41 |
On the Metrology of Nanoscale Silicon Transistors above 100 GHzYau, Kenneth Hoi Kan 12 January 2012 (has links)
This thesis presents the theoretical and experimental framework for the development of accurate on-wafer S-parameter and noise parameter measurements of silicon devices in the upper millimetre-wave frequency range between 70 GHz and 300 GHz. Novel integrated noise parameter test setups were developed for nanoscale MOSFETs and SiGe HBTs and validated up to 170 GHz. In the absence of accurate foundry models in this frequency range, the experimental findings of this thesis have been employed by other graduate students to design the first noise and input impedance matched W- and D-band low-noise amplifiers in nanoscale CMOS and SiGe BiCMOS technologies. The results of the D-band S-parameter characterization techniques and of the new Y-parameter based noise model have been used by STMicroelectronics to optimize the SiGe HBT structure for applications in the D-band.
In the first half of the thesis, theoretical analysis indicates that, for current silicon devices, distributive effects in test structure parasitics will become significant only beyond 300 GHz. This conclusion is supported by experiments which compare the lumped-element based open-short and the transmission line based split-thru de-embedding techniques to the multiline thru-reflect-line (TRL) network analyzer calibration algorithm.
Electromagnetic simulations and measurements up to 170 GHz demonstrate that, for microstrip transmission lines with metal ground plane placed above the silicon substrate, the line capacitance per unit length remains a weak function of frequency. Based on this observation, the multiline TRL algorithm has been modified to include a dummy short de-embedding structure. This allowed for the first time to perform single step calibration and de-embedding of silicon devices using on-silicon calibration standards. The usefulness of the proposed method was demonstrated on the extraction of the difficult-to-measure SiGe HBT and nanoscale MOSFET model parameters, including transcondutance delay, tau, gate resistance, source resistance, drain-source capacitance, and channel resistance, Ri.
Building on the small-signal characterization technique developed in the first half, a new Y-parameter based noise model for SiGe HBTs, that includes the correlation between the base and collector shot noise currents, is proposed in the second half of the thesis along with a method to extract the noise transit time parameter. With this model, the high frequency noise parameters of a SiGe HBT can be calculated from the measured Y-parameters, without requiring any noise figure measurements.
Finally, to validate the proposed noise model, the first on-wafer integrated noise parameter measurement systems were designed and measured in the W- and D-bands. The systems enable millimetre-wave noise parameter measurements with the multi-impedance method by integrating the impedance tuner and an entire millimetre-wave noise receiver on the same die as the device-under-test. Good agreement was obtained between the noise parameters calculated from the Y-parameter measurements and those obtained from direct noise figure measurements with the integrated systems. The results indicate that the minimum noise figure of state-of-the-art advanced SiGe HBTs remains below 5 dB throughout the D-band, making them suitable for a variety of commercial products in this frequency range.
|
42 |
Compact modeling of gate tunneling leakage current in advanced nanoscale soi mosfetsDarbandy, Ghader 10 December 2012 (has links)
En esta tesis se han desarrollado modelos compactos de corriente de fuga por túnel de puerta en SOI MOSFET (de simple y doble puerta) avanzados basados en una aproximación WKB de la probabilidad de túnel. Se han estudiado los materiales dieléctricos high-k más prometedores para los diferentes requisitos de nodos tecnológicos de acuerdo ala hoja de ruta ITRS de miniaturización de dispositivos electrónicos.
Hemos presentado un modelo compacto de particionamiento de la corriente de fuga de puerta para un MOSFET nanométrico de doble puerta (DG MOSFET), utilizando modelos analíticos de la corriente de fuga por el túnel directo de puerta. Se desarrollaron también Los modelos analíticos dependientes de la temperatura de la corriente de túnel en la región de inversión y de la corriente túnel asistido por trampas en régimen subumbral.
Finalmente, se desarrolló una técnica de extracción automática de parámetros de nuestro modelo compacto en DG MOSFET incluyendo efectos de canal corto. La corriente de la puerta por túnel directo y asistido por trampas modelada mediante los parámetros extraídos se verificó exitosamente mediante comparación con medidas experimentales.
|
43 |
Device characterization and reliability of Dysprosium (Dy) incorporated HfO₂ CMOS devices and its application to high-k NAND flash memoryLee, Tackhwi 07 February 2011 (has links)
Dy-incorporated HfO₂ gate oxide with TaN gate electrode nMOS device has been developed for high performance CMOS applications in 22nm node technology. DyO /HfO bi-layer structure shows thin EOT with reduced leakage current and less charge trapping compared to HfO₂. Excellent electrical performance of the DyO-capped HfO₂ oxide n-MOSFET such as lower V[subscript TH], higher drive current, and improved channel electron mobility are reported. DyO/HfO samples also show better immunity for V[subscript TH] instability and less severe charge trapping characteristics. Its charge trapping characteristics, conduction mechanisms and dielectric reliability have been investigated in this work. As an application to memory device, HfON charge trapping layered NAND flash memory is developed and characterized. First, temperature-dependent Dy diffusion and the diffusion-driven Dy dipole formation process are discussed to clarify the origin of V[subscript TH] shift, and eventually modulate the effective work function in Dy-Hf-O/SiO₂ system. The Dy-induced dipoles are closely related to the Dy-silicate formation at the high-k/SiO₂ interfaces since the V[subscript FB] shift in Dy₂O₃ is caused by the dipole and coincides with the Dy-silicate formation. Dipole formation is a thermally activated process, and more dipoles are formed at a higher temperature with a given Dy content. The Dy-silicate related bonding structure at the interface is associated with the strength of the Dy dipole moment, and becomes dominant in controlling the V[subscript FB]/V[scubscript TH] shift during high temperature annealing in the Dy- Hf-O/SiO₂ gate oxide system. Dy-induced dipole reduces the degradation of the electron mobility. Second, to understand the reduced leakage current of the DyO/HfO sample, the effective barrier height of Dy₂O₃ was calculated from FN tunneling models, and the band diagram was estimated. The higher effective barrier height of Dy₂O₃, which is around 2.32 eV calculated from the F-N plot, accounts for the reduced leakage current in Dy incorporated HfO₂ nMOS devices. The lower barrier height of HfO₂ result in increased electron tunneling currents enhanced by the buildup of hole charges trapped in the oxide, which causes a severe increase of stress-induced leakage current (SILC), leading to oxide breakdown. However, the increased barrier height in Dy incorporated HfO₂ inhibits a further increase of the electron tunneling from the TaN gate, and trapped holes lessen the hole tunneling currents, resulting in a negligible SILC. The lower trap generation rate by the reduced hole trap density and the reduced hole tunneling of the Dy-doped HfO₂ dielectric demonstrates the high dielectric breakdown strength by weakening the charge trapping and defect generation during the stress. Based on these fundamental studies of the dielectric breakdown, modeling of time-dependent dielectric breakdown (TDDB) was done. The intrinsic TDDB of the Dy-doped HfO₂ gate oxide having 1 nm EOT is characterized by the progressive breakdown (PBD) model. At high temperature, the PBD becomes severe, since thermal energy causes carrier hopping between the localized weak spots. The voltage acceleration factor derived from the power law shows a realistic prediction in comparison with those from the 1/E model. The increase of the voltage acceleration factor at lower stress voltage is due to the lower trap generation rate in Dy- incorporated HfO₂. This voltage acceleration factor can be easily extended to include temperature dependency, and the effective activation energy derived from the power law is voltage dependent. Lastly, I studied the device characteristics of thin HfON charge-trap layer nonvolatile memory in a TaN/Al₂O₃/HfON/SiO₂/p-Si (TANOS) structure. A large memory window and fast erase speed, as well as good retention time, were achieved by using the NH₃ nitridation technique to incorporate nitrogen into the thin HfO₂ layer, which causes a high electron-trap density in the HfON layer. The higher dielectric constant of the HfON charge-trap layer induces a higher electric field in the tunneling oxide at the same voltage compared to non-nitrided films and, thus, creates a high Fowler-Nordheim (FN) tunneling current to increase the erase and programming speed. The trap-level energy in the HfON layer was calculated by using an amphoteric model. / text
|
44 |
Fabrication and Characterization of 3C- and4H-SiC MOSFETsEsteve, Romain January 2011 (has links)
During the last decades, a global effort has been started towards the implementation of energy efficient electronics. Silicon carbide (SiC), a wide band-gap semiconductor is one of the potential candidates to replace the widespread silicon (Si) which enabled and dominates today’s world of electronics. It has been demonstrated that devices based on SiC lead to a drastic reduction of energy losses in electronic systems. This will help to limit the global energy consumption and the introduction of renewable energy generation systems to a competitive price. Active research has been dedicated to SiC since the 1980’s. As a result, a mature SiC growth technology has been developed and 4 inch SiC wafers are today commercially available. Research and development activities on the fabrication of SiC devices have also been carried out and resulted in the commercialization of SiC devices. In 2011, Schottky barrier diodes, bipolar junction transistors, and junction field effect transistors can be purchased from several electronic component manufacturers. However, the device mostly used in electronics, the metal-oxide-semiconductor field effect transistor (MOSFET) is only recently commercially available in SiC. This delay is due to critical technology issues related to reliability and stability of the device, which still challenge many researchers all over the world. This thesis summarizes the main challenges of the SiC MOSFET fabrication process. State of the art technology modules like the gate stack formation, the drain/source ohmic contact formation, and the passivation layer deposition are considered and contributions of this work to the development of these technology modules is reported. The investigated technology modules are integrated into the complete fabrication process of vertical MOSFET devices. This MOSFET process was tested using cubic SiC (3C-SiC) and hexagonal SiC (4H-SiC) wafers and achieved results will be discussed. / QC 20110415
|
45 |
IMPACT OF SCALING ON NOISE BEHAVIOR OF SUB-100NM MOSFETSTan, Ge 10 1900 (has links)
<p>This thesis presents the noise characterization, modeling, and simulation of deep sub-100nm bulk MOSFETs and predicts the noise behavior for future technology nodes. There are two main subjects discussed in this thesis. First, we present the impact of scaling of MOSFETs on channel thermal noise. Second, we investigate how the technology development can affect noise performance of a single transistor.</p> <p>In the first topic, analytical MOSFET channel thermal noise expressions are presented and verified. We calibrate our model using experimental data from devices in 60 nm technology node. The technology scaling issue of MOSFETs on noise performance is also examined by applying the parameters predicted in the International Technology Roadmap of Semiconductor (ITRS).</p> <p>In the second topic, a new figure of merit, namely equivalent noise sheet resistance, is defined for the first time to demonstrate the impact of scaling. This new figure of merit represents the intrinsic part of the equivalent noise resistance that excludes the geometry information of the device, which captures the technology related parameters of transistors. By defining equivalent noise sheet resistance, we can provide process information not only for IC designers but also for process engineers.</p> / Master of Applied Science (MASc)
|
46 |
Packaging and Magnetic Integration for Reliable Switching of Paralleled SiC MOSFETsMiao, Zichen 03 August 2018 (has links)
Silicon carbide (SiC) outperform Si chips in terms of high blocking voltage capability, low on-resistance, high-temperature operation, and high switching frequency. Several SiC MOSFETs are usually paralleled to increase current capability, considering cost effectiveness and manufacturability. For a SiC power module with current rating higher than 100 A, high did/dt and dvds/dt could possibly cause cross-turn-on (crosstalk-induced turn-on) through the gate-to-drain capacitance Cgd of the MOSFET dies and the package inductances. Mismatches in threshold voltage (Vth) up to 33% have been observed among paralleled SiC MOSFETs. This leads to unbalanced transient peak currents and switching energies. Both cross-turn-on and current unbalance degrade the reliability of a power module. Increasing the immunity to cross-turn-on while maintaining the similar switching energies and balancing the transient peak currents below 10% without sacrificing the voltage stress are the goals of this work.
Development of a SPICE model free of non-convergence – A simulation model for a SiC power module is necessary for evaluations of cross-turn-on and current unbalance; however, most SiC power modules do not have models. No existing modeling methods discuss how to build an accurate SPICE model that is free of non-convergence when hundreds of parasitic inductances are present. A modeling process is introduced for paralleled MOSFETs encapsulated in a power module that gives access to both the internal channel current and voltage of each bare die inside the package. This model is free of non-convergence and accurate. Parasitic ac resistances, dc resistances, and ac inductances are extracted by Q3D Extractor. Non-convergence is avoided by including the ac resistance of the conduction trace in the model. Also, a series model which is set default in Q3D Extractor is converted to parallel model to accurately reflect how the current flows through the dc and ac resistances of the trace. A complete SPICE model of a commercial SiC power module was derived and validated by experiments. The error between predicted turn-on peak current of the developed model and that of the experimental data is 2%, significantly lower than the 28% difference between prediction result of commercial model and experimental data.
Detection of internal cross-turn-on – Terminal current of a power module does not reflect the internal channel current due to the numerous parasitic inductances of the package. No existing method is able to detect the cross-turn-on in a power module since dies are usually encapsulated and the channel currents are hard to measure. A nonintrusive method to identify cross-turn-on based on the changing ringing current is developed. The detection method was analyzed theoretically and validated by experiments using a 1.2-kV SiC module. The negative drive voltage and gate resistance for safe operation can be determined by the detection method.
Influence of layout symmetry on immunity to cross-turn-on – Gate resistance, gate-to-drain capacitance of the MOSFET, slew rate of drain-to-source voltage, and temperature have been recognized as the only elements impacting the immunity to cross-turn-on for a single chip and module. Layout symmetry is newly discovered to be another factor that contributes to the immunity. Asymmetrical and symmetrical modules following commercial layouts were tested by a double pulse tester. The peak cross-turn-on currents, high-side switching energy, and total switching energy at various input voltages, low-side gate resistances, and load currents are normalized for comparison. The peak cross-turn-on current of the symmetrical module is 84% lower than that of the asymmetrical module at nominal condition. Longer power-loop and gate-drive loop are required to achieve symmetrical layout for more than two dies in parallel. This increases the low-side switching energy of the symmetrical module. The total switching energies of the two modules are similar. In this case, a symmetrical layout is still recommended since current stress caused by cross-turn-on is much smaller in symmetrical module than in the asymmetrical module and chances to have shoot-through between the high side and the low side are reduced.
Magnetic integration into a power module for current balancing – Existing power modules do not have balanced transient currents when threshold voltage mismatch exists. A module with integrated coupled inductors was designed, fabricated, and validated to be effective to balance the currents without sacrificing voltage stress and switching energy. The designed integrated coupled inductors achieve inverse coupling by utilizing the copper trace of the substrate and bond wires and have the following features: size comparable to the silicon carbide (SiC) die, coupling coefficient higher than 0.98, tens of nH operating at tens of MHz, and current rating of tens of Amperes. The coupled inductors with the magnetic material of low-temperature co-fired ceramics (LTCC) are compatible with existing packaging technology for module fabrication. The effectiveness of reducing transient-current mismatch at various input voltages, load currents, and gate resistances was verified by experiments. Compared with the baseline module following commercial practice, the module with integrated coupled inductors reduces current unbalance from 36% to 6.4% and turn-on-energy difference from 28% to 2.6% while maintaining the same total switching energy and a negligible change of voltage stress. / Ph. D. / A silicon carbide (SiC) power module with high di<sub>d</sub>/dt and dv<sub>ds</sub>/dt could possibly cause crossturn-on (crosstalk-induced turn-on) through the gate-to-drain capacitance C<sub>gd</sub> of the MOSFET dies and package inductances. Mismatches in threshold voltage (V<sub>th</sub>) up to 33% have been observed among paralleled SiC MOSFETs. This leads to unbalanced transient peak currents. Both crossturn-on and current unbalance degrade the reliability. Increasing the immunity to cross-turn-on while maintaining the similar switching energies and balancing the transient peak currents below 10% without sacrificing the voltage stress are the goals of this work. The development of a SPICE model for a SiC power module is necessary for evaluations of cross-turn-on and current unbalance; however, no existing modeling methods discuss how to build an accurate SPICE model of a power module free of non-convergence when hundreds of parasitic inductances are present. The modeling method to overcome these challenges is introduced. The error between predicted turn-on peak current of the developed model and that of the experimental data is 2%, significantly lower than the 28% difference between prediction result of commercial model and experimental data. No existing method is able to detect the cross-turn-on in a power module since the dies are usually vi encapsulated and the channel currents are hard to measure. A nonintrusive method to identify the cross-turn-on based on the changing ringing current is developed. The detection method was analyzed theoretically and validated by experiments using a 1.2-kV SiC module. Layout symmetry is newly discovered to be another factor that contributes to the immunity. The peak cross-turn-on current of the symmetrical module is 84% lower than that of the asymmetrical module at nominal condition. The symmetrical layout greatly decreases cross-turn-on currents without increasing total switching energy. Power modules in the market cannot have balanced transient currents when mismatches in threshold voltage V<sub>th</sub> exist. A module with integrated coupled inductors was designed, fabricated, and validated to be effective to balance the currents with the presence of V<sub>th</sub> mismatch. Compared with the baseline module following commercial practice, the module with integrated coupled inductors reduces current unbalance from 36% to 6.4% and turn-on-energy difference from 28% to 2.6% while maintaining the same total switching energy and negligible change of voltage stress.
|
47 |
Conception et hybridation de l'environnement électronique des composants de puissance à structure verticaleSimonot, Timothé 28 November 2011 (has links) (PDF)
Ces travaux de thèse portent sur l'intégration hétérogène des fonctions de commande pour des transistors de puissance verticaux à grille isolée. Ce travail a consisté en la conception des fonctions de commande pour un transistor de type MOSFET en technologie CMOS planar, puis en la conception du composant de puissance lui-même, incluant des fonctions spécifiques pour l'auto-alimentation de sa commande. Le deuxième aspect de ce travail est l'étude et la réalisation technologique de métallisations épaisses en surface de puces silicium pour l'hybridation en chip on chip de la partie commande et de la partie puissance. Ce mémoire de thèse comporte trois chapitres équivalents : études théoriques et présentation des concepts, conception et validation expérimentale de la partie commande puis conception de la partie puissance et développements technologiques. Les champs d'application de ces travaux sont variés car ils couvrent un large domaine de l'électronique de puissance (convertisseurs hybrides).
|
48 |
Silicon Carbide as the Nonvolatile-Dynamic-Memory MaterialCheong, Kuan Yew, n/a January 2004 (has links)
This thesis consists of three main parts, starting with the use of improved nitridation processes to grow acceptable quality gate oxides on silicon carbide (SiC)[1][7], to the comprehensive investigation of basic electron-hole generation process in 4H SiC-based metaloxidesemiconductor (MOS) capacitors [8], [9], and concluding with the experimental demonstration and analysis of nonvolatile characteristics of 4H SiC-based memory devices [10][15]. In the first part of the thesis, two improved versions of nitridation techniques have been introduced to alleviate oxide-growth rate and toxicity problems. Using a combination of nitridation and oxidation processes, a sandwich technique (nitridationoxidationnitridation) has been proposed and verified to solve the lengthy and expensive oxide-growing process in direct nitric oxide (NO) gas [1]. The nitrogen source from the toxic-NO gas has been replaced by using a nontoxic nitrous oxide (N2O) gas. The best combination of process parameters in this gas is oxide-growing temperature at 1300oC with 10% N2O [2], [3]. The quality of nitrided gate oxides obtained by this technique is lower than the sandwich technique [6], [13]. Using 4H SiC-based MOS with nitrided gate oxides grown by either of the abovementioned nitridation techniques, the fundamentals of electron-hole generation have been investigated using high-temperature capacitancetransient measurements. The contributions of carrier generation, occurring at room temperature, in the bulk and at the SiCSiO2 interface are evaluated and compared using a newly developed method [8], [9]. The effective bulk-generation rates are approximately equal for both types of nitrided oxides, whereas the effective surface-generation rates have been shown to exhibit very strong dependencies on the methods of producing the nitrided gate oxide. Based on analysis, the prevailing generation component in a SiC-based MOS capacitor with nitrided gate oxide is at SiCSiO2 interface located below the gate. Utilizing the understanding of electron-hole generation in SiC, the nonvolatile characteristics of memory device fabricated on SiC have been explored. The potential of developing a SiC-based one-transistor one-capacitor (1T/1C) nonvolatile-dynamic memory (NDM) has been analyzed using SiC-based MOS capacitors as storage elements or test structures. Three possible leakage mechanisms have been evaluated [10][16]: (1) leakage via MOS capacitor dielectric, (2) leakage due to electron-hole generation in a depleted MOS capacitor, and (3) junction leakage due to generation current occurred at a reverse-biased pn junction surrounding the drain region of a select metaloxide semiconductor fieldeffecttransistor (MOSFET). Among them, leakage through capacitor oxide remains an important factor that could affect the nonvolatile property in the proposed device, whereas others leakage mechanisms are insignificant. Based on the overall results, the potential of developing a SiC-based 1T/1C NDM is encouraging.
|
49 |
Prospects of voltage regulators for next generation computer microprocessorsLópez Julià, Toni 18 June 2010 (has links)
Synchronous buck converter based multiphase architectures are evaluated to
determine whether or not the most widespread voltage regulator topology can
meet the power delivery requirements of next generation computer
microprocessors. According to the prognostications, the load current will rise to
200A along with the decrease of the supply voltage to 0.5V and staggering tight
dynamic and static load line tolerances. In view of these demands, researchers face
serious challenges to bring forth compliant solutions that can further offer
acceptable conversion efficiencies and minimum mainboard area occupancy.
Among the most prominent investigation fronts are those surveying
fundamental technology improvements aiming at making power semiconductor
devices more effective at high switching frequency. The latter is of critical
importance as the increase of the switching frequency is fundamentally recognized
as the way forward to enhance power density conversion. Provided that switching
losses must be kept low to enable the miniaturization of the filter components, one
primary goal is to cope with semiconductor and system integration technologies
enabling fast dynamic operation of ultra-low ON resistance power switches.
This justifies the main focus of this thesis work, centered around a
comprehensive analysis of the MOSFET switching behavior in the synchronous
buck converter.
The MOSFETs dynamic operation, far from being well describable with the
traditional clamped inductive hard-switching mode, is strongly influenced by a
number of frequently ignored linear and nonlinear parasitic elements that must be
taken into account in order to fully predict real switching waveforms, understand
their dynamics, and most importantly, identify and quantify the related
mechanisms leading to heat generation. This will be revealed from in-depth
investigations of the switched converter under fast switching speeds and heavy
load.
Recognizing the key relevance of appropriate modeling tools that support this
task, the second focal point of the thesis aims at developing a number of suitable
models for the switching analysis of power MOSFETs.
Combined with a series of design guidelines and optimization procedures, these
models form the basis of a proposed methodological approach, where numerical
computations replace the usually enormous experimental effort to elucidate the
most effective pathways towards reducing power losses. This gives rise to the
concept referred to as virtual design loop, which is successfully applied to the
development of a new power MOSFET technology offering outstanding dynamic
and static performance characteristics. From a system perspective, the limits of the
power density conversion will be explored for this and other emerging
technologies that promise to open up a new paradigm in power integration
capabilities.
|
50 |
A study of electrical and material characteristics of III-V MOSFETs and TFETs with high-[kappa] gate dielectricsZhao, Han, 1982- 07 February 2011 (has links)
The performance and power scaling of metal-oxide-semiconductor field-effect-transistors (MOSFETs) has been historically achieved through shrinking the gate length of transistors for over three decades. As Si complementary metal-oxide-semiconductor (CMOS) scaling is approaching the physical and optical limits, the emerging technology involves new materials for the gate dielectrics and the channels as well as innovative structures. III-V materials have much higher electron mobility compared to Si, which can potentially provide better device performance. Hence, there have been tremendous research activities to explore the prospects of III-V materials for CMOS applications. Nevertheless, the key challenges for III-V MOSFETs with high-[kappa] oxides such as the lack of high quality, thermodynamically stable insulators that passivate the gate oxide/III-V interface still hinder the development of III-V MOS devices. The main focus of this dissertation is to develop the proper processes and structures for III-V MOS devices that result in good interface quality and high device performance. Firstly, fabrication processes and device structures of surface channel MOSFETs were investigated. The interface quality of In[subscript 0.53]Ga[subscript 0.47]As MOS devices was improved by developing the gate-last process with more than five times lower interface trap density (D[subscript it]) compared to the ones with the gate-first process. Furthermore, the optimum substrate structure was identified for inversion-type In[subscript 0.53]Ga[subscript 0.47]As MOSFETs by investigating the effects of channel doping concentration and thickness on device performance. With the proper process and channel structures, the first inversion-type enhancement-mode In[subscript 0.53]Ga[subscript 0.47]As MOSFETs with equivalent oxide thickness (EOT) of ~10 Å using atomic layer deposited (ALD) HfO₂ gate dielectric were demonstrated. The second part of the study focuses on buried channel InGaAs MOSFETs. Buried channel InGaAs MOSFETs were fabricated to improve the channel mobility using various barriers schemes such as single InP barrier with different thicknesses and InP/InAlAs double-barrier. The impacts of different high-[kappa] dielectrics were also evaluated. It has been found that the key factors enabling mobility improvement at both peak and high-field mobility in In[subscript 0.7]Ga[subscript 0.3]As quantum-well MOSFETs with InP/InAlAs barrier-layers are 1) the epitaxial InP/InAlAs double-barrier confining carriers in the quantum-well channel and 2) good InP/Al₂O₃/HfO₂ interface with small EOT. Record high channel mobility was achieved and subthreshold swing (SS) was greatly improved. Finally, InGaAs tunneling field-effect-transistors (TFETs), which are considered as the next-generation green transistors with ultra-low power consumption, were demonstrated with more than two times higher on-current while maintaining much smaller SS compared to the reported results. The improvements are believed to be due to using the In[subscript 0.7]Ga[subscript 0.3]As tunneling junction with a smaller bandgap and ALD HfO₂ gate dielectric with a smaller EOT. / text
|
Page generated in 0.0306 seconds