• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 17
  • 8
  • 6
  • 5
  • 5
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Function and trafficking of the MMTV-encoded Rem gene product

Byun, Hyewon 02 July 2013 (has links)
Mouse mammary tumor virus (MMTV), a member of the betaretrovirus family, primarily induces mammary carcinomas in mice. Like human immunodeficiency virus (HIV), MMTV is a complex retrovirus that encodes a viral regulatory protein, Rem. Rem is a 33 kDa glycosylated protein containing an unusually long ER signal peptide (SP). MMTV SP contains all of the functional motifs for the nuclear export of MMTV unspliced/genomic RNA. SP activity requires binding to MMTV RNA. To characterize the minimal Rem-responsive element (RmRE) that overlaps the 3’ LTR, several deletion mutations were introduced in the MMTV-based reporter plasmid, pHMRluc. Results from these mutants in transient transfections revealed a 476-nt RmRE at the junction of the envelope gene and the 3’ LTR. RmRE function was not cell-type specific. The RmRE is predicted to have a complex secondary structure, similar to the Rev-responsive element (RRE) of HIV. Unlike the HIV RRE, the 3’ LTR RmRE occurs in all MMTV mRNAs, and Rem does not increase the export of unspliced RNA of the pHMRluc reporter vector. These results suggest that another RmRE near the 5’-end participates in export of MMTV genomic RNA, whereas the RmRE overlapping the 3’ LTR supports different Rem functions, such as translational regulation. Recent research has shown that SP directs Rem translation to the ER where Rem is cleaved and released into the cytoplasm. Rem mutants with ER signal peptidase cleavage site mutations completely lost function, and mutant proteins were highly unstable and mislocalized. Dominant-negative AAA ATPase p97 and Derlin-1 proteins, which are involved in the ER-associated degradation (ERAD) pathway, inhibited Rem function. Therefore, Rem is a precursor protein that is processed by ER signal peptidases. Rem then manipulates the ERAD system to retrotranslocate SP to the cytoplasm prior to nuclear entry and MMTV RNA binding. Unexpectedly, a commercial control shRNA expression vector, LK0.1, induced additional Rem, HIV-1 Rev and human T-cell leukemia virus type 1 Rex activity (called super-induction). Also, the LK0.1 vector increased protein expression levels of co-transfected genes, and the target of the shRNA was not critical. When the hairpin segment was deleted from LK0.1, the super-induction of Rem activity was greatly reduced. Deletion of cis-acting lentiviral segments also decreased protein expression levels. Although LK0.1 did not affect the levels of interferon-induced genes or eIF-2α phosphorylation, LK0.1 reduced the number of stress granules significantly. Therefore, LK0.1 may induce several cellular signaling pathways, leading to Rem super-induction. This study characterizes the minimal RmRE overlapping the 3’ MMTV LTR and reveals the unique processing of Rem and SP trafficking prior to nucleolar localization. Additional functions of MMTV Rem and other retroviruses may be discovered using studies of cellular events induced by LK0.1. / text
12

THE IDENTIFICATION AND CHARACTERIZATION OF PROTEIN KINASE INHIBITORS TARGETING BREAST CANCER STEM CELLS

Trabelsi, Salma 10 1900 (has links)
<p>Breast cancer is the most common cancer among Canadian women with one in nine women expected to develop breast cancer in their lifetime. Until recently these breast tumors were thought to be a homogeneous cell population. Recent studies have shown that breast tumors contain a rare cell type termed breast tumor initiating cells (TICs) or cancer stem cells (CSCs) with the ability to elicit new tumor growth and metastases. These TICs exist apex of a tumor cell hierarchy and give rise to more TICs and non-tumorigenic cells. Traditionally, drugs were developed to target the highly proliferative cells population resulting in a decrease in tumor volume. However, these therapies spare the TICs, which results in tumor relapse demonstrating the need for new drugs that target the TICs. Because in cancer, mutated protein kinases are the controllers of cell proliferation, invasion and metastasis, they have become a target for drug development. Inhibition of these kinases could lead to the identification of compounds that selectively target breast TICs. Using mammary tumors from cancer prone mice propagated as non-adherent tumorspheres (TMS), which contain a high fraction of breast TICs and the same conditions to propagate the non-transformed mouse mammary epithelial stem and progenitor cells (MESC), as non-adherent mammospheres (MMS) a 240-kinase inhibitor library was screened using an AlamarBlue proliferation assay. Twenty percent of the compounds resulted in 75% decrease in proliferation of TMS derived cells and some of which were TMS-selective. Sunitinib, a multi-targeted kinase inhibitor, was one of the selective compounds identified and when administered to mice with subcutaneous mammary tumors resulted in tumor shrinkage. This was accompanied by an increase in apoptotic cells, decrease in proliferating cells and tumor vasculature, and a change in tumor morphology and composition. These findings show the efficacy of Sunitinib in shrinking mouse mammary tumors and suggest a potential use of Sunitinib for treatment of breast cancer.</p> / Master of Science (MSc)
13

Antigen and superantigen presentation as defined by the MHCII-accessory proteins and associated-peptides

Fortin, Jean-Simon 05 1900 (has links)
MHCII molecules expose a weave of antigens, which send survival or activation signals to T lymphocytes. The ongoing process of peptide binding to the MHC class II groove implicates three accessory molecules: the invariant chain, DM and DO. The invariant chain folds and directs the MHCII molecules to the endosomal pathway. Then, DM exchanges the CLIP peptide, which is a remnant of the degraded invariant chain, for peptides of better affinity. Expressed in highly specialized antigen presenting cells, DO competes with MHCII molecules for DM binding and favors the presentation of receptor-internalized antigens. Altogether, these molecules exhibit potential immunomodulatory properties that can be exploited to increase the potency of peptide vaccines. DO requires DM for maturation and to exit the ER. Interestingly, it is possible to monitor this interaction through a conformation change on DOβ that is recognized by the Mags.DO5 monoclonal antibody. Using Mags.DO5, we showed that DM stabilizes the interactions between the DO α1 and β1 chains and that DM influences DO folding in the ER. Thus, the Mags.DO5+ conformation correlates with DO egress from the ER. To further evaluate this conformation change, directed evolution was applied to DO. Of the 41 unique mutants obtained, 25% were localized at the DM-DO binding interface and 12% are at the solvent-exposed β1 domain, which is thought to be the Mags.DO5 epitope. In addition, I used the library to test the ability of HLA-DO to inhibit HLA-DM and sorted for the amount of CLIP. Interestingly, most of the mutants showed a decrease inhibitory effect, supporting the notion that the intrinsic instability of DO is a required for its function. Finally, these results support the model in which DO competes against classical MHCII molecules by sequestering DM chaperone’s function. MHCII molecules are also characterized by their ability to present superantigens, a group of bacterial or viral toxins that coerces MHCII-TCR binding in a less promiscuous fashion than what is observed in a canonical setting. While the mechanism of how bacterial superantigens form trimeric complexes with TCR and MHCII is well understood, the mouse mammary tumor virus superantigens (vSAG) are poorly defined. In the absence of a crystal structure, I chose a functional approach to examine the relation between vSAG, MHCII and TCR with the goal of uncovering the overall trimolecular architecture. I showed that TCR concomitantly binds both the MHCII α chain and the vSAG and that TCR-MHCII docking is almost canonical when coerced by vSAGs. Because many peptides may be tolerated in the MHCII groove, the pressure exerted by vSAG seems to tweak conventional TCR-MHCII interactions. Furthermore, my results demonstrate that vSAG binding to MHCII molecules is conformation-dependent and abrogated by the CLIP amino-terminal residues extending outside the peptide-binding groove. In addition, they also suggest that vSAGs cross-link adjacent MHCIIs and activate T cells via a TGXY motif. / Les molécules du CMH présentent une panoplie d'antigènes qui, lorsque reconnus par un lymphocyte T spécifique, indique à ce dernier de survivre ou de s'activer. Le processus menant à la liaison d'un peptide à la poche du CMH de classe II, implique trois molécules accessoires, soit la chaine invariante, DM et DO. La chaine invariante replie et dirige les molécules du CMHII jusqu'à la voie endosomale. Ensuite, DM échange CLIP, peptide découlant de la dégradation de la chaine invariante, pour d'autres ayant une meilleure affinité. Exprimé seulement chez certaines cellules présentatrices, DO compétitionne avec les molécules du CMHII pour la liaison à DM et ainsi favorise la présentation d'antigènes internalisés par des récepteurs membranaires. Ensemble, ces protéines ont un potentiel immunomodulatoire pouvant être exploité afin d'augmenter l'efficacité de vaccin peptidique. DO requiert DM pour arriver à maturité et sortir du RE. Cette interaction, qui induit un changement de conformation dans la chaine β de DO, peut être sondée à l'aide de l'anticorps monoclonal Mags.DO5. En utilisant cet anticorps, nous avons montré que DM stabilise l'interaction entre les domaines α1 et β1 de DO et influence son repliement dans le RE. Donc, la conformation qui révèle l’épitope Mags.DO5 corrèle avec la migration de DO hors du RE. Afin d'étudier plus précisément ce changement de conformation, DO fut contraint à une ronde d’évolution dirigée. Des 41 mutants obtenus, 25% se retrouvent à l'interface DO- DM et 12% se retrouvent à la surface exposée au solvant du domain β1, région hypothétique de l'épitope Mags.DO5. De plus, la bibliothèque de mutants a été testée pour son habileté à inhiber l'activité de DM. La plupart des mutants montre une activité inhibitrice diminuée, ce qui supporte le model où DO compétionne les molécules du CMHII en séquestrant le rôle chaperon de DM. Les molécules du CMHII ont l'unique habileté de présenter les superantigènes, une famille de toxines virales et bactériennes qui force l'interaction CMHII-TCR de façon beaucoup moins spécifique qu'en contexte canonique. Alors que la façon dont les superantigènes bactériens s'assemblent avec le CMHII et le TCR soit bien comprise, la nature du complexe trimoléculaire découlant des superantigènes du virus de la tumeur mammaire de la souris (vSAG) reste mal définie. En l'absence d'une structure cristalline, une approche fonctionnelle a été choisie pour examiner la relation des vSAGs avec le CMHII et le TCR avec le but de dévoiler l'architecture de ce multi-complexe protéique. Je montre que le TCR lie parallèlement la chaine α du CMHII et vSAG, ce qui résulte en une interaction presque canonique. Puisque différents peptides peuvent être tolérés lors de cet ancrage, il semble que vSAG ajuste les interactions CMHII-TCR conventionnelles. En outre, mes résultats montrent que vSAG reconnait un épitope conformationnel et que cette liaison peut être abrogée par l'extension amino-terminale du peptide CLIP, laquelle s'étend en deçà de la niche. Finalement, mes résultats suggèrent que vSAG peut réticuler plusieurs CMHII adjacents et active les cellules T via son motif TGXY.
14

Inhibitory actions of Ah receptor agonists and indole-containing compounds in breast cancer cell lines and mouse models

Walker, Kelcey Manae Becker 29 August 2005 (has links)
The aryl hydrocarbon receptor (AhR) binds synthetic and chemoprotective phytochemicals, and research in this laboratory has developed selective AhR modulators (SAhRMs) for treatment of breast cancer. Activation of the AhR through agonists such as TCDD inhibits hormone activation of several E2-responsive genes in breast cancer cell lines. In this study, inhibition of E2-induced proliferation and gene expression by TCDD has been investigated in the uterus of wildtype, ERKO and AhRKO mice. Cyclin D1, DNA polymerase ?, and VEGF mRNA levels are induced by E2 through ER? in the uterus as determined by in situ hybridization studies. TCDD down-regulated E2-induced cyclin D1 and DNA polymerase ? expression, but not E2-induced VEGF expression, in wild-type mice, but not AhRKO mice, confirming the role of the AhR. Furthermore, protein synthesis was not necessary for induction of cyclin D1 or DNA polymerase ?gene expression by E2 or inhibition of these responses by TCDD. Therefore, AhR-ER? crosstalk directly regulates the expression of genes involved in cell proliferation in vivo. AhR agonists induce down-regulation of ErbB family receptors in multiple tissues/organs suggesting possible inhibitory interactions with chemotherapeutic potential. Recently, it has been reported that the SAhRM 1,1??,2,2??-tetramethyldiindolylmethane inhibited DMBA-induced mammary tumor growth in rats and also inhibited MAPK and PI3-K pathways in human breast cancer cells. BT-474 and MDA-MB-453 cell lines are ErbB2-overexpressing breast cancer cells that express functional AhR and exhibit constitutive activation of MAPK and PI3-K pathways. Therefore, 1,1??,2,2??-tetramethyldiindolylmethane-induced inhibition of ErbB2 signaling was investigated in these cells lines and in the MMTV-c-neu mouse mammary tumor model, which overexpresses ErbB2 in the mammary gland. The growth of ErbB2 overexpressing cell lines and mammary tumors was inhibited by 1,1??,2,2??-tetramethyldiindolylmethane; however, modulation of MAPK or PI3-K pathways and cell cycle proteins nor induction of apoptosis by 1,1',2,2'-tetramethyldiindolylmethane was observed in the ErbB2overexpressing cell lines. Current studies are investigating mitochondrial effects of 1,1??,2,2??-tetramethyldiindolylmethane in the ErbB2-overexpressing cell lines, as well as continuing studies on gene expression profiles in the mammary glands of MMTV-c-neu mice to better understand and identify critical genes that are responsible for ErbB2-mediated transformation and growth of cancer cells/tumors.
15

Impact of obesity on MMTV-Wnt-1 mammary cancer : role of the insulin-like growth factor-1 (IGF-1)/Akt/mTOR pathway

De Angel, Rebecca Elena 02 February 2011 (has links)
Obesity increases breast cancer risk and progression in postmenopausal women. The Akt/mTOR signaling pathway is activated in tumors in response to increased levels of obesity-related growth factors, including insulin-like growth factor (IGF)-1. Hence, we evaluated energy balance modulation as a mechanism for breast cancer prevention through modulation of Akt/mTOR. Studies suggest that dietary calcium can decrease weight gain, although an exact mechanism is not yet identified. Therefore, we investigated the effects of low-fat (10 kcal % fat) or high-fat (45 kcal % fat) diets containing either calcium phosphate (dairy) or calcium carbonate (supplement) on body weight in ovariectomized (OVX) C57BL/6 mice to determine if dietary calcium could overcome the effects of a high-fat diet. We showed that dairy decreased body weight, with no effect on food consumption. However, it is not known if restoration of normal weight can reverse mammary tumor progression and/or Akt/mTOR pathway activation. To evaluate this, mice were fed a control diet, a calorie restricted regimen, or a diet-induced obesity (DIO) regimen for 17 weeks, after which the DIO mice were switched to the control diet, and this resulted in a 20% weight loss and mice of equal weight to control mice. MMTV-Wnt-1 mammary tumor cells were orthopically injected at week 20, following weight loss. At week 22, mice began placebo or RAD001, an mTOR inhibitor, treatment by oral gavage. Tumor growth and Akt/mTOR signaling were enhanced in formerly obese mice, despite reduction in weight, adiposity and serum hormone levels. RAD001 decreased tumor growth in the CR and control group, but was less effective in the formerly obese mice. In an additional study, we added a DIO gourp which was not switched to the control diet, and found that circulating IGF-1 levels remained significantly elevated in formerly obese mice relative to control and were comparable to levels in the DIO mice. We found that the mechanism of tumor progression was through enhanced Akt/mTOR signaling in both obese and formerly obese mice. Based on the Akt/mTOR activation in MMTV-Wnt-1 tumor growth and progression, we next investigated the anticancer effects of ursolic acid (UA), a pentacyclic triterpene. It was previously shown that UA can affect Akt signaling. Our results showed that UA was effective decreasing tumor growth and Akt/mTOR signaling. Taken together, our findings show that the growth-enhancing effects of obesity on mammary tumor may persist even after weight loss and suggest that a combination of dietary and pharmacologic interventions targeting IGF-1/Akt/mTOR may be an effective strategy in the treatment of postmenopausal breast cancer. / text
16

Searching for a functional relationship between the breast cancer susceptibility gene BRCA1 and the progesterone receptor in breast cancer cells

Calvo Vidal, Verónica Alejandra 17 July 2009 (has links)
Germ-line mutations in the breast cancer susceptibility gene BRCA1 strongly increase the risk of developing breast and ovarian cancer in women. Different hypothesis have been proposed to explain this tissue specificity. One of the most argued hypothesis is the one that proposes a link between BRCA1 and ovarian hormones' action. Much data have been published in the last years pointing to an important role of progesterone receptor (PR) in inducing normal mammary development and also breast cancer formation. This study aimed to search for a functional relationship between BRCA1 and PR in breast cancer cells. We have found that BRCA1 inhibits the transcriptional activity of PR. We have investigated in more detail the mechanism of this effect. BRCA1 and PR interact in vivo in a ligand-independent fashion. Most importantly, BRCA1 alters the ligand-independent and dependent degradation of PR protein through its ubiquitination and this might have a direct effect on the level of PR recruitment on regulated promoters. BRCA1 is recruited to the hormone-responsive regions of PR-target genes and affects the presence of histone deacetylase activity and the level of monoubiquitinated histone H2A, linking BRCA1 action with chromatin status. These findings support a connection between BRCA1, the principal tumour suppressor responsible for familial breast cancer, and the progesterone receptor transcriptional activity. This relationship can be hypothesized to be reflected in the BRCA1-related breast tumourigenesis. / Mutaciones germinales en el gen breast cancer susceptibility gene BRCA1 aumentan altamente el riesgo de padecer cáncer de mama y ovario en mujeres. Se han propuesto diferentes hipótesis para explicar esta especificidad de tejido. Una de las hipótesis más argumentadas es la que propone una relación entre BRCA1 y la acción de las hormonas ováricas. En los últimos años se han publicado numerosos datos señalando al papel esencial del receptor de progesterona (PR) en la inducción del desarrollo normal de la mama y en la formación del cáncer de mama. Este estudio pretendía buscar una relación funcional entre BRCA1 y PR en células de cáncer de mama. Hemos demostrado que BRCA1 inhibe la actividad transcripcional de PR. Hemos investigado en más detalle el mecanismo de este efecto. BRCA1 y PR interaccionan in vivo de una manera independiente de ligando. Y lo que es más, BRCA1 altera la degradación independiente y dependiente de ligando de PR a través de su ubiquitinización y esto podría tener un efecto directo en el nivel de reclutamiento de PR en promotores regulados. BRCA1 es reclutado a las regiones de respuesta a hormona de genes diana de PR y afecta la presencia de actividad histona desacetilasa y el nivel de histona H2A monoubiquitinada, estableciendo un enlace entre la acción de BRCA1 y el estado de la cromatina. Estos hallazgos apoyan una conexión entre BRCA1, el principal supresor de tumor responsable del cáncer de mama hereditario, y la actividad transcripcional del receptor de progesterona. Se puede hipotetizar que esta relación se ve reflejada en el proceso de tumorigénesis BRCA1-dependiente.
17

The Role of APOBEC3 in Controlling Retroviral Spread and Zoonoses

Rosales Gerpe, María Carla January 2014 (has links)
APOBEC3 (A3) proteins are a family of host-encoded cytidine deaminases that protect against retroviruses and other viral intruders. Retroviruses, unlike other viruses, are able to integrate their genomic proviral DNA within hours of entering host cells. A3 proteins hinder retroviral infectivity by editing retroviral replication intermediates, as well as by inhibiting retroviral replication and integration through deamination-independent methods. These proteins thus constitute the first line of immune defense against endogenous and exogenous retroviral pathogens. The overall goal of my Master's project was to better understand the critical role A3 proteins play in restricting inter- and intra-host transmission of retroviruses. There are two specific aspects that I focused on: first, investigating the role of mouse APOBEC3 (mA3) in limiting the zoonotic transmission of murine leukemia retroviruses (MLVs) in a rural environment; second, to identify the molecular features in MLVs that confer susceptibility or resistance to deamination by mA3. For the first part of my project, we collected blood samples from dairy and production cattle from four different geographical locations across Canada. We then designed a novel PCR screening strategy targeting conserved genetic regions in MLVs and Mouse Mammary Tumor Virus (MMTV) and MMTV-like betaretroviruses. Our results indicate that 4% of animals were positive for MLV and 2% were positive for MMTV. Despite crossing the species barrier by gaining entry into bovine cells, our study also demonstrates that the bovine A3 protein is able to potently inhibit the spread of these murine retroviruses in vitro. The next question we asked was whether mA3 could also mutate and restrict murine endogenous retroviruses and thereby partake in limiting zoonotic transmission. Moloney MLV and AKV MLV are two highly homologous murine gammaretroviruses with opposite sensitivities to restriction by mA3: MoMLV is resistant to restriction and deamination while AKV is sensitive to both. Design of MoMLV/AKV hybrid viruses enabled us to map the region of mA3 resistance to the region encoding the glyco-Gag accessory protein. Site-directed mutagenesis then allowed us to correlate the number of N-linked glycosylation sites with the level of resistance to deamination by mA3. Our results suggest that Gag glycosylation is a possible viral defence mechanism that arose to counteract the evolutionary pressure imposed by mA3. Overall, my projects show the important role A3 proteins play in intrinsic immunity, whether defending the host from foreign retroviral invaders or endogenous retroviral foes.

Page generated in 0.0328 seconds