• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • 1
  • Tagged with
  • 29
  • 29
  • 19
  • 18
  • 18
  • 18
  • 9
  • 9
  • 8
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

DEVELOPMENT AND PRECLINICAL EVALUATION OF LONG-LASTING COCAINE HYDROLASES FOR COCAINE OVERDOSE AND COCAINE USE DISORDER TREATMENT

Zhang, Ting 01 January 2018 (has links)
Cocaine is a plant-based illicit drug commonly involved in substance use disorder. Although cocaine overdose and cocaine use disorders cause adverse health consequences to individuals and the economic burden on their family and society, there are no FDA (Food and Drug Administration) approved medications for treatment. Recently, it has been recognized that delivery of cocaine hydrolase (CocH) is a promising therapeutic strategy. Human butyrylcholinesterase (hBChE), the primary enzyme involved in cocaine metabolism in human, have advantages over other candidates for the development of CocH. Previous studies in our laboratory have designed and characterized hBChE mutants that have ~4,000-fold improved catalytic efficiency against naturally occurring (-)-cocaine as compared to the wild-type hBChE. Besides the catalytic efficiency, the biological half-life is another essential factor that influences the desired therapeutic value in the long-term treatment of cocaine use disorder. In order to provide prolonged effects to reduce administration frequency in clinical use, efforts have been made to increase the retention time of CocHs in blood circulation by fusing CocHs with other thermostable proteins or their mutants, including human serum albumin (Albu) or the Fc region of the human IgG (Fc). In this dissertation, we demonstrated the clinical potential and the benefits of long-lasting CocHs for cocaine overdose treatment. We used rodent models to show the ability of AlbuCocH1 to block or reverse manifestations of toxic effects of cocaine. In addition, a concomitant LC-MS/MS-based analysis was conducted to investigate the pharmacokinetic profile of a lethal dose of cocaine with the presence of AlbuCocH1. These experimental data demonstrated AlbuCocH1 as an effective cocaine detoxification agent by accelerating the metabolism of cocaine. In order to examine the potential therapeutic value of Fc-fused CocHs in the treatment of cocaine use disorder, we conducted a series of behavioral experiments in rats to evaluate the effectiveness and duration of Fc-fused CocHs in blocking or attenuating cocaine-induced psychostimulant and discriminative stimulus effects. In addition, the intravenous self-administration model was used to investigate the long-term effectiveness of Fc-fused CocHs in blocking or attenuating the reinforcing effects of cocaine. It has been shown that a single dose of E30-6-Fc (3 mg/kg) was able to effectively alter the cocaine dose-response curve and attenuate the reinforcing efficacy of cocaine for at least a month in both male and female rats. In summary, AlbuCocH1 (TV-1380), which failed to meet the primary efficacy endpoint in clinical trials for facilitating abstinence in cocaine-dependent subjects with a weekly dosing schedule (due to the short biological half-life), is more suitable to be developed as a cocaine detoxification agent. On the contrary, the newly designed Fc-fused CocH (e.g. CocH3-Fc, E30-6-Fc) with higher catalytic efficiency and longer biological half-life will be beneficial for long-term abstinence management in cocaine-dependent individuals.
22

GLYCOSAMINOGLYCAN LYASES IN THE PREPARATION OF OLIGOSACCHARIDES

Alabbas, Alhumaidi B 01 January 2018 (has links)
Glycosaminoglycans are heterogeneous polysaccharides that mediate important biological functions. There has been considerable interest in deciphering the precise GAG sequences that are responsible for protein interactions. In fact, several GAG oligosaccharides have been discovered to date as targeting proteins with higher level of specificity. Yet, it has been difficult to develop GAG oligosaccharides as drugs. One of the key reasons for this state of art is that GAG synthesis is extremely challenging and is highly structure-specific. Thus, much of the biology and pharmacology of GAG remains unknown and unexploited to date. An alternative approach is to prepare GAG oligosaccharides using enzymatic depolymerization of polymeric GAGs. GAG lyases, including heparinases and chondritinases represent powerful tools that can theoretically generate multiple oligosaccharides in parallel. However, it is difficult to implement such procedures with high consistency. Moreover, GAG lyases can digest GAGs down to disaccharides. A priori, non-polymeric GAGs, or alternatively GAG oligosaccharides containing 4 to 10 residues, would be expected to function better as therapeutic agents because they would be more homogeneous and less non-specific than their polymeric precursors. Thus, we reasoned that immobilization of these enzymes may engineer altered biopolymer processing, which may afford longer oligosaccharides in higher proportions and greater consistency. Heparinase-I and chondroitinase ABC were immobilized on CNBr-activated Sepharose and compared with the free form of the enzyme. Immobilized GAG lyases retained high efficiency of depolymerization over a wide range of pH, temperature and reusability. Most importantly, the immobilized enzyme was found to produce larger proportions of oligosaccharides longer than di- and tetra-saccharides as compared to lyases in the free form. A two dimensional separation involves size exclusion chromatography followed by reversed phase ion-pairing ultra performance liquid chromatography coupled to electrospray ionization mass spectrometry was employed to separate and characterize oligosaccharide structures. We have identified 40 heparin oligosaccharides, including regular and rare structures ranging from dp4 to dp10 and 39 chondroitin sulfate oligosaccharides in high homogeneity and significant yields. Overall, this technology is likely to offer a simple and cost effective route to preparation of larger amounts of sequences that can be expected to bind and modulate protein function.
23

Analysis of Polarity Signaling in Both Early Embryogenesis and Germline Development in C. Elegans: A Dissertation

Bei, Yanxia 18 January 2005 (has links)
In a 4-cell C. elegans embryo the ventral blastomere EMS requires polarity signaling from its posterior sister cell, P2. This signaling event enables EMS to orient its division spindle along the anterior-posterior (A/P) axis and to specify the endoderm fate of its posterior daughter cell, E. Wnt pathway components have been implicated in mediating P2/EMS signaling. However, no single mutants or various mutant combinations of the Wnt pathway components disrupt EMS polarity completely. Here we describe the identification of a pathway that is defined by two tyrosine kinase related proteins, SRC-1 and MES-1, which function in parallel with Wnt signaling to specify endoderm and to orient the division axis of EMS. We show that SRC-1, a C. elegans homolog of c-Src, functions downstream of MES-1 to specifically enhance phosphotyrosine accumulation at the P2/EMS junction in order to control cell fate and mitotic spindle orientation in both the P2 and EMS cells. In the canonical Wnt pathway, GSK-3 is conserved across species and acts as a negative regulator. However, in C. elegans we find that GSK-3 functions in a positive manner and in parallel with other components in the Wnt pathway to specify endoderm during embryogenesis. In addition, we also show that GSK-3 regulates C. elegans germline development, a function of GSK-3 that is not associated with Wnt signaling. It is required for the differentiation of somatic gonadal cells as well as the regulation of meiotic cell cycle in germ cells. Our results indicate that GSK-3 modulates multiple signaling pathways to regulate both embryogenesis and germline development in C. elegans.
24

Characterization of the Hypersensitive Response of Glycogen Phosphorylase to Catecholamine Stimulation in Primary Culture Diabetic Cardiomyocytes: A Thesis

Buczek-Thomas, Jo Ann 01 August 1992 (has links)
The primary goal of my thesis research was to characterize the basis for the hypersensitive response of glycogen phosphorylase to catecholamine stimulation in primary culture diabetic cardiomyocytes. Toward this goal, I have investigated several key regulatory sites in this signaling pathway which could promote the hypersensitive activation of phosphorylase. Specifically, I investigated (1) which adrenergic receptors are involved in mediating the hypersensitive response of glycogen phosphorylase to epinephrine stimulation; (2) whether the presence of fatty acid metabolites affects phosphorylase activation; (3) whether the hypersensitive response of phosphorylase results from altered signal transduction through the β-adrenergic receptor system or from a post-receptor defect; and (4) the potential role for phosphorylase kinase in mediating the hypersensitive response of phosphorylase to catecholamine stimulation. The basis for adrenergic receptor mediation of the catecholamine-induced activation of glycogen phosphorylase was investigated in adult rat cardiomyocytes isolated from normal and alloxan-diabetic animals. Cells derived from diabetic animals exhibited a hypersensitive response to epinephrine stimulation which was apparent 3 hours after cell isolation and was further enhanced upon maintenance of the myocytes in culture for 24 hours. Normal cells initially lacked the hypersensitive response to epinephrine stimulation although upon maintenance of these cells in culture for 24 hours, the hypersensitive response was acquired in vitro. To assess alpha- and beta- adrenergic mediation of the response, normal and diabetic cardiomyocytes were incubated with propranolol, a β-receptor antagonist, prior to direct α1receptor stimulation with phenylephrine. Both normal and diabetic myocytes failed to undergo activation of phosphorylase in 3 or 24 hour cell cultures. In addition, the effects of epinephrine on phosphorylase activation were completely inhibited by propranolol whereas prazosin, an α-receptor antagonist, was unsuccessful. This data suggests that the hypersensitive response of glycogen phosphorylase in normal and diabetic cardiomyocytes is solely mediated through β-adrenergic receptor activation. Since the accumulation of various fatty acid metabolites can affect certain enzymes and signal transduction pathways within the cell, the potential effect of various fatty acid metabolites on phosphorylase activation was investigated. To determine the potential effects of fatty acid metabolites on phosphorylase activation in cultured cardiomyocytes, normal and alloxan-diabetic cells were incubated with either carnitine or palmitoylcarnitine prior to stimulation with epinephrine. Pretreatment of cardiomyocytes with or without carnitine or palmitoylcarnitine for 3 or 24 hours before epinephrine stimulation failed to alter phosphorylase activation. The addition of exogenous carnitine in the absence and presence of insulin was also unsuccessful in attenuating the hypersensitive phosphorylase activation response in 3 and 24 hour, normal and alloxan-diabetic derived cardiomyocytes. To determine if carnitine palmitoyltransferase 1 (CPT-1) activity was responsible for the hypersensitive response of phosphorylase in the diabetic myocytes, both normal and diabetic myocytes were maintained for 3 and 24 hours in the absence and presence of etomoxir, a CPT-1 inhibitor. Subsequent activation of phosphorylase by epinephrine in normal and diabetic myocytes was unaltered in the presence of etomoxir. Collectively, these data fail to support a critical role for fatty acid metabolite involvement in the hypersensitive activation of glycogen phosphorylase in acute, alloxan-diabetic cardiomyocytes. To assess potential G-protein involvement in the response, normal and diabetic-derived myocytes were incubated with either cholera or pertussis toxin prior to hormonal stimulation. Pretreatment of cardiomyocytes with cholera toxin resulted in a potentiated response to epinephrine stimulation whereas pertussis toxin did not affect the activation of this signaling pathway. To determine if the enhanced response of phosphorylase activation resulted from an alteration in adenylyl cyclase activation, the cells were challenged with forskolin. After 3 hours in primary culture, diabetic cardiomyocytes exhibited a hypersensitive response to forskolin stimulation relative to normal cells. However, after 24 hours in culture, both normal and diabetic myocytes responded identically to forskolin challenge. The present data suggest that a cholera toxin sensitive G-protein mediates the hypersensitive response of glycogen phosphorylase to catecholamine stimulation in diabetic cardiomyocytes. This response, which is present in alloxan-diabetic cells, and is induced in vitroin normal cardiomyocytes, is primarily due to a defect at a post-receptor site. To assess the role of phosphorylase kinase in the hypersensitive activation of glycogen phosphorylase in the diabetic heart, phosphorylase kinase activity was measured initially in perfused hearts (to optimize the assay parameters) and subsequently in primary culture cardiomyocytes. Results from these experiments demonstrate that the present method for measuring phosphorylase kinase activity is a reliable indicator of the enzyme's activity in the heart, although the assay conditions must be further optimized before this system can be applied to the measurement of phosphorylase kinase activity in primary cultured cardiomyocytes.
25

Adipocyte Insulin-Mediated Glucose Transport: The Role of Myosin 1c, and a Method for <em>in vivo</em> Investigation: A Dissertation

Hagan, G. Nana 17 December 2008 (has links)
The importance of insulin delivery and action is best characterized in Type 2 Diabetes, a disease that is becoming a pandemic both nationally and globally. Obesity is a principal risk factor for Type 2 Diabetes, and adipocyte function abnormalities due to adipose hypertrophy and hyperplasia, have been linked to obesity. Numerous reports suggest that the intracellular and systemic consequences of adipocyte function abnormalities include adipocyte insulin resistance, enhanced production of free fatty acids, and production of inflammatory mediators. A hallmark of adipocyte insulin sensitivity is the stimulation of glucose transporter isoform 4 (GLUT4) trafficking events to promote glucose uptake. In the Type 2 diabetic and insulin resistant states the mechanism behind insulin-stimulated GLUT4 trafficking is compromised. Therefore, understanding the role of factors involved in glucose-uptake in adipose tissue is of great importance. Studies from our laboratory suggest an important role for the unconventional myosin, Myo1c, in promoting insulin-mediated glucose uptake in cultured adipocytes. Our observations suggest that depletion of Myo1c in cultured adipocytes results in a significant reduction in the ability of adipocytes to take up glucose following insulin treatment, suggesting Myo1c is required for insulin-mediated glucose uptake. A plausible mechanism by which Myo1c promotes glucose uptake in adipocytes has been suggested by further work from our laboratory in which expression of fluorescently-tagged Myo1c in cultured adipocytes induces significant membrane ruffling at the cell periphery, insulin-independent GLUT4 translocation to the cell periphery, and accumulation of GLUT4 in membrane ruffling regions. Taken together Myo1c seems to facilitate glucose uptake through remodeling of cortical actin. In the first part of this thesis I, in collaboration with others, uncovered a possible mechanism through which Myo1c regulates adipocyte membrane ruffling. Here we identified a novel protein complex in cultured adipocytes, comprising Myo1c and the mTOR binding partner, Rictor. Interestingly our studies in cultured adipocytes suggest that the Rictor-Myo1c complex is biochemically distinct from the Rictor-mTOR complex of mTORC2. Functionally, only depletion of Rictor but not Myo1c results in decreased Akt phosphorylation at serine 473, but depletion of either Rictor or Myo1c results in compromised cortical actin dynamic events. Furthermore we observed that whereas the overexpression of Myo1c in cultured adipocytes causes remarkable membrane ruffling, Rictor depletion in cells overexpressing Myo1c significantly reduces these ruffling events. Taken together our findings suggest that Myo1c, in conjunction with Rictor, modulates cortical actin remodeling events in cultured adipocytes. These findings have implications for GLUT4 trafficking as GLUT4 has been previously observed to accumulate in Myo1c-induced membrane ruffles prior to fusion with the plasma membrane. During our studies of adipocyte function we noticed that current siRNA electroporation methods present numerous limitations. To silence genes more effectively we employed a lentivirus-mediated shRNA delivery system, and to standardize this technology in cultured adipocytes we targeted Myo1c and MAP4K4. Using this technology we were able to achieve clear advantages over siRNA oligonucleotide electroporation techniques in stability and permanence of gene silencing. Furthermore we showed that the use of lentiviral vectors in cultured adipocytes did not affect insulin signaling or insulin-mediated glucose uptake events. Despite our inability to use lentiviral vectors to achieve gene silencing in mice we were able to achieve adipose tissue-specific gene silencing effects in mice following manipulation of the lentiviral conditional silencing vector, and then crossing resulting founders with aP2-Cre mice. Interestingly however, only founders from the MAP4K4 conditional shRNA vector, but not founders from the Myo1c conditional shRNA vector, showed gene knockdown, possibly due to position-effect variegation. Taken together, findings from these studies are important because they present an alternative means of achieving gene silencing in cultured adipocytes, with numerous advantages not offered by siRNA oligonucleotide electroporation methods. Furthermore, the in vivo, adipose tissue-specific RNAi studies offer a quick, inexpensive, and less technically challenging means of achieving adipose tissue-specific gene ablations relative to traditional gene knockout approaches.
26

Role of Supervillin, a Membrane Raft Protein, in Cytoskeletal Organization and Invadopodia Function

Crowley, Jessica Lynn 12 February 2009 (has links)
Crucial to a cell’s ability to migrate is the organization of its plasma membrane and associated proteins in a polarized manner to interact with and respond to its surrounding environment. Cells interact with the extracellular matrix (ECM) through specialized contact sites, including podosomes and invadopodia. Tumor cells use F-actin-rich invadopodia to degrade ECM and invade tissues; related structures, termed podosomes, are sites of dynamic ECM interaction and degradation. We show here that supervillin (SV), a peripheral membrane protein that binds F-actin and myosin II,reorganizes the actin cytoskeleton and potentiates invadopodial function. Overexpressed SV increases the number of F-actin punctae, which are highly dynamic and co-localize with markers of podosomes and invadopodia. Endogenous SV localizes to the cores of Src-generated podosomes in COS-7 cells and with invadopodia in MDA-MB-231 cells. EGFP-SV overexpression increases the average amount of matrix degradation; RNAi-mediated downregulation of SV decreases degradation. Cortactin, an essential component of both podosomes and invadopodia, binds SV sequences in vitro and contributes to the formation of EGFP-SV induced punctae. Additionally, SV affects cortactin localization,which could provide a mechanism for SV action at invadopodia. The formation of cholesterol-rich membrane rafts is one method of plasma membrane organization. A property of membrane rafts is resistance to extraction with cold Triton X-100 and subsequent flotation to low buoyant densities. The actin cytoskeleton has been implicated in many signaling events localized to membrane rafts, but interactions between actin and raft components are not well characterized. Our laboratory isolated a heavy detergent resistant membrane fraction from neutrophils, called DRM-H, that contains at least 23 plasma membrane proteins. DRM-H is rich in cytoskeletal proteins, including fodrin, actin, myosin II, as well as supervillin. DRM-H also contains proteins implicated in both raft organization and membrane-mediated signaling. DRM-H complexes exhibit a higher buoyant density than do most DRMs (referred to as DRM-L), which are deficient in cytoskeletal proteins. By using similar purification methods, I find that COS-7 cells also contain cytoskeleton-associated DRMs. In addition, when transfected into COS-7 cells, estrogen receptor (ER)α associates with DRM-H, while ERβ is seen in both DRM-L and DRM-H populations, suggesting a role for DRM-H in nongenomic estrogen signaling. Thus, the cytoskeleton-associated DRM-H not limited to hematopoietic cells and could constitute a scaffold for membrane raftcytoskeleton signaling events in many cells. Taken together, our results show that SV is a component of cytoskeleton-associated membrane rafts as well as podosomes and invadopodia, and that SV plays a role in invadopodial function. SV, with its connections to both membrane rafts and the cytoskeleton, is well situated to mediate cortactin localization, activation state, and/or dynamics of matrix metalloproteases at the ventral cell surface for proper matrix degradation through invadopodia. The molecular dissection of invadopodia formation and function may contribute to a greater understanding of in vivo invasion, and thus, tumor cell metastasis.
27

Discovery and Characterization of Ibomycin: An Anticryptocccal Metabolite Produced by WAC 2288

O`Brien, Jonathan S. 10 1900 (has links)
<p>Systemic fungal infections brought about by <em>Cryptococcus</em> species are associated with some of the highest mortality rates of any infectious disease. Alarmingly these pathogens have overtaken tuberculosis as the second greatest killer among Sub-Saharan AIDS patients and are an emerging disease among immunocompetent populations on the Pacific Coast of North America. This clinical threat has been exacerbated by our inability to discover novel compounds that specifically target fungal cellular architecture at the genus level. To confront this challenge, we have made a concerted effort to biologically prospect the vast chemical potential of Actinomycete bacteria isolated from diverse and underexplored niches around the world. A novel phenotypic screen was developed whereby bacterial small molecule producers were co-cultured on agar plates in an intimate setting with evolutionary distant fungal pathogens <em>Candida albicans</em> and <em>Cryptococcus neoformans</em>. Diffusible small molecules released by the organisms created a signaling environment that stimulated profound phenotypic changes both in the Actinomycetes and the pathogens. We were able to discern a unique relationship whereby the growth of <em>C. neoformans</em> was specifically inhibited by Nigerian soil Actinomycete isolate curated as WAC 2288. Further bioactivity guided purification and chemical analysis lead to the identification of ibomycin, a previously undescribed 34 membered macrolactone decorated with seven sugar moieties. A draft genome of WAC 2288 revealed a 140kb gene cluster containing 12 type I PKS modules and downstream capacity to generate rare sugars are responsible for ibomycin biosynthesis. Purification of ibomycin analogs has revealed that the terminal vancosamine on the molecule is dispensable for bioactivity, establishing a chemical antecedent for target identification through affinity chromatography. Throughout these studies the unprecedented anticryptococcal activity of ibomycin is consistently recapitulated. Future work on the molecule may validate ibomycin as an effective antifungal therapy.</p> / Master of Science (MSc)
28

MEMBRANE AND TEMPERATURE BASED METHODS FOR PROCESSING AND PURIFYING MONOCLONAL ANTIBODIES

Sadavarte, Hemant Rahul 04 1900 (has links)
<p>Monoclonal antibodies (mAbs) as therapeutic proteins have shown great potential in treatment of various human diseases because of their highly specific nature. This has attracted worldwide attention leading to increased demand for such mAb products. To meet this demand large scale manufacturing is carried out using recombinant mammalian cell culture techniques for high yields and faster production. mAb products are worth the investment if produced in their native state. The quantity of mAb present in such cell cultures is very less and therefore special care is needed while handling them. Purifying antibody molecules from heterogeneous cell culture impurities and maintaining their native functional state is a critical task mainly because these antibodies are labile in nature. Care also need to be exercised during processing because mAbs have inherent tendancy to aggregate which is undesirable since such aggregates in antibody formulation produces immunogenic reaction when injected in humans. The other important factor in mAb purification is the processing cost involved since majority of the total production cost is utilized for purification of mAb. Protein-A chromatography is the first choice for purifying antibodies and is widely adopted. However failure in distinguishing between monomer and aggregate antibody molecules along with harsh acidic processing conditions necessitates the use of further purification steps.</p> <p>In this work various techniques for mAb processing are discussed and are outlined below:</p> <p>Removal of impurities from mAbs is a major challenge and this thesis discusses various processing options available to purify these mAbs. Impurities in mAb products are usually the aggregate byproducts formed due to unfolded monomer antibody molecules. These molecules are naturally hydrophobic in nature and display great differences in hydrophobicity on aggregation. Hydrophobic interaction membrane chromatography (HIMC) makes use of this hydrophobicity difference and helps in removal of aggregate impurities from monomer antibody.</p> <p>Heavy chain mAbs (hcmAbs) are promising new developments in the area of biopharmaceuticals because of their unique structural composition. Similar to conventional mAbs these hcmAbs are also rapidly finding their way into therapeutic markets. Purifying hcmAbs will be an important step in their development and for this purpose we use HIMC technique for removing impurities and obtain pure product.</p> <p>Antibody molecules are almost always lost as aggregates which leads to great economic losses and the ability to disaggregate these mAb oligomers would be of significant practical and scientific interest. In this work a novel thermalcycling technique is discussed to disaggregate such mAb oligomers and potentially recover functional monomer mAb molecules.</p> / Master of Applied Science (MASc)
29

Inhibition of Cancer Stem Cells by Glycosaminoglycan Mimetics

O'Hara, Connor P 01 January 2019 (has links)
Connor O’Hara July 29, 2019 Inhibition of Cancer Stem Cells by Glycosaminoglycan Mimetics In the United States cancer is the second leading cause of death, with colorectal cancer (CRC) being the third deadliest cancer and expected to cause over 51,000 fatalities in 2019 alone.1 The current standard of care for CRC depends largely on the staging, location, and presence of metastasis.2 As the tumor grows and invades nearby lymph tissue and blood vessels, CRC has the opportunity to invade not only nearby tissue but also metastasize into the liver and lung (most commonly).3 The 5-year survival rate for metastasized CRC is <15%, and standard of care chemotherapy regimens utilizing combination treatments only marginally improve survival.3-5 Additionally, patients who have gone into remission from late-stage CRC have a high risk of recurrence despite advances in treatment.6-7 The Cancer Stem-like Cell (CSC) paradigm has grown over the last 20 years to become a unifying hypothesis to support the growth and relapse of tumors previously regressed from chemotherapy (Figure 1).8 The paradigm emphasizes the heterogeneity of a tumor and its microenvironment, proposing that a small subset of cells in the tumor are the source of tumorigenesis with features akin to normal stem cells.9 The CSCs normally in a quiescent state survive this chemotherapy and “seed” tumor redevelopment.10 First observed in acute myeloid lymphoma models, CSCs have since been identified in various other cancers (to include CRC) by their cell surface antigens and unique properties characterizing them from normal cancer cells.11-12 These include tumor initiation, limitless self-renewal capacity to generate clonal daughter cells, as well as phenotypically diverse, mature, and highly differentiated progeny.13-14 Previously our lab has identified a novel molecule called G2.2 (Figure 2) from a unique library of sulfated compounds showing selective and potent inhibition of colorectal CSCs in-vitro.15 G2.2 is a mimetic of glycosaminoglycans (GAGs) and belongs to a class of molecules called non-saccharide GAG mimetics (NSGMs). Using a novel dual-screening platform, comparisons were made on the potency of G2.2 in bulk monolayer cells, primary 3D tumor spheroids of the same cell line, and subsequent generations of tumor spheroids. This work has shown in-vitro the fold-enhancement of CSCs when culturing as 3D tumor spheroids. Spheroid culture serves as a more accurate model for the physiological conditions of a tumor, as well as the functional importance of upregulating CSCs. Evaluation of G2.2 and other NSGMs was performed in only a few cell lines, developing a need to better understand the ability of G2.2 to inhibit spheroids from a more diverse panel of cancer cells to better understand G2.2’s mechanism. The last few decades have seen the advancement in fundamental biological and biochemical knowledge of tumor cell biology and genetics.16 CRC, in particular, has served as a useful preclinical model in recapitulating patient tumor heterogeneity in-vitro.17 Recent work has characterized the molecular phenotypes of CRC cell lines in a multi-omics analysis, stratifying them into 4 clinically robust and relevant consensus molecular subtypes (CMS).18-19 Our work was directed to screen a panel of cells from each of the molecular subtypes and characterize the action of G2.2 and 2nd generation lipid-modified analogs, synthesized to improve the pharmacokinetic properties of the parent compound. Four NSGMs, namely G2.2, G2C, G5C, and G8C (Figure 2) were studied for their ability to inhibit the growth of primary spheroids across a phenotypically diverse panel. Compound HT-29 IC50 (μM) Panel Average IC50 (μM) G2.2 28 ± 1 185 ± 55 G2C 5 ± 2 16 ± 15 G5C 8 ± 2 63 ± 19 G8C 0.7 ± 0.2 6 ± 3 Primary spheroid inhibition assays were performed comparing the potency of new NSGMs to G2.2. Fifteen cell lines were evaluated in a panel of colorectal adenocarcinoma cell lines with several cell lines representing each CMS. Primary spheroid inhibition assays revealed 3 distinct response with regard to G2.2’s ability to inhibit spheroid growth. Cells from CMS 3 and 4, which display poor clinical prognosis, metabolic dysregulation, and enhanced activation of CSC pathways, showed the most sensitivity to G2.2 (mean IC50 = 89 ± 55 μM). Mesenchymal CMS 4 cell lines were over 3-fold more sensitive to treatment with G2.2 when compared to CMS 1 cell lines. Resistant cell lines were composed entirely of CMS 1 and 2 (mean IC50 = 267 ± 105 μM). In contrast, all lipid-modified analogs showed greater potency than the parent NSGM in almost every CRC cell line. Of the three analogs, G8C showed the greatest potency with a mean IC50 of less than 15 μM. Of the CRC spheroids studied, HT-29 (CMS 3) was most sensitive to G8C (IC50 = 0.73 μM). To evaluate the selectivity of NSGMs for CSC spheroid inhibition, MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium) cytotoxicity assays were performed on monolayer cell culture, and the fold-selectivity of NSGM for spheroids was analyzed. Data shows that NSGMs preferentially target CSC-rich spheroids compared with monolayer cellular growth, with G2.2 having over 7-fold selectivity for spheroid conditions. This fold selectivity was enhanced in CMS 3/4, supporting the idea that G2.2 targets a mesenchymal and stem-like phenotype. To further validate this selectivity, limiting dilution assays were performed across the panel to determine the tumor-initiating capacity of each cell line. Cell lines which showed a sensitive response to G2.2 were over 2-fold more likely to develop into spheroids, validating the previous hypothesis. Further characterization was performed analyzing the changes G2.2 induced on CSC markers, as well as the basal expression of a unique pair of cancer cells. Western blots showed a reduction in self-renewal marker across all CMS after treatment with G2.2, and that cell lines sensitive to G2.2-treatment overexpress mesenchymal and stem-like markers. G2.2-resistant cell lines show an epithelial phenotype, lacking this expression. The positive results observed in these studies enhance the understanding of G2.2 and analogs, and further evaluation with additional cell lines of various tissues would improve the knowledge thus far gained. However, all experiments described take valuable time to perform and analyze. Thus, there became a need to develop a high-throughput screening (HTS) platform for our assays that standardized analysis and enhanced productivity. Initial development of the method for this assay are underway, and recent evidence from these evaluations of breast cancer spheroids suggests that G2.2 and analogs may be tissue-specific compounds for the treatment of cancer. Future work entails refining the application of this method for evaluation of the NCI-60 (National Cancer Institute) tumor cell panel. Overall, these results make several suggestions concerning the NSGMs evaluated against the panel. First, G2.2 selectively targets CSCs with limited toxicity to monolayer cells of the same cell line. Further, G2.2 has the greatest potency with CMS 3/4, whose mesenchymal phenotypes are associated with poor clinical prognosis and enrichment of CSCs. Supporting evidence include that sensitive cell lines are highly tumorigenic and show enhanced expression of mesenchymal/CSC markers compared to resistant cell lines. Lipid-modification of G2.2 enhances in-vitro potency against spheroid growth, with nM potency reached in the most sensitive cell lines. Evidence in the development of a HTS platform also suggests these NSGMs show tissue specificity to cancers of the intestine. Further work characterizing the mechanism of NSGMs in a broader multi-tissue panel will enhance our understanding of the compounds as a potential therapy to dramatically improve patient survival through specific targeting of tumorigenesis. References 1. Colorectal Cancer Facts & Figures 2017-2019. American Cancer Society 2017. 2. Compton, C. C.; Byrd, D. R.; Garcia-Aguilar, J.; Kurtzman, S. H.; Olawaiye, A.; Washington, M. K. Colon and rectum. In AJCC Cancer Staging Atlas, 2nd ed.; Ed. Springer Science: New York, 2012; pp 185–201. 3. Van Cutsem, E.; Cervantes, A.; Adam, R.; Sobrero, A.; Van Krieken, J. H.; Aderka, D.; Aranda Aguilar, E.; Bardelli, A.; Benson, A.; Bodoky, G.; et al. ESMO consensus guidelines for the management of patients with metastatic colorectal cancer. Ann. Oncol. 2016, 27, 1386–422. 4. Siegel, R. L.; Miller, K. D.; Fedewa, S. A.; Ahnen, D. J.; Meester, R. G. S.; Barzi, A.; Jemal, A. Colorectal cancer statistics, 2017. CA Cancer J. Clin. 2017, 67, 177–193. 5. Moriarity, A.; O'Sullivan, J.; Kennedy, J.; Mehigan, B.; McCormick, P. Current targeted therapies in the treatment of advanced colorectal cancer: a review. Ther. Adv. Med. Oncol. 2016, 8, 276–293. 6. Seidel, J.; Farber, E.; Baumbach, R.; Cordruwisch, W.; Bohmler, U.; Feyerabend, B.; Faiss, S. Complication and local recurrence rate after endoscopic resection of large high-risk colorectal adenomas of >/=3 cm in size. Int. J. Colorectal Dis. 2016, 31, 603–611. 7. Pugh, S. A.; Shinkins, B.; Fuller, A.; Mellor, J.; Mant, D.; Primrose, J. N. Site and stage of colorectal cancer influence the likelihood and distribution of disease recurrence and postrecurrence survival: data from the FACS randomized controlled trial. Ann. Surg. 2016, 263, 1143–1147. 8. Batlle, E.; Clevers, H. Cancer stem cells revisited. Nat. Med. 2017, 23, 1124–1134. 9. Hanahan, D.; Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 2011, 144, 646–674. 10. Tirino, V.; Desiderio, V.; Paino, F.; De Rosa, A.; Papaccio, F.; La Noce, M.; Laino, L.; De Francesco, F.; Papaccio, G. Cancer stem cells in solid tumors: an overview and new approaches for their isolation and characterization. FASEB J. 2013, 27, 13–24. 11. Bonnet, D.; Dick, J. E. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat. Med. 1997, 3, 730–737. 12. Desai, A.; Yan, Y.; Gerson, S. L. Concise reviews: cancer stem cell targeted therapies: toward clinical success. Stem Cells Transl. Med. 2019, 8, 75–81. 13. Munro, M. J.; Wickremesekera, S. K.; Peng, L.; Tan, S. T.; Itinteang, T. Cancer stem cells in colorectal cancer: a review. J. Clin. Pathol. 2018, 71, 110–116. 14. Zhou, Y.; Xia, L.; Wang, H.; Oyang, L.; Su, M.; Liu, Q.; Lin, J.; Tan, S.; Tian, Y.; Liao, Q.; Cao, D. Cancer stem cells in progression of colorectal cancer. Oncotarget 2018, 9, 33403–33415. 15. Patel, N. J.; Karuturi, R.; Al-Horani, R. A.; Baranwal, S.; Patel, J.; Desai, U. R.; Patel, B. B. Synthetic, non-saccharide, glycosaminoglycan mimetics selectively target colon cancer stem cells. ACS Chem. Biol. 2014, 9, 1826–1833. 16. Punt, C. J.; Koopman, M.; Vermeulen, L. From tumour heterogeneity to advances in precision treatment of colorectal cancer. Nat. Rev. Clin. Oncol. 2017, 14, 235–246. 17. Mouradov, D.; Sloggett, C.; Jorissen, R. N.; Love, C. G.; Li, S.; Burgess, A. W.; Arango, D.; Strausberg, R. L.; Buchanan, D.; Wormald, S.; et al. Colorectal cancer cell lines are representative models of the main molecular subtypes of primary cancer. Cancer Res. 2014, 74, 3238–3247. 18. Guinney, J.; Dienstmann, R.; Wang, X.; de Reynies, A.; Schlicker, A.; Soneson, C.; Marisa, L.; Roepman, P.; Nyamundanda, G.; Angelino, P.; et al. The consensus molecular subtypes of colorectal cancer. Nat. Med. 2015, 21, 1350–1356. 19. Berg, K. C. G.; Eide, P. W.; Eilertsen, I. A.; Johannessen, B.; Bruun, J.; Danielsen, S. A.; Bjornslett, M.; Meza-Zepeda, L. A.; Eknaes, M.; Lind, G. E.; et al. Multi-omics of 34 colorectal cancer cell lines - a resource for biomedical studies. Mol. Cancer 2017, 16, 116–132.

Page generated in 0.4791 seconds