31 |
On The Goresky-Hingston ProductMaiti, Arun 25 January 2017 (has links)
In [GH09] M. Goresky and N. Hingston described and investigated various properties of a product on the cohomology of the free loop space of a closed, oriented manifold M relative to the constant loops. In this thesis we will give Morse and Floer theoretic descriptions of the product. There is a theorem due to J. Jones in [JJ87] which describes an isomorphism between cohomology of the free loop space and Hochschild homology of the singular cochain algebra of M with rational coefficients. We will use the theorem of J. Jones to find an algebraic model for the Goresky-Hingston product. We then use the algebraic model to explore further properties and applications of the Goresky Hingston product. In particular we use it to compute the ring structure for the n-spheres.
|
32 |
ANALYTIC AND TOPOLOGICAL COMBINATORICS OF PARTITION POSETS AND PERMUTATIONSJung, JiYoon 01 January 2012 (has links)
In this dissertation we first study partition posets and their topology. For each composition c we show that the order complex of the poset of pointed set partitions is a wedge of spheres of the same dimension with the multiplicity given by the number of permutations with descent composition c. Furthermore, the action of the symmetric group on the top homology is isomorphic to the Specht module of a border strip associated to the composition. We also study the filter of pointed set partitions generated by knapsack integer partitions. In the second half of this dissertation we study descent avoidance in permutations. We extend the notion of consecutive pattern avoidance to considering sums over all permutations where each term is a product of weights depending on each consecutive pattern of a fixed length. We study the problem of finding the asymptotics of these sums. Our technique is to extend the spectral method of Ehrenborg, Kitaev and Perry. When the weight depends on the descent pattern, we show how to find the equation determining the spectrum. We give two length 4 applications, and a weighted pattern of length 3 where the associated operator only has one non-zero eigenvalue. Using generating functions we show that the error term in the asymptotic expression is the smallest possible.
|
33 |
Complexe de Morse et bifurcationsDuquerroix, Florian 01 1900 (has links)
Soit une famille de couples (ft,Xt)t∈J , où J est un intervalle, ft
est une fonction lisse à valeurs réelles définie sur une variété lisse
et compacte V , et Xt est un pseudo-gradient associé à la fonction
ft. L’objet de ce mémoire est l’étude des bifurcations subies par les
complexes de Morse associés à ces couples. Deux approches sont
utilisées : l’étude directe des bifurcations et l’approche par homotopie.
On montre que finalement ces deux approches permettent
d’obtenir les mêmes résultats d’un point de vue fonctoriel. / Let (ft,Xt)t∈J be a family of pairs, where J is an interval,
ft is a smooth real-valued Morse function defined on a smooth
compact manifold V , and Xt is a pseudo-gradient field associated
to ft. The purpose of this master thesis is to study the bifurcations
undergone by the associated Morse complexes. Two ways
are used to reach this result : the direct study of the bifurcations
and the continuation method. We prove that the two methods
produce the same results from a functorial point of view.
|
34 |
Sobre a topologia das singularidades de Morin / On the topology of Morin singularitiesCamila Mariana Ruiz 22 July 2015 (has links)
Neste trabalho, nós abordamos alguns resultados de T. Fukuda e de N. Dutertre e T. Fukui sobre a topologia das singularidades de Morin. Em particular, apresentamos uma nova prova para o Teorema de Dutertre-Fukui [2, Theorem 6.2], para o caso em que N = Rn, usando a Teoria de Morse para variedades com bordo. Baseados nas propriedades de um n-campo de vetores gradiente (∇ f1; : : : ∇fn) de uma aplicação de Morin f : M → Rn, com dim M ≥ n, na segunda parte deste trabalho, nós introduzimos o conceito de n-campos de Morin para n-campos de vetores que não são necessariamente gradientes. Nós também generalizamos o resultado de T. Fukuda [3, Theorem 1], que estabelece uma equivalência módulo 2 entre a característica de Euler de uma variedade diferenciável M e a característica de Euler dos conjuntos singulares de uma aplicação de Morin definida sobre M, para o contexto dos n-campos de Morin. / In this work, we revisit results of T. Fukuda and N. Dutertre and T. Fukui on the topology of Morin maps. In particular, we give a new proof for Dutertre-Fukui\'s Theorem [2, Theorem 6.2] when N = Rn, using Morse Theory for manifolds with boundary. Based on the properties of a gradient n-vector field (∇ f1; : : : ∇ fn) of a Morin map f : M → Rn, where dim M ≥ n, in the second part of this work, we introduce the concept of Morin n-vector field for n-vector fields V = (V1; : : : ; Vn) that are not necessarily gradients. We also generalize the result of T. Fukuda [3, Theorem 1], which establishes a module 2 equivalence between Euler\'s characteristic of a manifold M and Euler\'s characteristic of the singular sets of a Morin map defined on M, to the context of Morin n-vector fields.
|
35 |
Resultados de multiplicidade para equações de Schrödinger com campo magnético via teoria de Morse e topologia do domínio / Multiplicity results for nonlinear Schrödinger equations with magnetic field via Morse theory and domain topologyNemer, Rodrigo Cohen Mota 02 December 2013 (has links)
Neste trabalho, estudamos a existência de soluções não triviais para uma classe de equações de Schrödinger não lineares envolvendo um campo magnético com condição de Dirichlet ou condição de fronteira mista Dirichlet-Neumann. Nos dois primeiros capítulos, damos uma estimativa para o número de soluções não triviais para o problema de Dirichlet em termos da topologia do domínio. Nos dois capítulos restantes, consideramos o problema de fronteira mista e estimamos o número de soluções não triviais em termos da topologia da porção da fronteira onde é prescrita a condição de Neumann. Em ambos os casos, usamos a teoria de categoria de Ljusternik-Schnirelmann e a teoria de Morse / We study the existence of nontrivial solutions for a class of nonlinear Schrödinger equations involving a magnetic field with Dirichlet or mixed DirichletNeumann boundary condition. In the first two chapters we give an estimate for the number of nontrivial solutions for the Dirichlet boundary value problem in terms of topology of the domain. In the last two chapters we consider mixed DirichletNeumann boundary value problems and the estimation of the number of nontrivial solutions is given in terms of the topology of the part of the boundary where the Neumann condition is prescribed. In both cases, we use Lyusternik- Shnirelman category and the Morse theory
|
36 |
Sobre a topologia das singularidades de Morin / On the topology of Morin singularitiesRuiz, Camila Mariana 22 July 2015 (has links)
Neste trabalho, nós abordamos alguns resultados de T. Fukuda e de N. Dutertre e T. Fukui sobre a topologia das singularidades de Morin. Em particular, apresentamos uma nova prova para o Teorema de Dutertre-Fukui [2, Theorem 6.2], para o caso em que N = Rn, usando a Teoria de Morse para variedades com bordo. Baseados nas propriedades de um n-campo de vetores gradiente (∇ f1; : : : ∇fn) de uma aplicação de Morin f : M → Rn, com dim M ≥ n, na segunda parte deste trabalho, nós introduzimos o conceito de n-campos de Morin para n-campos de vetores que não são necessariamente gradientes. Nós também generalizamos o resultado de T. Fukuda [3, Theorem 1], que estabelece uma equivalência módulo 2 entre a característica de Euler de uma variedade diferenciável M e a característica de Euler dos conjuntos singulares de uma aplicação de Morin definida sobre M, para o contexto dos n-campos de Morin. / In this work, we revisit results of T. Fukuda and N. Dutertre and T. Fukui on the topology of Morin maps. In particular, we give a new proof for Dutertre-Fukui\'s Theorem [2, Theorem 6.2] when N = Rn, using Morse Theory for manifolds with boundary. Based on the properties of a gradient n-vector field (∇ f1; : : : ∇ fn) of a Morin map f : M → Rn, where dim M ≥ n, in the second part of this work, we introduce the concept of Morin n-vector field for n-vector fields V = (V1; : : : ; Vn) that are not necessarily gradients. We also generalize the result of T. Fukuda [3, Theorem 1], which establishes a module 2 equivalence between Euler\'s characteristic of a manifold M and Euler\'s characteristic of the singular sets of a Morin map defined on M, to the context of Morin n-vector fields.
|
37 |
Extensions de fonctions d'un voisinage de la sphère à la boule / Extensions of functions from a neighborhood of the sphere to the ballSeigneur, Valentin 13 December 2018 (has links)
Étant donnée une fonction lisse ˜ f définie sur un voisinage de la sphère euclidienne de dimension n dans la boule, peut-on l’étendre en une fonction définie sur la boule bordée par la sphère, de manière à ce que l’extension n’ait aucun point critique ? Cette thèse propose d’étudier cette question, en supposant que la restriction de ˜ f à la sphère, notée f, est Morse. Ce problème a été introduit pour la première fois par Blank et Laudenbach en1970, et a aussi été posé par Arnol’d en 1981. Nous donnons une condition nécessaire d’extension sans points critiques qui s’appuie sur le complexe de Morse de la fonction f, et de la répartition des points critiques de f en deux ensembles : ceux dont la dérivée normale est négative et ceux dont la dérivée normale est positive. Cette condition nécessaire permet alors de donner un cadre algébrique à ce problème venant de la topologie différentielle et s’appuie principalement sur lesgrandes théories de la deuxième moitié du XXème siècle, à savoir celle des cobordismes de Thom,Smale, Milnor etc. Elle permet notamment de donner des conditions nécessaires et suffisantesdans certains cas plus restrictifs, et donne lieu à une condition nécessaire plus faible qui présentel’intérêt d’être calculable.Le point de départ des résultats est celui de Barannikov, qui le premier a traduit le problèmed’extension de fonction avec des conditions de dérivées normales en un problème de chemin defonctions générique qui ne présente pas de singularité globale. / Given a smooth function ˜ f defined on a neighborhood of the euclidian sphere of dimension n in the ball, is it possible to extend it to a function defined on the ball which has no critical points ? This thesis studies this question, assuming the f, the restriction of ˜ f to the sphere, is Morse.This problem was first introduced by Blank and Laudenbach in 1970. We give a necessary condition of extension without critical points that is based on Morsehomology and the repartition of the critical set of f into two sets : the set of points whosenormal derivative to the sphere interior to the ball is negative and the set of points whosenormal derivative is positive. This necessary condition is of algebraic nature and uses great theories of the second half of the XXth century, namely cobordism theory of Thom, Smale,Milnor etc. It also leads to a sufficient condition in some interesting cases, and to a weaker necessary condition for a general function ˜ f which is easily computable.The point-of-view is the one of Barannikov, who was the first to tackle this problem bymeans of considerations about path of functions
|
38 |
Teoria de Morse-Novikov e seus aspectos dinâmicosRaphael, Lucas January 2018 (has links)
Orientadora: Profa. Dra. Mariana Rodrigues da Silveira / Dissertação (mestrado) - Universidade Federal do ABC, Programa de Pós-Graduação em Matemática , 2018. / A Teoria de Morse é baseada na obtenção de informações topológicas de uma variedade
M diferenciável por meio de uma função real f : M !R com apenas pontos
críticos não degenerados. Nesta dissertação estudamos uma adaptação desta teoria
para funções com imagem no círculo S1. Este estudo é realizado considerando o recobrimento cíclico infinito de M induzido pelo recobrimento universal R sobre S1.
Mostramos que, assim como no caso Morse, informações topológicas de M podem
ser recuperadas através de um complexo de cadeias construído a partir dos pontos
críticos de f . / Morse theory is based on recovering topological information about a smooth manifold
M using a real valued function f : M ! R with a finite number of nondegenarate
critical points. In this work we study an adaptation of this theory for
circle valued maps. This study is done considering the infinite cyclic covering of
M induced by the universal covering R of S1. We prove that, as in the Morse case,
topological information of M can be recovered using a chain complex generated by
the critical points of f .
|
39 |
O complexo de Morse-Witten via sequências espectrais / The Morse-Witten complex via spectral sequencesVieira, Ewerton Rocha, 1987- 17 August 2018 (has links)
Orientador: Ketty Abaroa de Rezende / Dissertação (mestrado) - Universidade Estadual de Campiknas, Instituto de Matemática, Estatística e Computação Científica / Made available in DSpace on 2018-08-17T15:05:58Z (GMT). No. of bitstreams: 1
Vieira_EwertonRocha_M.pdf: 3301438 bytes, checksum: 3fe2a609518ad6e7e190afc243b53ea4 (MD5)
Previous issue date: 2011 / Resumo: Nesse trabalho, estudaremos o complexo de Morse-Witten via sequências espectrais, utilizando a matriz de conexão sobre z que codifica as orbitas de conexão do uso de Morse associado ao complexo. O algoritmo do Método da Varredura aplicado à matriz de conexão sobre z produz uma sequência espectral (Er; dr), que por sua vez nos fornece informações importantes sobre a dinâmica. Dada a necessidade de computarmos os geradores dos -modulos Erp,q e as diferencias drp,q da seqüência espectral, utilizamos o software Sweeping Algorithm,que calcula os Erp,q e drp,q de forma rápida e eficiente. Apresentamos uma forma de estender o complexo de Morse-Witten, conforme [BaC1] e [BaC]. Tal complexo apresenta informações entre pontos críticos não consecutivos, ate então não obtidas pelo complexo de Morse-Witten. Para esse complexo estendido temos também uma seqüência espectral associada, através da qual obtemos informações dinâmicas, conforme os trabalhos [BaC1] e [BaC] / Abstract: In this work, we study the Morse-Witten Complex via spectral sequences, using the connection matrix over z, which codi_es the connecting orbits of the Morse ow associated to the complex. The Sweeping Method algorithm applied to the connection matrix over z produces a spectral sequence (Er; rd), which in turn gives us important information on the dynamics. Given the need to compute the generators of Z-modules Erp,q and the diferentials drp,q of the spectral sequence, we use the software Sweeping Algorithm, calculates Erp,q and drp,q quickly and efficiently. We present a way to extend the Morse-Witten as [BaC1] and [BaC]. This complex exhibits information between non-consecutive critical points, not obtainable using the Morse-Witten complex. For this extended Morse Complex we also have an associated spectral sequence, whereby dynamical information is also obtained as in [BaC1] and [BaC] / Mestrado / Mestre em Matemática
|
40 |
Resultados de multiplicidade para equações de Schrödinger com campo magnético via teoria de Morse e topologia do domínio / Multiplicity results for nonlinear Schrödinger equations with magnetic field via Morse theory and domain topologyRodrigo Cohen Mota Nemer 02 December 2013 (has links)
Neste trabalho, estudamos a existência de soluções não triviais para uma classe de equações de Schrödinger não lineares envolvendo um campo magnético com condição de Dirichlet ou condição de fronteira mista Dirichlet-Neumann. Nos dois primeiros capítulos, damos uma estimativa para o número de soluções não triviais para o problema de Dirichlet em termos da topologia do domínio. Nos dois capítulos restantes, consideramos o problema de fronteira mista e estimamos o número de soluções não triviais em termos da topologia da porção da fronteira onde é prescrita a condição de Neumann. Em ambos os casos, usamos a teoria de categoria de Ljusternik-Schnirelmann e a teoria de Morse / We study the existence of nontrivial solutions for a class of nonlinear Schrödinger equations involving a magnetic field with Dirichlet or mixed DirichletNeumann boundary condition. In the first two chapters we give an estimate for the number of nontrivial solutions for the Dirichlet boundary value problem in terms of topology of the domain. In the last two chapters we consider mixed DirichletNeumann boundary value problems and the estimation of the number of nontrivial solutions is given in terms of the topology of the part of the boundary where the Neumann condition is prescribed. In both cases, we use Lyusternik- Shnirelman category and the Morse theory
|
Page generated in 0.025 seconds