• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 6
  • 6
  • 6
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Efficient transmission design for machine type communications in future wireless communication systems

Wang, Shendi January 2017 (has links)
With a wide range of potential applications, the machine type communication (MTC) is gaining a tremendous interest among mobile network operators, system designers, MTC specialist companies, and research institutes. The idea of having electronic devices and systems automatically connected to each other without human intervention is one of the most significant objectives for future wireless communications. Low data rate transmission and the requirement for low energy consumption are two typical characteristics for MTC applications. In terms of supporting low cots MTC devices, industrial standards will be more efficient if designers can re-use many features of existing radio access technologies. This will yield a cost effective solution to support MTC in future communication systems. This thesis investigates efficient MTC waveform and receiver designs for superior signal transmission quality with low operational costs. In terms of the downlink receiver design, this thesis proposes a novel virtual carrier (VC) receiver system for MTC receivers, which aims to reduce the maximum bandwidth to improve the data processing efficiency and cost-efficiency by using analogue filters to extract only sub-carriers of interest. For the VC receiver systems, we thus reduce the sampling rate in order to reduce the number of subsequent processing operations, which significantly reduces the analogue-to-digital converter (ADC) cost and power consumption while providing high signal to interference noise ratio (SINR) and low bit to error rate (BER) to support low data rate MTC devices. Our theoretical equations account for the interference effect of aliasing on the sub-carrier location, and this helps the system designer to evaluate what kind of filters and receiver sampling rate can be used to balance the energy cost and detection performance. In terms of the uplink waveform design, considering the enhanced number of MTC devices in the future communication systems, i.e. the fifth generation (5G) communications, the same tight synchronisation as used in today appears not to be cost-effective or even possible. Synchronisation signals, which aim to provide a perfect time or frequency synchronisation in the current fourth generation (4G) communication systems (known as the long-term evolution, LTE), is much more costly for low data rate MTC transmissions. The system bandwidth will be significantly reduced if a base station tries to synchronise all received signals among hundreds or thousands MTC devices in one transmission time period. In terms of relaxing the synchronisation requirements, this thesis compares and analyses the side-lobe reduction performance for several candidate multi-carrier waveforms to avoid these problems. We also propose the infinite impulse response universal filtered multi-carrier (UFMC) system and the overlap and add UFMC system, which significantly reduce the processing complexity compared with the state of the art UFMC techniques. This thesis derives closed-form expressions for the interference caused by time offsets between adjacent unsynchronised MTC users. Our analytical equations can be used in both simple and complex time-offset transmission scenarios, and enable the system designer to evaluate the SINR, the theoretical Shannon capacity and the BER performance.
2

Application of Machine Learning to Multi Antenna Transmission and Machine Type Resource Allocation

Emenonye, Don-Roberts Ugochukwu 11 September 2020 (has links)
Wireless communication systems is a well-researched area in electrical engineering that has continually evolved over the past decades. This constant evolution and development have led to well-formulated theoretical baselines in terms of reliability and efficiency. However, most communication baselines are derived by splitting the baseband communications into a series of modular blocks like modulation, coding, channel estimation, and orthogonal frequency modulation. Subsequently, these blocks are independently optimized. Although this has led to a very efficient and reliable process, a theoretical verification of the optimality of this design process is not feasible due to the complexities of each individual block. In this work, we propose two modifications to these conventional wireless systems. First, with the goal of designing better space-time block codes for improved reliability, we propose to redesign the transmit and receive blocks of the physical layer. We replace a portion of the transmit chain - from modulation to antenna mapping with a neural network. Similarly, the receiver/decoder is also replaced with a neural network. In other words, the first part of this work focuses on jointly optimizing the transmit and receive blocks to produce a set of space-time codes that are resilient to Rayleigh fading channels. We compare our results to the conventional orthogonal space-time block codes for multiple antenna configurations. The second part of this work investigates the possibility of designing a distributed multiagent reinforcement learning-based multi-access algorithm for machine type communication. This work recognizes that cellular networks are being proposed as a solution for the connectivity of machine type devices (MTDs) and one of the most crucial aspects of scheduling in cellular connectivity is the random access procedure. The random access process is used by conventional cellular users to receive an allocation for the uplink transmissions. This process usually requires six resource blocks. It is efficient for cellular users to perform this process because transmission of cellular data usually requires more than six resource blocks. Hence, it is relatively efficient to perform the random access process in order to establish a connection. Moreover, as long as cellular users maintain synchronization, they do not have to undertake the random access process every time they have data to transmit. They can maintain a connection with the base station through discontinuous reception. On the other hand, the random access process is unsuitable for MTDs because MTDs usually have small-sized packets. Hence, performing the random access process to transmit such small-sized packets is highly inefficient. Also, most MTDs are power constrained, thus they turn off when they have no data to transmit. This means that they lose their connection and can't maintain any form of discontinuous reception. Hence, they perform the random process each time they have data to transmit. Due to these observations, explicit scheduling is undesirable for MTC. To overcome these challenges, we propose bypassing the entire scheduling process by using a grant free resource allocation scheme. In this scheme, MTDs pseudo-randomly transmit their data in random access slots. Note that this results in the possibility of a large number of collisions during the random access slots. To alleviate the resulting congestion, we exploit a heterogeneous network and investigate the optimal MTD-BS association which minimizes the long term congestion experienced in the overall cellular network. Our results show that we can derive the optimal MTD-BS association when the number of MTDs is less than the total number of random access slots. / Master of Science / Wireless communication systems is a well researched area of engineering that has continually evolved over the past decades. This constant evolution and development has led to well formulated theoretical baselines in terms of reliability and efficiency. This two part thesis investigates the possibility of improving these wireless systems with machine learning. First, with the goal of designing more resilient codes for transmission, we propose to redesign the transmit and receive blocks of the physical layer. We focus on jointly optimizing the transmit and receive blocks to produce a set of transmit codes that are resilient to channel impairments. We compare our results to the current conventional codes for various transmit and receive antenna configuration. The second part of this work investigates the possibility of designing a distributed multi-access scheme for machine type devices. In this scheme, MTDs pseudo-randomly transmit their data by randomly selecting time slots. This results in the possibility of a large number of collisions occurring in the duration of these slots. To alleviate the resulting congestion, we employ a heterogeneous network and investigate the optimal MTD-BS association which minimizes the long term congestion experienced in the overall network. Our results show that we can derive the optimal MTD-BS algorithm when the number of MTDs is less than the total number of slots.
3

Impact of Extended DRX Cycles on Battery Lifetimes and UE Reachability

Cholaraju Narasaraju, Vignesh January 2016 (has links)
Several UE energy consumption optimization techniques have been proposed for Machine Type Communication (MTC) devices. Extended Discontinuous Reception (eDRX) in idle mode is one such technique wherein an UE in idle mode wakes up only during its Paging Occasion (PO) to monitor paging messages from eNodeB (eNB). The PO is located within a Paging frame (PF). The PF is a function of System Frame Number (SFN) cycle of eNB. The paging messages may be sent asynchronously from multiple eNBs to a UE. Due to asynchronous operation of eNBs, SFN takes on different values at a given point in time and therefore a paging message is transmitted at different points in time from different eNBs. Due to this SFN misalignment between eNBs, an idle mode UE might receive and respond to the same paging message from different eNBs and/or miss a PO and thus the paging message. Due to this spread in time of SFN and PO, the actual handling of paging message by the UE becomes inefficient leading to increased UE energy consumption and decreased reachability. These issues, resulting from paging handling, will get amplified further if DRX period is extended longer (eDRX). In this study, we investigate the impact of eDRX cycles and mobility related parameters such as UE speed, cell size and size of SFN misalignment between eNBs on UE energy consumption, use of network resources and UE reachability. Receiving and responding to the same paging message results in increased energy consumption for UE and increased signaling between UE and the network. Missing a PO results in delayed paging reception and hence decreases UE reachability. As the DRX cycle lengths are increased from existing maximum of 2.56 seconds to 10.24 seconds and beyond, we see a reduction in UE energy consumption by more than 90%, but the network signaling and the delay to reach the UE increases linearly as a function of the DRX cycle length. We observe that the number of duplicate paging message receptions/missed POs is minuscule for DRX cycle lengths below 10.24 sec. At DRX cycle length of 10.24 seconds, UEs travelling across 500 m cell radius at speeds of 3, 50, 100 km/h the percentage of duplicate paging receptions are 0.07, 0.11, and 0.15 respectively. This duplicate paging message reception increases the UE energy consumption by 2.31, 6.15 and 12 percent of the total energy units respectively. Similarly, UE misses nearly 0.34, 0.39, and 0.405 percent of the total POs respectively. Depending on the number of consecutive PO misses, the UE reachability decreases. But by reducing the size of SFN misalignment between eNBs, we see that it’s possible to increase the reachability for UEs in eDRX. Further we have proposed solutions based on our analytical study to avoid duplicate paging message reception by UE, increase UE reachability and also reduce UE energy consumption using a windowing technique. We conclude that when a UE is configured with eDRX cycles, the tradeoff between battery lifetimes and UE reachability is based on mobility characteristics and service requirements.
4

Cooperative data exchange for wireless networks : Delay-aware and energy-efficient approaches / Echange coopératif de données pour les réseaux sans fil : Approches respectueuses des délais et efficaces sur le plan énergétique

Zayene, Mariem 29 August 2019 (has links)
Avec le nombre croissant d’appareils intelligents à faible puissance, au cours ces dernières années, la question de l’efficacité énergétique a joué un rôle de plus en plus indispensable dans la conception des systèmes de communication. Cette thèse vise à concevoir des schémas de transmission distribués à faible consommation d’énergie pour les réseaux sans fil, utilisant la théorie des jeux et le codage réseau instantanément décodable (IDNC), qui est une sous-classe prometteuse du codage réseau. En outre, nous étudions le modèle de l'échange coopératif de donnée (CDE) dans lequel tous les périphériques coopèrent en échangeant des paquets codés dans le réseau, jusqu’à ce qu’ils récupèrent tous l’ensemble des informations requises. En effet, la mise en œuvre du CDE basé sur l’IDNC soulève plusieurs défis intéressants, notamment la prolongation de la durée de vie du réseau et la réduction du nombre de transmissions afin de répondre aux besoins des applications temps réel. Par conséquent, contrairement à la plupart des travaux existants concernant l’IDNC, nous nous concentrons non seulement sur le délai, mais également sur l’énergie consommée. En premier lieu, nous étudions le problème de minimisation de l’énergie consommée et du délai au sein d’un petit réseau IDNC coopératif, entièrement connecté et à faible puissance. Nous modélisons le problème en utilisant la théorie des jeux coopératifs de formation de coalitions. Nous proposons un algorithme distribué (appelé “merge and split“) permettant aux nœuds sans fil de s’auto-organiser, de manière distribuée, en coalitions disjointes et indépendantes. L’algorithme proposé garantit une consommation d’énergie réduite et minimise le délai de complétion dans le réseau clustérisé résultant. Par ailleurs, nous ne considérons pas seulement l'énergie de transmission, mais aussi la consommation de l'énergie de calcul des nœuds. De plus, nous nous concentrons sur la question de la mobilité et nous analysons comment, à travers la solution proposée, les nœuds peuvent s’adapter à la topologie dynamique du réseau. Par la suite, nous étudions le même problème au sein d’un réseau large et partiellement connecté. En effet, nous examinons le modèle de CDE multi-sauts. Dans un tel modèle, nous considérons que les nœuds peuvent choisir la puissance d’émission et change ainsi de rayon de transmission et le nombre de voisin avec lesquels il peut entrer en coalition. Pour ce faire, nous modélisons le problème avec un jeu à deux étages; un jeu non-coopératif de contrôle de puissance et un jeu coopératif de formation de coalitions. La solution optimale du premier jeu permet aux joueurs de coopérer à travers des rayons de transmission limités en utilisant la théorie des jeux coopérative. En outre, nous proposons un algorithme distribué “merge and split“ afin de former des coalitions dans lesquelles les joueurs maximisent leurs utilités en termes de délai et de consommation d’énergie. La solution proposée permet la création d’une partition stable avec une interférence réduite et une complexité raisonnable. Nous démontrons que la coopération entre les nœuds au sein du réseau résultant, permet de réduire considérablement la consommation d’énergie par rapport au modèle coopératif optimal qui maintient le rayon de transmission maximal. / With significantly growing number of smart low-power devices during recent years, the issue of energy efficiency has taken an increasingly essential role in the communication systems’ design. This thesis aims at designing distributed and energy efficient transmission schemes for wireless networks using game theory and instantly decodable network coding (IDNC) which is a promising network coding subclass. We study the cooperative data exchange (CDE) scenario in which all devices cooperate with each other by exchanging network coded packets until all of them receive all the required information. In fact, enabling the IDNC-based CDE setting brings several challenges such us how to extend the network lifetime and how to reduce the number of transmissions in order to satisfy urgent delay requirements. Therefore, unlike most of existing works concerning IDNC, we focus not only on the decoding delay, but also the consumed energy. First, we investigate the IDNC-based CDE problem within small fully connected networks across energy-constrained devices and model the problem using the cooperative game theory in partition form. We propose a distributed merge-and-split algorithm to allow the wireless nodes to self-organize into independent disjoint coalitions in a distributed manner. The proposed algorithm guarantees reduced energy consumption and minimizes the delay in the resulting clustered network structure. We do not only consider the transmission energy, but also the computational energy consumption. Furthermore, we focus on the mobility issue and we analyse how, in the proposed framework, nodes can adapt to the dynamic topology of the network. Thereafter, we study the IDNC-based CDE problem within large-scale partially connected networks. We considerate that each player uses no longer his maximum transmission power, rather, he controls his transmission range dynamically. In fact, we investigate multi-hop CDE using the IDNC at decentralized wireless nodes. In such model, we focus on how these wireless nodes can cooperate in limited transmission ranges without increasing the IDNC delay nor their energy consumption. For that purpose, we model the problem using a two-stage game theoretical framework. We first model the power control problem using non-cooperative game theory where users jointly choose their desired transmission power selfishly in order to reduce their energy consumption and their IDNC delay. The optimal solution of this game allows the players at the next stage to cooperate with each other through limited transmission ranges using cooperative game theory in partition form. Thereafter, a distributed multihop merge-and-split algorithm is defined to form coalitions where players maximize their utilities in terms of decoding delays and energy consumption. The solution of the proposed framework determines a stable feasible partition for the wireless nodes with reduced interference and reasonable complexity. We demonstrate that the co-operation between nodes in the multihop cooperative scheme achieves a significant minimization of the energy consumption with respect to the most stable cooperative scheme in maximum transmission range without hurting the IDNC delay.
5

[en] CHANNEL ESTIMATION AND MULTIUSER DETECTION TECHNIQUES FOR MACHINE-TYPE COMMUNICATIONS / [pt] ESTIMAÇÃO DE CANAL E TÉCNICAS DE DETECÇÃO PARA COMUNICAÇÕES ENTRE MÁQUINAS

ROBERTO BRAUER DI RENNA 24 August 2021 (has links)
[pt] Esse trabalho realiza uma extensa revisão bibliográfica da literatura, onde pontos de inovação são observados e novas soluções para os principais problemas no uplink são propostas. Baseados no algoritmo adaptativo Recursive Least Squares (RLS), são apresentadas duas variações regularizadas que conjuntamente detectam a atividade e decodificam os sinais dos dispositivos, sem a necessidade de estimação explícita do canal. Além disso, duas técnicas de detecção por listas são desenvolvidas de modo a refinar o processo de ajuste dos pesos do algoritmo RLS e assim mitigar possíveis propagações de erros. Dividindo o problema em grafos fatoriais, são propostos algoritmos baseados em troca de mensagens de modo a realizar conjuntamente a estimação de canal e detecção de atividade. Além de uma nova derivação das mensagens, são exploradas técnicas de agendamento dinâmico, com base na convergência do algoritmo. Por fim, é apresentada uma solução completa baseada na troca de mensagens, que realiza conjuntamente a estimação de canal, detecção de atividade e decodificação dos dados transmitidos. Resultados numéricos são fornecidos com o objetivo de comparar o desempenho dos algoritmos propostos aos existentes na literatura. Análises de complexidade computacional, evolução dos estados, convergência e ordem de diversidade também são realizadas, assim como a derivação da soma das taxas para o uplink. Por fim, são apresentadas as conclusões obtidas dos trabalhos realizados e discutidas direções para trabalhos futuros. / [en] This work, presents an extensive literature review that highlights innovation opportunities and presents novel solutions for the main uplink mMTC problems. Based on the adaptive Recursive Least Squares (RLS) algorithm, the proposed regularized techniques jointly performs activity detection and signal decoding, without the need to perform explicit channel estimation. In order to improve the detection performance, a list detection technique that uses two candidate-list schemes is developed. Rewriting the problem with factor-graphs, novel message-passing algorithms with dynamic scheduling that jointly estimates the channels and detects devices activity are proposed. Lastly, a complete message-passing solution is presented, where LDPC decoding beliefs are introduced in the system, in a way that the algorithm besides the channel estimation and activity detection, also jointly decodes the signals. In order to evaluate the proposed techniques, numerical results are provided as well as a computational complexity, state-evolution, convergence and a diversity analysis. Uplink sum-rate expressions that take into account metadata collisions, interference and a variable activity probability for each user are also derived. Finally, conclusions and future directions are discussed.
6

On reliable and energy efficient massive wireless communications: the road to 5G

Leyva Mayorga, Israel 14 January 2019 (has links)
La quinta generación de redes móviles (5G) se encuentra a la vuelta de la esquina. Se espera provea de beneficios extraordinarios a la población y que resuelva la mayoría de los problemas de las redes 4G actuales. El éxito de 5G, cuya primera fase de estandarización ha sido completada, depende de tres pilares: comunicaciones tipo-máquina masivas, banda ancha móvil mejorada y comunicaciones ultra fiables y de baja latencia (mMTC, eMBB y URLLC, respectivamente). En esta tesis nos enfocamos en el primer pilar de 5G, mMTC, pero también proveemos una solución para lograr eMBB en escenarios de distribución masiva de contenidos. Específicamente, las principales contribuciones son en las áreas de: 1) soporte eficiente de mMTC en redes celulares; 2) acceso aleatorio para el reporte de eventos en redes inalámbricas de sensores (WSNs); y 3) cooperación para la distribución masiva de contenidos en redes celulares. En el apartado de mMTC en redes celulares, esta tesis provee un análisis profundo del desempeño del procedimiento de acceso aleatorio, que es la forma mediante la cual los dispositivos móviles acceden a la red. Estos análisis fueron inicialmente llevados a cabo por simulaciones y, posteriormente, por medio de un modelo analítico. Ambos modelos fueron desarrollados específicamente para este propósito e incluyen uno de los esquemas de control de acceso más prometedores: access class barring (ACB). Nuestro modelo es uno de los más precisos que se pueden encontrar en la literatura y el único que incorpora el esquema de ACB. Los resultados obtenidos por medio de este modelo y por simulación son claros: los accesos altamente sincronizados que ocurren en aplicaciones de mMTC pueden causar congestión severa en el canal de acceso. Por otro lado, también son claros en que esta congestión se puede prevenir con una adecuada configuración del ACB. Sin embargo, los parámetros de configuración del ACB deben ser continuamente adaptados a la intensidad de accesos para poder obtener un desempeño óptimo. En la tesis se propone una solución práctica a este problema en la forma de un esquema de configuración automática para el ACB; lo llamamos ACBC. Los resultados muestran que nuestro esquema puede lograr un desempeño muy cercano al óptimo sin importar la intensidad de los accesos. Asimismo, puede ser directamente implementado en redes celulares para soportar el tráfico mMTC, ya que ha sido diseñado teniendo en cuenta los estándares del 3GPP. Además de los análisis descritos anteriormente para redes celulares, se realiza un análisis general para aplicaciones de contadores inteligentes. Es decir, estudiamos un escenario de mMTC desde la perspectiva de las WSNs. Específicamente, desarrollamos un modelo híbrido para el análisis de desempeño y la optimización de protocolos de WSNs de acceso aleatorio y basados en cluster. Los resultados muestran la utilidad de escuchar el medio inalámbrico para minimizar el número de transmisiones y también de modificar las probabilidades de transmisión después de una colisión. En lo que respecta a eMBB, nos enfocamos en un escenario de distribución masiva de contenidos, en el que un mismo contenido es enviado de forma simultánea a un gran número de usuarios móviles. Este escenario es problemático, ya que las estaciones base de la red celular no cuentan con mecanismos eficientes de multicast o broadcast. Por lo tanto, la solución que se adopta comúnmente es la de replicar e contenido para cada uno de los usuarios que lo soliciten; está claro que esto es altamente ineficiente. Para resolver este problema, proponemos el uso de esquemas de network coding y de arquitecturas cooperativas llamadas nubes móviles. En concreto, desarrollamos un protocolo para la distribución masiva de contenidos, junto con un modelo analítico para su optimización. Los resultados demuestran que el modelo propuesto es simple y preciso, y que el protocolo puede reducir el con / La cinquena generació de xarxes mòbils (5G) es troba molt a la vora. S'espera que proveïsca de beneficis extraordinaris a la població i que resolga la majoria dels problemes de les xarxes 4G actuals. L'èxit de 5G, per a la qual ja ha sigut completada la primera fase del qual d'estandardització, depén de tres pilars: comunicacions tipus-màquina massives, banda ampla mòbil millorada, i comunicacions ultra fiables i de baixa latència (mMTC, eMBB i URLLC, respectivament, per les seues sigles en anglés). En aquesta tesi ens enfoquem en el primer pilar de 5G, mMTC, però també proveïm una solució per a aconseguir eMBB en escenaris de distribució massiva de continguts. Específicament, les principals contribucions són en les àrees de: 1) suport eficient de mMTC en xarxes cel·lulars; 2) accés aleatori per al report d'esdeveniments en xarxes sense fils de sensors (WSNs); i 3) cooperació per a la distribució massiva de continguts en xarxes cel·lulars. En l'apartat de mMTC en xarxes cel·lulars, aquesta tesi realitza una anàlisi profunda de l'acompliment del procediment d'accés aleatori, que és la forma mitjançant la qual els dispositius mòbils accedeixen a la xarxa. Aquestes anàlisis van ser inicialment dutes per mitjà de simulacions i, posteriorment, per mitjà d'un model analític. Els models van ser desenvolupats específicament per a aquest propòsit i inclouen un dels esquemes de control d'accés més prometedors: el access class barring (ACB). El nostre model és un dels més precisos que es poden trobar i l'únic que incorpora l'esquema d'ACB. Els resultats obtinguts per mitjà d'aquest model i per simulació són clars: els accessos altament sincronitzats que ocorren en aplicacions de mMTC poden causar congestió severa en el canal d'accés. D'altra banda, també són clars en què aquesta congestió es pot previndre amb una adequada configuració de l'ACB. No obstant això, els paràmetres de configuració de l'ACB han de ser contínuament adaptats a la intensitat d'accessos per a poder obtindre unes prestacions òptimes. En la tesi es proposa una solució pràctica a aquest problema en la forma d'un esquema de configuració automàtica per a l'ACB; l'anomenem ACBC. Els resultats mostren que el nostre esquema pot aconseguir un acompliment molt proper a l'òptim sense importar la intensitat dels accessos. Així mateix, pot ser directament implementat en xarxes cel·lulars per a suportar el trànsit mMTC, ja que ha sigut dissenyat tenint en compte els estàndards del 3GPP. A més de les anàlisis descrites anteriorment per a xarxes cel·lulars, es realitza una anàlisi general per a aplicacions de comptadors intel·ligents. És a dir, estudiem un escenari de mMTC des de la perspectiva de les WSNs. Específicament, desenvolupem un model híbrid per a l'anàlisi de prestacions i l'optimització de protocols de WSNs d'accés aleatori i basats en clúster. Els resultats mostren la utilitat d'escoltar el mitjà sense fil per a minimitzar el nombre de transmissions i també de modificar les probabilitats de transmissió després d'una col·lisió. Pel que fa a eMBB, ens enfoquem en un escenari de distribució massiva de continguts, en el qual un mateix contingut és enviat de forma simultània a un gran nombre d'usuaris mòbils. Aquest escenari és problemàtic, ja que les estacions base de la xarxa cel·lular no compten amb mecanismes eficients de multicast o broadcast. Per tant, la solució que s'adopta comunament és la de replicar el contingut per a cadascun dels usuaris que ho sol·liciten; és clar que això és altament ineficient. Per a resoldre aquest problema, proposem l'ús d'esquemes de network coding i d'arquitectures cooperatives anomenades núvols mòbils. En concret, desenvolupem un protocol per a realitzar la distribució massiva de continguts de forma eficient, juntament amb un model analític per a la seua optimització. Els resultats demostren que el model proposat és simple i precís / The 5th generation (5G) of mobile networks is just around the corner. It is expected to bring extraordinary benefits to the population and to solve the majority of the problems of current 4th generation (4G) systems. The success of 5G, whose first phase of standardization has concluded, relies in three pillars that correspond to its main use cases: massive machine-type communication (mMTC), enhanced mobile broadband (eMBB), and ultra-reliable low latency communication (URLLC). This thesis mainly focuses on the first pillar of 5G: mMTC, but also provides a solution for the eMBB in massive content delivery scenarios. Specifically, its main contributions are in the areas of: 1) efficient support of mMTC in cellular networks; 2) random access (RA) event-reporting in wireless sensor networks (WSNs); and 3) cooperative massive content delivery in cellular networks. Regarding mMTC in cellular networks, this thesis provides a thorough performance analysis of the RA procedure (RAP), used by the mobile devices to switch from idle to connected mode. These analyses were first conducted by simulation and then by an analytical model; both of these were developed with this specific purpose and include one of the most promising access control schemes: the access class barring (ACB). To the best of our knowledge, this is one of the most accurate analytical models reported in the literature and the only one that incorporates the ACB scheme. Our results clearly show that the highly-synchronized accesses that occur in mMTC applications can lead to severe congestion. On the other hand, it is also clear that congestion can be prevented with an adequate configuration of the ACB scheme. However, the configuration parameters of the ACB scheme must be continuously adapted to the intensity of access attempts if an optimal performance is to be obtained. We developed a practical solution to this problem in the form of a scheme to automatically configure the ACB; we call it access class barring configuration (ACBC) scheme. The results show that our ACBC scheme leads to a near-optimal performance regardless of the intensity of access attempts. Furthermore, it can be directly implemented in 3rd Generation Partnership Project (3GPP) cellular systems to efficiently handle mMTC because it has been designed to comply with the 3GPP standards. In addition to the analyses described above for cellular networks, a general analysis for smart metering applications is performed. That is, we study an mMTC scenario from the perspective of event detection and reporting WSNs. Specifically, we provide a hybrid model for the performance analysis and optimization of cluster-based RA WSN protocols. Results showcase the utility of overhearing to minimize the number of packet transmissions, but also of the adaptation of transmission parameters after a collision occurs. Building on this, we are able to provide some guidelines that can drastically increase the performance of a wide range of RA protocols and systems in event reporting applications. Regarding eMBB, we focus on a massive content delivery scenario in which the exact same content is transmitted to a large number of mobile users simultaneously. Such a scenario may arise, for example, with video streaming services that offer a particularly popular content. This is a problematic scenario because cellular base stations have no efficient multicast or broadcast mechanisms. Hence, the traditional solution is to replicate the content for each requesting user, which is highly inefficient. To solve this problem, we propose the use of network coding (NC) schemes in combination with cooperative architectures named mobile clouds (MCs). Specifically, we develop a protocol for efficient massive content delivery, along with the analytical model for its optimization. Results show the proposed model is simple and accurate, and the protocol can lead to energy savings of up to 37 percent when compared to the traditional approach. / Leyva Mayorga, I. (2018). On reliable and energy efficient massive wireless communications: the road to 5G [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/115484 / TESIS

Page generated in 0.1548 seconds