151 |
Elasto-Plastic Modelling Of Fine Grained Soils - A Variable Moduli ApproachShantharajanna, H R 07 1900 (has links) (PDF)
No description available.
|
152 |
Contributions à la géométrie algébrique imparfaite en caractéristique positive / Contributions to imperfect algebraic geometry in positive characteristicHuang, Yuliang 18 September 2019 (has links)
Ce travail de thèse, composé de quatre parties, est consacré à l’étude de la géométrie algébrique en caractéristiques mixte et positive. Dans la première partie, motivés par une théorie conjecturale de la ramification pour les torseurs inséparables, nous étudions les modèles maximaux des torseurs sur un corps local, qui sont une généralisation des anneaux des entiers dans la théorie classique de la ramification. Nous prouvons la maximalité et la fonctorialité des modèles maximaux et nous les calculons explicitement pour les schémas en groupes finis plats d'ordre p. La deuxième partie est un travail en commun avec Giulio Orecchia et Matthieu Romagny. Nous étudions la perfection des algèbres et la coperfection des espaces et champs algébriques. Nous prouvons que l’espace des composantes connexes fournit la coperfection d’un espace algébrique et il représente la colimite du système de Frobenius relatifs. Dans le cas des champs algébriques, nous construisons le pro-groupoïde fondamental étale, nous prouvons qu'il fournit la coperfection, et il représente la colimite du système de Frobenius relatifs dans le cas de Deligne-Mumford. Dans la troisième partie, nous prouvons quelques résultats de platitude et de représentabilité des espaces de modules de torseurs sous certains schémas en groupes, qui découlent naturellement de l’espace de modules propre des p-revêtements galoisiens. Nous discutons également de la relation avec les jacobiennes généralisées des courbes ouvertes. Dans la dernière partie, nous nous intéressons à un nouveau type de géométrie analytique non-archimédienne, avec des valuations à valeurs dans des monoïdes commutatifs totalement ordonnés. Nous étudions quelques exemples de schémas et d’espaces adiques. / This thesis work, consisting of four parts, is devoted to the study of algebraic geometry in mixed and positive characteristics. In the first part, motivated by a conjectural ramification theory for inseparable torsors, we study the maximal model of a torsor over a local field, which is a generalization of integer rings in classical ramification theory. We prove the maximality and functoriality of maximal models, and calculate them explicitly for some finite flat group schemes of order p. The second part is a joint work with Giulio Orecchia and Matthieu Romagny. We study perfection of algebras and coperfection of algebraic spaces and stacks. We prove that the space of connected components provides the coperfection of an algebraic space, and it represents the colimit of relative Frobenii. In the case of algebraic stacks, we construct the étale fundamental pro-groupoid, and prove that it provides the coperfection, and it represents the colimit of relative Frobenii in Deligne-Mumford case. In the third part, we prove some results on flatness and representability of moduli spaces of torsors under certain group schemes, which naturally arise from the proper moduli space of Galois p-covers (stable p-torsors). We also discuss the relation with generalized Jacobians of open curves. In the last part, we are interested in a new kind of nonarchimedean analytic geometry, with valuations on totally ordered commutative monoids. We study some examples from schemes and adic spaces.
|
153 |
Courbes intégrales : transcendance et géométrie / Integral curves : transcendence and geometryJardim da Fonseca, Tiago 12 December 2017 (has links)
Cette thèse est consacrée à l'étude de quelques questions soulévées par le théorème de Nesterenko sur l'indépendance algébrique de valeurs des séries d'Eisentein E₂, E₄, E₆. Elle est divisée en deux parties.Dans la première partie, constituée des deux premiers chapitres, on généralise les équations différentielles algébriques satisfaites par les séries d'Eisenstein qui se trouvent dans le coeur de la méthode de Nesterenko, les équations de Ramanujan. Ces généralisations, appélées 'équations de Ramanujan supérieures', sont obtenues géométriquement à partir de champs de vecteurs définis, de manière naturelle, sur certains espaces de modules de variétés abéliennes. Afin de justifier l'intérêt des équations de Ramanujan supérieures en théorie de transcendance, on montre aussi que les valeurs d'une solution particulière remarquable de ces équations sont liées aux 'périodes' de variétés abéliennes.Dans la deuxième partie (troisième chapitre), on étudie la méthode de Nesterenko per se. On établit un énoncé géométrique, contenant le théorème de Nesterenko, sur la transcendance de valeurs d'applications holomorphes d'un disque vers une variété quasi-projective sur $overline{mathbf{Q}}$ définies comme des courbes intégrales d'un champ de vecteurs. Ces applications doivent aussi satisfaire une propriété d'intégralité, ainsi qu'une condition de croissance et une forme renforcée de la densité de Zariski, conditions qui sont naturelles pour des courbes intégrales de champs de vecteurs. / This thesis is devoted to the study of some questions motivated by Nesterenko's theorem on the algebraic independence of values of Eisenstein series E₂, E₄, E₆. It is divided in two parts.In the first part, comprising the first two chapiters, we generalize the algebraic differential equations satisfied by Eisenstein series that lie in the heart of Nesterenko's method, the Ramanujan equations. These generalizations, called 'higher Ramanujan equations', are obtained geometrically from vector fields naturally defined on certain moduli spaces of abelian varieties. In order to justify the interest of the higher Ramanujan equations in Transcendence Theory, we also show that values of a remarkable particular solution of these equations are related to 'periods' of abelian varieties.In the second part (third chapter), we study Nesterenko's method per se. We establish a geometric statement, containing the theorem of Nesterenko, on the transcendence of values of holomorphic maps from a disk to a quasi-projective variety over $overline{mathbf{Q}}$ defined as integral curves of some vector field. These maps are required to satisfy some integrality property, besides a growth condition and a strong form of Zariski-density that are natural for integral curves of algebraic vector fields.
|
154 |
Confluence of quantum K-theory to quantum cohomology for projective spaces / Confluence de la K-théorique quantique vers la cohomologie quantique pour les espaces projectifsRoquefeuil, Alexis 20 September 2019 (has links)
En géométrie algébrique, les invariants de Gromov—Witten sont des invariants énumératifs qui comptent le nombre de courbes complexes dans une variété projective lisse qui vérifient des conditions d’incidence. En 2001, A. Givental et Y.P. Lee ont défini de nouveaux invariants, dits de Gromov—Witten K-théoriques, en remplaçant les définitions cohomologiques dans la construction des invariants de Gromov—Witten par leurs analogues K-théoriques. Une question essentielle est de comprendre comment sont reliées ces deux théories. En 2013, Iritani- Givental-Milanov-Tonita démontrent que les invariants K-théoriques peuvent être encodés dans une fonction qui vérifie des équations aux q-différences. En général, ces équations fonctionnelles vérifient une propriété appelée “confluence”, selon laquelle on peut dégénérer ces équations pour obtenir une équationdifférentielle. Dans cette thèse, on propose de comparer les deux théories de Gromov— Witten à l’aide de la confluence des équations aux q-différences. On montre que, dans le cas des espaces projectifs complexes, que ce principe s’adapte et que les invariants Kthéoriques peuvent être dégénérés pour obtenir leurs analogues cohomologiques. Plus précisément, on montre que la confluence de la petite fonction J de Givental K-théorique permet de retrouver son analogue cohomologique après une transformation par le caractère de Chern. / In algebraic geometry, Gromov— Witten invariants are enumerative invariants that count the number of complex curves in a smooth projective variety satisfying some incidence conditions. In 2001, A. Givental and Y.P. Lee defined new invariants, called Ktheoretical Gromov—Witten invariants. These invariants are obtained by replacing cohomological objects used in the definition of the usual Gromov—Witten invariants by their Ktheoretical analogues. Then, an essential question is to understand how these two theories are related. In 2013, Iritani-Givental- Milanov-Tonita show that K-theoretical Gromov—Witten invariants can be embedded in a function which satisfies a q-difference equation. In general, these functional equations verify a property called “confluence”, which guarantees that we can degenerate these equations to obtain a differential equation. In this thesis, we propose to compare our two Gromov—Witten theories through the confluence of q-difference equations. We show that, in the case of complex projective spaces, this property can be adapted to degenerate Ktheoretical invariants into their cohomological analogues. More precisely, we show that theconfluence of Givental’s small K-theoretical Jfunction produces its cohomological analogue after applying the Chern character.
|
155 |
Novel Elastomers, Characterization Techniques, and Improvements in the Mechanical Properties of Some Thermoplastic Biodegradable Polymers and Their NanocompositesHassan, Mohamed K. I. 07 October 2004 (has links)
No description available.
|
156 |
Equivariant Moduli Theory on K3 SurfacesChen, Yuhang 08 September 2022 (has links)
No description available.
|
157 |
Geometric cycles on moduli spaces of curvesTarasca, Nicola 24 May 2012 (has links)
Ziel dieser Arbeit ist die explizite Berechnung gewisser geometrischer Zykel in Modulräumen von Kurven. In den letzten Jahren wurden Divisoren auf $\Mbar_{g,n}$ ausgiebig untersucht. Durch die Berechnung von Klassen in Kodimension 1 konnten wichtige Ergebnisse in der birationalen Geometrie der Räume $\Mbar_{g,n}$ erzielt werden. In Kapitel 1 geben wir einen Überblick über dieses Thema. Im Gegensatz dazu sind Klassen in Kodimension 2 im Großen und Ganzen unerforscht. In Kapitel 2 betrachten wir den Ort, der im Modulraum der Kurven vom Geschlecht 2k durch die Kurven mit einem Büschel vom Grad k definiert wird. Da die Brill-Noether-Zahl hier -2 ist, hat ein solcher Ort die Kodimension 2. Mittels der Methode der Testflächen berechnen wir die Klasse seines Abschlusses im Modulraum der stabilen Kurven. Das Ziel von Kapitel 3 ist es, die Klasse des Abschlusses des effektiven Divisors in $\Mbar_{6,1}$ zu berechnen, der durch punktierte Kurven [C, p] gegeben ist, für die ein ebenes Modell vom Grad 6 existiert, bei dem p auf einen Doppelpunkt abgebildet wird. Wie Jensen gezeigt hat, erzeugt dieser Divisor einen extremalen Strahl im pseudoeffektiven Kegel von $\Mbar_{6,1}$. Ein allgemeines Ergebnis über gewisse Familien von Linearsystemen mit angepasster Brill-Noether-Zahl 0 oder -1 wird eingeführt, um die Berechnung zu vervollständigen. / The aim of this thesis is the explicit computation of certain geometric cycles in moduli spaces of curves. In recent years, divisors of $\Mbar_{g,n}$ have been extensively studied. Computing classes in codimension one has yielded important results on the birational geometry of the spaces $\Mbar_{g,n}$. We give an overview of the subject in Chapter 1. On the contrary, classes in codimension two are basically unexplored. In Chapter 2 we consider the locus in the moduli space of curves of genus 2k defined by curves with a pencil of degree k. Since the Brill-Noether number is equal to -2, such a locus has codimension two. Using the method of test surfaces, we compute the class of its closure in the moduli space of stable curves. The aim of Chapter 3 is to compute the class of the closure of the effective divisor in $\M_{6,1}$ given by pointed curves [C,p] with a sextic plane model mapping p to a double point. Such a divisor generates an extremal ray in the pseudoeffective cone of $\Mbar_{6,1}$ as shown by Jensen. A general result on some families of linear series with adjusted Brill-Noether number 0 or -1 is introduced to complete the computation.
|
158 |
Σχεδίαση κυκλωμάτων με πλεονάζουσες και μη αναπαραστάσεις για το αριθμητικό σύστημα υπολοίπων / Design of arithmetic circuits for residue number system using redundant and not redundant encodingsΒασσάλος, Ευάγγελος 11 October 2013 (has links)
Η υλοποίηση αποδοτικών αριθμητικών κυκλωμάτων αποτελεί ένα ανοικτό πεδίο έρευνας καθώς η συνεχής εξέλιξη της τεχνολογίας απαιτεί την επανεκτίμηση των μεθόδων σχεδίασής τους, ενώ παράλληλα δημιουργεί νέους τομείς εφαρμογής τους. Ο τεράστιος όγκος πληροφορίας και η ανάγκη γρήγορης επεξεργασίας της έχει οδηγήσει στην ανάγκη αύξησης της συχνότητας λειτουργίας των αντίστοιχων κυκλωμάτων. Μεγάλης σημασίας παραμένει επίσης η ανάγκη για τη μείωση της κατανάλωσης ισχύος των συστημάτων αυτών, αλλά και του κόστους τους, που συνδέονται άμεσα με την επιφάνεια ολοκλήρωσής τους. Η ικανοποίηση των παραμέτρων αυτών επιτάσσει σε διάφορες περιπτώσεις την υιοθέτηση αριθμητικών συστημάτων, πέραν του συμβατικού δυαδικού συστήματος. Χαρακτηριστικά παραδείγματα αποτελούν το Αριθμητικό Σύστημα Υπολοίπων (Residue Number System – RNS) όπως επίσης και τα αριθμητικά συστήματα πλεοναζουσών αναπαραστάσεων (redundant number systems).
Η διδακτορική αυτή διατριβή ασχολείται με την υλοποίηση αποδοτικών κυκλωμάτων για το Αριθμητικό Σύστημα Υπολοίπων, με την έρευνα να επικεντρώνεται στην υιοθέτηση τόσο πλεοναζουσών όσο και μη-πλεοναζουσών αναπαραστάσεων στα διάφορα κανάλια επεξεργασίας του.
Το πρώτο μέρος της διατριβής έχει ως στόχο τη σχεδίαση αποδοτικών κυκλωμάτων υπολοίπων με χρήση μη-πλεοναζουσών αναπαραστάσεων τόσο για τις κύριες-βασικές αριθμητικές πράξεις (πρόσθεση, πολλαπλασιασμός) όσο και για τις δευτερεύουσες-βοηθητικές (αφαίρεση, ύψωση σε δύναμη) πράξεις. Συγκεκριμένα, παρουσιάζονται κυκλώματα αφαίρεσης και πρόσθεσης/αφαίρεσης για κανάλια υπολοίπου της μορφής 2^n+-1, κυκλώματα πολλαπλασιασμού με σταθερά για το σύνολο διαιρετών {2^n-1, 2^n, 2^n+1} καθώς και κυκλώματα Booth πολλαπλασιασμού προγραμματιζόμενης λογικής για τα κανάλια υπολοίπου 2^n+-1. Επιπλέον, παρουσιάζονται κυκλώματα ύψωσης στον κύβο για το κανάλι υπολοίπου 2^n-1. Προτείνεται επίσης μια οικογένεια αριθμητικών κυκλωμάτων (αθροιστές, αφαιρέτες, πολλαπλασιαστές, κυκλώματα ύψωσης στο τετράγωνο) υπολοίπου 2^n+1 για την αναπαράσταση ελάττωσης κατά 1, που ενσωματώνουν τη μετατροπή του αποτελέσματος στην κανονική αναπαράσταση μέσα στην αρχιτεκτονική τους, ενώ παρουσιάζεται και μία ενιαία μεθοδολογία σχεδίασης κυκλωμάτων ανάστροφης μετατροπής για σύνολα διαιρετών με κανάλια της μορφής 2^n+1 που υιοθετούν την αναπαράσταση ελάττωσης κατά 1. Τέλος, διερευνούνται και οι διαιρέτες της μορφής 2^n-2 και προτείνονται για αυτούς αποδοτικές αρχιτεκτονικές κυκλωμάτων πρόσθεσης, πολλαπλασιασμού, ύψωσης στο τετράγωνο και ευθείας μετατροπής.
Στο δεύτερο μέρος της διατριβής το ενδιαφέρον εστιάζεται σε μία διαφορετική κατηγορία αναπαραστάσεων, οι οποίες παρέχουν περισσότερους από ένα δυνατούς τρόπους κωδικοποίησης των εντέλων τους. Οι πλεονάζουσες αυτές αναπαραστάσεις παρουσιάζουν συγκεκριμένα χαρακτηριστικά, όπως η δυνατότητα εξισορρόπησης ταχύτητας και επιφάνειας υλοποίησης. Στη διατριβή εξετάζονται τρεις πλεονάζουσες αναπαραστάσεις για το Αριθμητικό Σύστημα Υπολοίπων με κανάλια διαιρετών της μορφής 2^n+-1 και παρουσιάζεται μία γενικευμένη μεθοδολογία διαχείρισης των ψηφίων τους, η οποία εφαρμόζεται στη σχεδίαση κυκλωμάτων μετατροπής.
Στο τελευταίο μέρος περιγράφονται δύο εφαρμογές συστημάτων που βασίζονται στο Αριθμητικό Σύστημα Υπολοίπων. Αναλυτικότερα, σχεδιάζεται και υλοποιείται ένα σύστημα ανίχνευσης ακμών σε εικόνα με ένα στάδιο προ-επεξεργασίας για μείωση του θορύβου καθώς και τρία φίλτρα πεπερασμένης κρουστικής απόκρισης. / The implementation of efficient arithmetic circuits has always been an open field for research, since the technology evolves rapidly, demanding the reevaluation of their design methods. At the same time this continuous evolution opens new research areas for these circuits. The need for fast processing of a vast amount of information demands an increase of the operational frequency of the corresponding circuits, while at the same time low power consumption, low cost and therefore low area remain of crucial importance. Meeting these needs in arithmetic circuits usually implies the employment of alternative, non-binary number systems. Such examples are the Residue Number System (RNS) and number systems with redundant representations.
The subject of this PhD dissertation is the implementation of efficient arithmetic circuits for the RNS emphasizing both in redundant and not redundant representations.
The first part of the dissertation deals with the design of efficient non-redundant arithmetic circuits for main arithmetic operations such as addition and multiplication that are met in every processing system, as well as for auxiliary operations like subtraction, squaring and cubing. Specifically, the circuits presented include subtractors and adders/subtractors for the moduli channels of the 2^n+-1 form, single-constant multipliers for the {2^n-1, 2^n, 2^n+1} moduli set, configurable modulo 2^n +-1 Booth-encoded multipliers as well as modulo 2^n-1 cubing units. Furthermore, a family of diminished-1 modulo 2^n+1 arithmetic circuits (adders, subtractors, multipliers and squarers) is also presented, that produces the respective result directly to weighted (normal) representation, embedding that way the conversion process between these two representations. The design of efficient Residue-to-Binary converters is also considered and a novel generic methodology is proposed for the systematic design of those circuits. The modulo 2^n-2 channel is also investigated and an arithmetic processing framework is proposed including adders, multipliers, squarers and Binary-to-Residue converters.
In the second part, we focus on a different category of representations, where operands can be encoded in more than one ways. Such representations offer certain characteristics such as a tradeoff between area and speed. In particular, we consider three redundant representations for the RNS processing channels of the 2^n+-1 form, which are the most common choice. A generic methodology is presented for treating their digits in order to design efficient converters for them.
The last part of the dissertation presents two applications that are implemented entirely in the RNS domain. Their architectures rely on the proposed arithmetic circuits. The first application is an image edge detector with a pre-processing noise filtering stage. The second application involves the design of three Finite Impulse Response (FIR) filters.
|
159 |
Homologie de morse et théorème de la signatureSt-Pierre, Alexandre January 2009 (has links)
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal.
|
160 |
Surfaces des espaces homogènes de dimension 3 / Surfaces in 3-dimensional homogeneous spacesCartier, Sébastien 15 September 2011 (has links)
Ce mémoire porte sur l'étude des surfaces minimales et de courbure moyenne constante dans les espaces homogènes de dimension 3. Nous établissons les formules de Sym-Bobenko pour les surfaces de courbure moyenne constante 1/2 de H^2xR et minimales du groupe de Heisenberg, et donnons des exemples de construction de telles immersions par la méthode DPW. Nous montrons également que des propriétés de symétrie passent aux correspondances de type surfaces sœurs et cousines, ce qui entraîne l'existence de graphes entiers de courbure moyenne constante 1/2 à bout vertical dans H^2xR qui ne sont pas de révolution. Nous reprenons ensuite l'étude des bouts verticaux d'immersions de courbure moyenne constante 1/2 dans H^2xR. Nous munissons une famille de graphes entiers d'une structure de variété lisse et en déduisons un analogue pour H^2xR d'un théorème de A. E. Treibergs pour l'espace de Minkowski. Nous nous intéressons également aux déformations des anneaux de révolution. Une conséquence directe est l'existence d'anneaux immergés qui ne sont pas de révolution. Nous construisons notamment des anneaux dont les bouts n'ont pas le même axe. Enfin, nous décrivons les invariants de Nœther correspondant aux isométries des espaces homogènes pour les surfaces minimales et de courbure moyenne constante. Nous utilisons le formalisme de la géométrie de contact qui permet l'écriture de formules explicites en toute généralité, et nous étudions l'évolution des formes de Nœther sous l'action des isométries des espaces homogènes. Nous calculons ces invariants dans le cas des anneaux déformés de H^2xR, et dans celui des anneaux horizontaux du groupe de Heisenberg / The present dissertation deals with the study of minimal and constant mean curvature surfaces in 3-dimensional homogeneous spaces. In a first part, we establish Sym-Bobenko formulæ for constant mean curvature 1/2 surfaces in H^2xR and minimal surfaces in the Heisenberg group, and give examples of construction of such immersions using the DPW method. We also show that certain symmetry properties are shared by sister or cousin surfaces, which implies the existence non rotational entire graphs of constant mean curvature 1/2 in H^2xR with a vertical end.In a second part, we treat in more details the study of vertical ends of constant mean curvature 1/2 immersions in H^2xR. We endow a particular family entire graphs with a structure of smooth manifold and deduce an analogue in H^2xR to a theorem by A. E. Treibergs in the Minkowski space. We are also interested in deforming rotational annuli. A direct consequence is the existence of immersed non rotational annuli, and in particular we construct annuli with ends that do not have the same axis. Finally, we describe the Nœther invariants corresponding to isometries of the ambient homogeneous space for minimal and constant mean curvature surfaces. To do so, we use the formalism of contact geometry which allows general and explicit formulæ. We then study the evolution of Nœther form under the action of isometries in homogeneous spaces. We compute these invariants in the case of deformed annuli in H^2xR, and in the case of horizontal annuli in Heisenberg group
|
Page generated in 0.2646 seconds