques de codage de canal, notamment le décodeur turbo et le décodeur LDPC en utilisant le diagramme EXIT. En se basant sur cette analyse, un nouvel ordonnancement des itérations internes et externes nécessaires est proposé. Les performances du récepteur ainsi proposé sont évaluées dans différents modèles de canal LTE, et comparées avec différentes techniques de détection MIMO. Ensuite, la complexité des récepteurs itératifs avec différentes techniques de codage de canal est étudiée et comparée pour différents modulations et rendement de code. Les résultats de simulation montrent que les approches proposées offrent un bon compromis entre performance et complexité. D’un point de vue implémentation, la représentation en virgule fixe est généralement utilisée afin de réduire les coûts en termes de surface, de consommation d’énergie et de temps d’exécution. Nous présentons ainsi une représentation en virgule fixe du récepteur itératif proposé basé sur le décodeur LC K-Best. En outre, nous étudions l’impact de l’estimation de canal sur la performance du système. Finalement, le récepteur MIMOOFDM itératif est testé sur la plateforme matérielle WARP, validant le schéma proposé. / Recently, iterative processing has been widely considered to achieve near-capacity performance and reliable high data rate transmission, for future wireless communication systems. However, such an iterative processing poses significant challenges for efficient receiver design. In this thesis, iterative receiver combining multiple-input multiple-output (MIMO) detection with channel decoding is investigated for high data rate transmission. The convergence, the performance and the computational complexity of the iterative receiver for MIMO-OFDM system are considered. First, we review the most relevant hard-output and soft-output MIMO detection algorithms based on sphere decoding, K-Best decoding, and interference cancellation. Consequently, a low-complexity K-best (LCK- Best) based decoder is proposed in order to substantially reduce the computational complexity without significant performance degradation. We then analyze the convergence behaviors of combining these detection algorithms with various forward error correction codes, namely LTE turbo decoder and LDPC decoder with the help of Extrinsic Information Transfer (EXIT) charts. Based on this analysis, a new scheduling order of the required inner and outer iterations is suggested. The performance of the proposed receiver is evaluated in various LTE channel environments, and compared with other MIMO detection schemes. Secondly, the computational complexity of the iterative receiver with different channel coding techniques is evaluated and compared for different modulation orders and coding rates. Simulation results show that our proposed approaches achieve near optimal performance but more importantly it can substantially reduce the computational complexity of the system. From a practical point of view, fixed-point representation is usually used in order to reduce the hardware costs in terms of area, power consumption and execution time. Therefore, we present efficient fixed point arithmetic of the proposed iterative receiver based on LC-KBest decoder. Additionally, the impact of the channel estimation on the system performance is studied. The proposed iterative receiver is tested in a real-time environment using the MIMO WARP platform.
75

[en] DISCRETE PRECODING AND ADJUSTED DETECTION FOR MULTIUSER MIMO SYSTEMS WITH PSK MODULATION / [pt] PRECODIFICAÇÃO DISCRETA E DETECÇÃO CORRESPONDENTE PARA SISTEMAS MIMO MULTIUSUÁRIO QUE UTILIZAM MODULAÇÃO PSK

ERICO DE SOUZA PRADO LOPES 10 September 2021 (has links)
[pt] Com um número crescente de antenas em sistemas MIMO, o consumo de energia e os custos das interfaces de rádio correspondentes tornam-se relevantes. Nesse contexto, uma abordagem promissora é a utilização de conversores de dados de baixa resolução. Neste estudo, propomos dois novos pré-codificadores ótimos para a sinais de envelope constante e quantização de fase. O primeiro maximiza a distância mínima para o limite de decisão (MMDDT) nos receptores, enquanto o segundo minimiza o erro médio quadrático entre os símbolos dos usuários e o sinal de recepção. O design MMDDT apresetado nesse estudo é uma generalização de designs anteriores que baseiam-se em quantização de 1-bit. Além disso, ao contrário do projeto MMSE anterior que se baseia na resolução de 1-bit, a abordagem proposta emprega quantização de fase uniforme e a etapa de limite no método branch-and-bound é diferente em termos de considerar o relaxamento mais restritivo do problema não convexo, que é então utilizado para um design sub ótimo também. Além disso, três métodos diferentes de detecção suave e um esquema iterativo de detecção e decodificação que permite a utilização de codificação de canal em conjunto com pré-codificação de baixa resolução são propostos. Além de uma abordagem exata para calcular a informação extrínseca, duas aproximações com reduzida complexidade computacional são propostas. Os algoritmos propostos de pré-codificação branch-and-bound são superiores aos métodos existentes em termos de taxa de erro de bit. Resultados numéricos mostram que as abordagens propostas têm complexidade significativamente menor do que a busca exaustiva. Finalmente, os resultados baseados em um código de bloco LDPC indicam que os esquemas de processamento de recepção geram uma taxa de erro de bit menor em comparação com o projeto convencional. / [en] With an increasing number of antennas in multiple-input multiple-output (MIMO) systems, the energy consumption and costs of the corresponding front ends become relevant. In this context, a promising approach is the consideration of low-resolution data converters. In this study two novel optimal precoding branch-and-bound algorithms constrained to constant envelope signals and phase quantization are proposed. The first maximizes the minimum distance to the decision threshold (MMDDT) at the receivers, while the second minimizes the MSE between the users data symbols and the receive signal. This MMDDT design presented in this study is a generalization of prior designs that rely on 1-bit quantization. Moreover, unlike the prior MMSE design that relies on 1-bit resolution, the proposed MMSE approach employs uniform phase quantization and the bounding step in the branch-and-bound method is different in terms of considering the most restrictive relaxation of the nonconvex problem, which is then utilized for a suboptimal design also. Moreover, three different soft detection methods and an iterative detection and decoding scheme that allow the utilization of channel coding in conjunction with low-resolution precoding are proposed. Besides an exact approach for computing the extrinsic information, two approximations with reduced computational complexity are devised. The proposed branch-and-bound precoding algorithms are superior to the existing methods in terms of bit error rate. Numerical results show that the proposed approaches have significantly lower complexity than exhaustive search. Finally, results based on an LDPC block code indicate that the proposed receive processing schemes yield a lower bit-error-rate compared to the conventional design.
76

Evaluating the Effects of Aging on American Sign Language Users

DiBlasi, Anita F. 13 September 2011 (has links)
No description available.
77

A Filterbank Precoding Framework For MIMO Frequency Selective Channels

Vijaya, Krishna, A 08 1900 (has links)
Wireless systems with multiple antennas at both the transmitter and receiver (MIMO systems) have been the focus of research in the recent past due to their ability to provide higher data rates and better reliability than their single antenna counterparts. Designing a communication system for MIMO frequency selective channels provides many signal processing challenges. Popular methods like MIMOOFDM and space-time precoding linearly process blocks of data at both the transmitter and the receiver. Independence between the blocks is ensured by introducing sufficient redundancy between successive blocks. This approach has many pitfalls, including the limit on achievable data rate due to redundancy requirements and the need for additional coding/processing. In this thesis, we provide a filterbank precoding framework (FBP) for communication over MIMO frequency selective channels. By viewing the channel as a polynomial matrix, we derive the minimum redundancy required for achieving FIR equalization of the precoded channel. It is shown that, for most practical channels, a nominal redundancy is enough. The results are general, and hold for channels of any dimension and order. We derive the zero-forcing and MMSE equalizers for the precoded channel. The role of equalizer delay in system performance is analyzed. We extend the minimum redundancy result to the case of space-time filterbank precoding (STFP). Introducing the time dimension allows the channel to be represented by a block pseudocirculant matrix. By using the Smith form of block pseudocirculant matrices, we show that very high data rates can be achieved with STFP. When channel information is available at the transmitter, we derive an iterative algorithm for obtaining the MMSE optimal precoder-equalizer pair. We then provide a comparison of FBP with the block processing methods. It is shown that FBP provides better BER performance than the block processing methods at a lower computational cost. The reasons for the better performance of FBP are discussed.
78

Linear MMSE Receivers for Interference Suppression & Multipath Diversity Combining in Long-Code DS-CDMA Systems

Mirbagheri, Arash January 2003 (has links)
This thesis studies the design and implementation of a linear minimum mean-square error (LMMSE) receiver in asynchronous bandlimited direct-sequence code-division multiple-access (DS-CDMA) systems that employ long-code pseudo-noise (PN) sequences and operate in multipath environments. The receiver is shown to be capable of multiple-access interference (MAI) suppression and multipath diversity combining without the knowledge of other users' signature sequences. It outperforms any other linear receiver by maximizing output signal-to-noise ratio (SNR) with the aid of a new chip filter which exploits the cyclostationarity of the received signal and combines all paths of the desired user that fall within its supported time span. This work is motivated by the shortcomings of existing LMMSE receivers which are either incompatible with long-code CDMA or constrained by limitations in the system model. The design methodology is based on the concept of linear/conjugate linear (LCL) filtering and satisfying the orthogonality conditions to achieve the LMMSE filter response. Moreover, the proposed LMMSE receiver addresses two drawbacks of the coherent Rake receiver, the industry's current solution for multipath reception. First, unlike the Rake receiver which uses the chip-matched filter (CMF) and treats interference as additive white Gaussian noise (AWGN), the LMMSE receiver suppresses interference by replacing the CMF with a new chip pulse filter. Second, in contrast to the Rake receiver which only processes a subset of strongest paths of the desired user, the LMMSE receiver harnesses the energy of all paths of the desired user that fall within its time support, at no additional complexity. The performance of the proposed LMMSE receiver is analyzed and compared with that of the coherent Rake receiver with probability of bit error, <i>Pe</i>, as the figure of merit. The analysis is based on the accurate improved Gaussian approximation (IGA) technique. Closed form conditional <i>Pe</i> expressions for both the LMMSE and Rake receivers are derived. Furthermore, it is shown that if quadriphase random spreading, moderate to large spreading factors, and pulses with small excess bandwidth are used, the widely-used standard Gaussian Approximation (SGA) technique becomes accurate even for low regions of <i>Pe</i>. Under the examined scenarios tailored towards current narrowband system settings, the LMMSE receiver achieves 60% gain in capacity (1. 8 dB in output SNR) over the selective Rake receiver. A third of the gain is due to interference suppression capability of the receiver while the rest is credited to its ability to collect the energy of the desired user diversified to many paths. Future wideband systems will yield an ever larger gain. Adaptive implementations of the LMMSE receiver are proposed to rid the receiver from dependence on the knowledge of multipath parameters. The adaptive receiver is based on a fractionally-spaced equalizer (FSE) whose taps are updated by an adaptive algorithm. Training-based, pilot-channel-aided (PCA), and blind algorithms are developed to make the receiver applicable to both forward and reverse links, with or without the presence of pilot signals. The blind algorithms are modified versions of the constant modulus algorithm (CMA) which has not been previously studied for long-code CDMA systems. Extensive simulation results are presented to illustrate the convergence behavior of the proposed algorithms and quantify their performance loss under various levels of MAI. Computational complexities of the algorithms are also discussed. These three criteria (performance loss, convergence rate, and computational complexity) determine the proper choice of an adaptive algorithm with respect to the requirements of the specific application in mind.
79

Linear MMSE Receivers for Interference Suppression & Multipath Diversity Combining in Long-Code DS-CDMA Systems

Mirbagheri, Arash January 2003 (has links)
This thesis studies the design and implementation of a linear minimum mean-square error (LMMSE) receiver in asynchronous bandlimited direct-sequence code-division multiple-access (DS-CDMA) systems that employ long-code pseudo-noise (PN) sequences and operate in multipath environments. The receiver is shown to be capable of multiple-access interference (MAI) suppression and multipath diversity combining without the knowledge of other users' signature sequences. It outperforms any other linear receiver by maximizing output signal-to-noise ratio (SNR) with the aid of a new chip filter which exploits the cyclostationarity of the received signal and combines all paths of the desired user that fall within its supported time span. This work is motivated by the shortcomings of existing LMMSE receivers which are either incompatible with long-code CDMA or constrained by limitations in the system model. The design methodology is based on the concept of linear/conjugate linear (LCL) filtering and satisfying the orthogonality conditions to achieve the LMMSE filter response. Moreover, the proposed LMMSE receiver addresses two drawbacks of the coherent Rake receiver, the industry's current solution for multipath reception. First, unlike the Rake receiver which uses the chip-matched filter (CMF) and treats interference as additive white Gaussian noise (AWGN), the LMMSE receiver suppresses interference by replacing the CMF with a new chip pulse filter. Second, in contrast to the Rake receiver which only processes a subset of strongest paths of the desired user, the LMMSE receiver harnesses the energy of all paths of the desired user that fall within its time support, at no additional complexity. The performance of the proposed LMMSE receiver is analyzed and compared with that of the coherent Rake receiver with probability of bit error, <i>Pe</i>, as the figure of merit. The analysis is based on the accurate improved Gaussian approximation (IGA) technique. Closed form conditional <i>Pe</i> expressions for both the LMMSE and Rake receivers are derived. Furthermore, it is shown that if quadriphase random spreading, moderate to large spreading factors, and pulses with small excess bandwidth are used, the widely-used standard Gaussian Approximation (SGA) technique becomes accurate even for low regions of <i>Pe</i>. Under the examined scenarios tailored towards current narrowband system settings, the LMMSE receiver achieves 60% gain in capacity (1. 8 dB in output SNR) over the selective Rake receiver. A third of the gain is due to interference suppression capability of the receiver while the rest is credited to its ability to collect the energy of the desired user diversified to many paths. Future wideband systems will yield an ever larger gain. Adaptive implementations of the LMMSE receiver are proposed to rid the receiver from dependence on the knowledge of multipath parameters. The adaptive receiver is based on a fractionally-spaced equalizer (FSE) whose taps are updated by an adaptive algorithm. Training-based, pilot-channel-aided (PCA), and blind algorithms are developed to make the receiver applicable to both forward and reverse links, with or without the presence of pilot signals. The blind algorithms are modified versions of the constant modulus algorithm (CMA) which has not been previously studied for long-code CDMA systems. Extensive simulation results are presented to illustrate the convergence behavior of the proposed algorithms and quantify their performance loss under various levels of MAI. Computational complexities of the algorithms are also discussed. These three criteria (performance loss, convergence rate, and computational complexity) determine the proper choice of an adaptive algorithm with respect to the requirements of the specific application in mind.
80

Die Wirkung der EKT bei pharmakoresistenten affektiven und schizophreniformen Störungen / The effectiveness of the electroconvulsive therapy in the event of drug-resistant affective and schizophrenic disorders

Schreier, Evelyn 21 October 2013 (has links)
No description available.

Page generated in 0.0312 seconds