Spelling suggestions: "subject:"magnetoelectric"" "subject:"magnetoelectrics""
31 |
Nano-Système Magnéto-Électro-Mécanique (NMEMS) ultra-basse consommation pour le traitement et le stockage de l'information / Ultra-low power Nano-Magneto-Electro-Mechanical-System (NMEMS) for data processing and data storageDusch, Yannick 29 November 2011 (has links)
Avec le développement des nouvelles technologies de l'information et de la communication (NTIC), la consommation énergétique des systèmes de traitement et de stockage de données est devenue un problème majeur. Les limites des systèmes actuels à cet égard impliquent le besoin de technologies de rupture ultra-basse consommation.Cette thèse propose une approche originale de cette problématique, basée sur l'utilisation d'un élément magnétoélectrique composite (piézoélectrique/magnétostrictif) bistable et commandable de façon univoque, baptisé MELRAM.L'étude énergétique statique montre que la combinaison d'une anisotropie uni-axiale et d'un champ de polarisation magnétique statique définit deux positions d'équilibre stables perpendiculaires pour l'aimantation dans la partie magnétostrictive. L'application de contraintes piézoélectriques sur celle-ci permet de contrôler électriquement la position de l'aimantation. L'étude énergétique du système permet également de montrer la stabilité du système à long terme (10 ans), dans une large gamme de températures autour de l'ambiante, avec une barrière énergétique de 60kBT. L'étude dynamique, utilisant le modèle du macrospin, permet quant à elle d'exhiber un temps de réponse inférieur à 1ns. L'énergie dissipée lors de l'écriture, d'origine électrique et magnétique, est évaluée à 261kBT (1,1aJ), soit quatre ordres de grandeur en dessous de l'état de l'art.Plusieurs stratégies de lecture par vanne de spin et jonction tunnel magnétique sont proposées et commentées. Les premières réalisations d'éléments nanométriques magnétostrictifs sont présentées ainsi qu'une solution de polarisation magnétique intégrée par aimant permanent / As new information and communication technologies boom, the energy consumption of data processing and storage systems has become a major issue. The limits of state of the art systems regarding this gives rise to the need for ground-breaking ultra-low power technologies.This PhD thesis suggests an original approach of this issue, based on a bistable composite magnetoelectric element (piezoelectric/magnetostrictive) which can be controlled unequivocally, named MELRAM.The static energetic study shows that the combination of an uniaxial anisotropy and a static magnetic bias field defines two stable and perpendicular equilibrium positions for magnetization in the magnetostrictive part. The application of piezoelectric stress allows the electric control of the magnetization position.The energetic study also shows the long term (10 years) stability of the system, in a large temperature range around room temperature, with an energy barrier of 60kBT. The dynamic study, using the macrospin model, gives a response time less than 1ns. The dissipated energy during writing, of electric and magnetic origin, is estimated at 261kBT (1.1aJ), that is to say four orders of magnitude below the state of the art.Several reading strategies using spin valves and magnetic tunnel junction are proposed and commented. First realization of nanometer-sized magnetostrictive elements are presented as well as an integrated polarization solution, using permanent magnets
|
32 |
Contribution to modelling of magnetoelectric composites for energy harvesting / Composition à la modélisation des composites magnétoélectriques pour la récupération d'énergieYang, Gang 05 December 2016 (has links)
Dans le domaine de l'Internet des Objets (IOT) les matériaux magnétoélectriques composites (MEC) trouvent leurs potentiels utilités dans la récupération d'énergie de microsystèmes autonomes. L'aspect géométrique des matériaux MEC se traduit par l'assemblage de matériaux piézoélectriques et magnétostrictifs sous formes laminaires ou sous formes de mixture par grains. Dans tous les cas ces matériaux possèdent, sous certaines conditions, des coefficients magnétoélectriques qui peuvent fournir des tensions et des puissantes suffisantes pour alimenter des microsystèmes autonomes. Mes travaux de recherche ont porté essentiellement sur une contribution à la modélisation de ces matériaux MEC à l'aide de méthodes analytiques et d'un code numérique basé sur la méthode des éléments finis (MEF) en 2D. Une méthode basée sur la combinaison du tenseur de Maxwell avec le model de Jiles-Atherton modifié a été proposée pour inclure dans la MEF la non-linéarité des couches magnétostrictives. Une étude sur les performances des structures multicouches a été réalisée afin de déterminer la configuration optimale pour les matériaux élaborés à base de couches minces. Une potentielle application dans le domaine biomédical est finalement présentée afin de prouver l'efficience d'un transducteur d'énergie MEC dans ce domaine. Une série de mesures sur un composite bilame est présentée à la fin afin de montrer le plein accord avec la partie modélisation réalisée. / Currently, the "Internet of Everything" (IoE) technologies have attracted significant researchers in the international scientific community. The IoE is based on the idea that identifiable objects are located and controlled via the Internet. To achieve this goal, it is necessary to design embedded systems in millimeter/micrometer scales composed of wireless sensor nodes while overcoming a major drawback of the excessive use of batteries which are limited in lifetime and yield pollutants. The problem calls for the supply of green energy harvesting for wireless sensors. To utilize mechanical vibrations and electromagnetic energy more efficiently, it would be necessary to get simultaneously both energies using materials sensitive to the electromagnetic field and the mechanical vibration such as magnetoelectric materials (ME) that combine the magnetostrictive and piezoelectric effects. Experimental results of ME coefficients from the fabricated ME composites have confirmed the possibility to obtain a few of V/(cm∙Oe) in no-resonant regime and few tens of V/(cm∙Oe) in resonant regime. In case of classical laminate bulk material (Terfenol-D/PZT/Terfenol-D), the delivered powers into optimal impedance are in the order of mW/ cm3. Thus in this context the research work in this thesis focuses on the establishment and assessment of the modelling approaches. The contribution includes analytical numerical methods and a 2D multiphysics finite element method to estimate the performance of the ME materials according to different polarizations and parameters.
|
33 |
Magnetoelectric Coupling in BaTiO3-BiFeO3 Multilayers: Growth Optimization and CharacterizationHohenberger, Stefan 12 February 2021 (has links)
The presented thesis explores the magnetoelectric (ME) coupling in multiferroic thin film multilayers of BaTiO3 (BTO) and BiFeO3 (BFO). Multiferroics possess more than one ferroic order parameter, in this case ferroelectricity and anti-ferromagnetism. Cross-coupling between these otherwise separate order parameters promises great advantages in the fields of multistate memory, spintronics and even medical applications. The first major challenge in this field of study is the rarity of multiferroics. Second, most known multiferroics, both intrinsic and extrinsic in nature, possess very low ME coupling coefficients. In previous studies conducted
by our group, BTO-BFO multilayers deposited by pulsed laser deposition (PLD) showed a ME coupling coefficient αME enhanced by one order of magnitude, when compared to single-layers of the intrinsic multiferroic BFO. However, the mechanism of ME coupling in such heterostructures is poorly understood until now. In this thesis, we used a selection of structural, chemical, electrical and magnetic measurements to maximize the αME-coefficient and shed light on the origin of this enhanced ME effect.
The comparison of BTO-BFO multilayers over single-layers revealed not only enhanced ME-coupling, but also reduced mosaicity, roughness and leakage current density in multilayers. Following a parametric sample optimization, we achieved an atomically smooth interface roughness and vast improvements in the ferroelectric properties by introducing a shadow mask in the PLD process. We measured the highest αME-value so far of 480 Vcm-1Oe-1 for a multilayer with a double-layer thickness of only 4.6 nm, two orders of magnitude larger than the coefficient of 4 Vcm-1Oe-1 measured for BFO single-layers. The αME-coefficient in these multilayers stands in an inverse correlation with the double-layer thickness ddl. The influence of oxygen pressure during growth and BTO-BFO ratio on αME was shown to be neglible in comparison to that of ddl. From the characteristic dependencies of αME on magnetic bias field, temperature and ddl, we concluded the existence of an interface-driven coupling mechanism in BTO-BFO multilayers.:1 Introduction
2 Theory of Multiferroic Magnetoelectrics
2.1 Primary Ferroic Properties
2.2 Magnetoelectric Coupling
3 Materials
3.1 The General Structure of Perovskites ABX3
3.2 Strontium Titanate SrTiO3
3.3 Barium Titanate BaTiO3
3.4 Bismuth Ferrite BiFeO3
3.5 Heterostructures Based on BiFeO3
4 Experimental Section
4.1 Thin Film Fabrication
4.2 X–Ray Diffraction
4.3 Microscopic Techniques
4.4 Chemical Analysis Techniques
4.5 Ferroelectric Characterization
4.6 Magnetic Property Measurements
4.7 Measurement of the Magnetoelectric Coupling Coefficient
5 BaTiO3–BiFeO3 Heterostructures
5.1 General Properties of Single-Layers and Multilayers of BTO and BFO
5.2 PLD–Growth of BaTiO3–BiFeO3 Multilayers
5.3 Manipulation of Multilayer Properties through Design
5.4 Effectiveness of Eclipse–PLD
5.5 Enhanced ME Effect in BaTiO3–BiFeO3 Multilayers
6 Summary and Outlook
A Magnetoelectric Measurement Setup
B Magnetic Background Measurements
C Polarized Neutron Reflectometry
Literature
Own and Contributed Work
Acknowledgement
Erratum
|
34 |
Couplages magnéto-électriques dans le système multiferroïque artificiel : BaTiO₃ / CoFe₂O₄ / Magnetoelectric coupling in the artificial multiferroic system : BaTiO₃ / CoFe₂O₄Aghavnian, Thomas 03 October 2016 (has links)
Les matériaux magnetoélectriques multiferroïques sont particulièrement attrayants dans le domaine de l’électronique de spin, notamment dans la perspective de contrôler l’aimantation d’un matériau à partir d’un champ électrique. Les multiferroïques dits artificiels, constitués de phases ferroélectriques et magnétiques séparées, permettent de contourner la rareté de matériaux multiferroïques intrinsèques. S’ils peuvent présenter des valeurs de couplage plus élevées les mécanismes en jeu sont encore mal compris. Leur compréhension requiert l’étude d’échantillons parfaitement cristallisés et maitrisés. L’association en films minces (entre 3 et 20nm) épitaxiés de BaTiO₃, ferroélectrique de référence et de CoFe₂O₄, ferrimagnétique très magnétostrictif et à haute température de Curie, constitue un système modèle bien adapté à une telle étude. Dans cette thèse, nous réalisons des films minces de grande qualité cristalline de CoFe₂O₄ / BaTiO₃ sur substrat SrTiO₃ (001) par épitaxie par jets moléculaires sous plasma d’oxygène atomique. Dans un premier temps, nous étudions indépendamment pour chaque phase les propriétés individuelles de chimie, structure, magnétisme et ferroélectricité, notamment via des techniques de synchrotron. Forts de cette base, nous mettons en place différentes expériences d’étude du couplage magnétoélectrique direct et indirect, avec l’application d’une polarisation électrique et une mesure d’aimantation, et vice versa. Nous observons l’existence d’un couplage magnétoélectrique, notamment grâce la forte interaction des couches de CoFe₂O₄ et BaTiO₃. En revanche, les mécanismes indirects dominent, et impliquent des modifications structurales et chimiques via des mouvements ioniques. Ces mécanismes ioniques créent des modifications réversibles de résistance à température ambiante ouvrant la voie, au-delà des propriétés multiferroïques, à de possibles applications pour les RAM résistives. / Magnetoelectric multiferroics are of particular interest in the field of spintronics, especially for the possible control of the magnetization using an electric field. The lack of intrinsic multiferroics can be circumvented by using artificial multiferroics, made with individual ferroelectric and magnetic phases. Although they may exhibit higher coupling values, the precise coupling mechanisms involved are still not well understood. Getting insights in the understanding of these phenomena requires studying well mastered and crystallized samples. The combination of BaTiO₃ thin films (3 to 20nm), the prototypical ferroelectric, and of CoFe₂O₄ ones, a highly magnetostrictive ferromagnet with a high Curie temperature, constitutes a suitable model system well suited for such a study. In this thesis, we realized CoFe₂O₄ / BaTiO₃ thin films of high crystalline quality by oxygen plasma assisted molecular beam epitaxy on a SrTiO₃ (001) substrates. First, we study independently for each phase the individual properties of chemistry, structure, magnetism and ferroelectricity, using in particular a range of synchrotron techniques. Based on those fundamental results, we set up direct and indirect magnetoelectric coupling experiments, where we apply an electric polarization to measure a change in magnetization, and vice versa. We manage to observe the magnetoelectric coupling, mainly through the strong interaction of the CoFe₂O₄ and BaTiO₃ films. The indirect mechanisms dominate however and involve structural as well as chemical modifications through ion displacement. Those ion displacements create reversible changes in resistance at room temperature. These results imply that, in addition to the evidenced multiferroic properties, the system makes also promise for resistive RAM devices applications.
|
35 |
Métallophosphates bidimensionnels luminescents et magnétiques : relation structure-propriétés / Luminescent and magnetic two-dimensional metal phosphonates : structure-properties relationshipsBloyet, Clarisse 16 November 2018 (has links)
Ce travail de thèse concerne l’étude de nouveaux matériaux hybrides organiques-inorganiques lamellaires magnétiques et luminescents synthétisés par voie hydrothermale. Ces matériaux ont été obtenus à partir de sels de métaux de transition de configuration électronique 3d (Cu2+, Co2+, Mn2+, Zn2+) et de molécules organiques de basse symétrie constituées d’au moins un acide phosphonique greffé sur une plateforme rigide aromatique (phényle ou naphtalène). Le choix du cation métallique ainsi que l’ajout d’autres fonctions (halogène : F, Cl, Br, I, acide carboxylique ou méthyle) sur ces systèmes cycliques ont conduit à des matériaux hybrides bidimensionnels aux architectures et propriétés physiques (luminescence, magnétisme et/ou couplage magnétoélectrique) diverses. La compréhension du lien entre les propriétés structurales et physiques de ces métallophosphonates ouvre la voie vers la conception de nouveaux matériaux multifonctionnels originaux. / This PhD work deals with the study of new lamellar magnetic and luminescent organic-inorganic hybrid materials synthesized by hydrothermal process. These materials were obtained from 3d transition metal salts (Cu2+, Co2+, Mn2+, Zn2+) and low symmetric organic molecules bearing at least one phosphonic acid function grafted onto a rigid aromatic platform (phenyl or naphthalene). The choice of the metal cation as well as additional functions (halogen: F, Cl, Br, I, carboxylic acid or methyl) on these cyclic systems led to two-dimensional hybrid materials with various architectures and physical properties (luminescence, magnetism and/or magnetoelectric coupling). Understanding the interconnections between the structural and physical properties of these metal phosphonates paves the way for the design of novel multifunctional materials.
|
36 |
Etude des performances en bruit de capteurs magneto(élasto)électriques en mode non-linéaire / Studies of the performances in noise of Magneto(Elasto)Electric sensors in nonlinear modeYang, May tia 14 December 2017 (has links)
L'effet MagnétoElectrique (ME) traduit la polarisation d'un élément diélectrique et l'aimantation d'un diélectrique lorsqu’il est soumis, respectivement, à un champ magnétique et à un champ électrique. Cette propriété a permis de mettre en œuvre des capteurs Magnéto(Elasto)Electrique pour la mesure du champ magnétique ou électrique. De nombreuses études sur les couplages de matériaux (forme, taille, dimension…) ont été effectuées afin d’améliorer les performances en terme de sensibilité et de bruit de ces capteurs. Les meilleurs niveaux de bruit (en termes de densité spectrale) mesurés pour ce type de dispositif en mode passif sont, respectivement, de 5 pT/sqrt(Hz), 0,2 pT/sqrt(Hz) et environ une cinquantaine de 50 fT/sqrt(Hz), respectivement à 1 Hz, en zone de bruit blanc et à la résonance.Certains laboratoires, dont le GREYC, s’intéressent plus particulièrement à l’étude des performances ultimes de capteurs magnétiques en optimisant, notamment, l’électronique de conditionnements et en utilisant leurs propriétés non linéaires. Cette thèse s’inscrit dans ce cadre. Elle avait pour objectif l’étude des performances de capteur Magnéto(Elasto)Electrique en mode non linéaire et aux basses fréquences. Pour cela, des structures originales de conditionnent ont été développées en termes de polarisation, d’excitation et d’asservissement. L’étude théorique des performances montre que le bruit du capteur peut atteindre des niveaux bien inférieurs au pT/sqrt(Hz) à 1 Hz pour les capteurs étudiés, si les performances obtenues ne sont pas limitées par le bruit de l’électronique de conditionnement et leur sensibilité. Cette étude a été l’objet de ce travail de thèse. / The MagnetoElectric effect traduces the polarization of a dielectric element and the magnetization of a dielectric under respectively a magnetic field and an electric field. This property allows the development of Magneto(Elasto)Electric sensors for measuring a magnetic or an electric field. Several analyses regarding the material coupling (shape, size, dimensions…) have been made in order to increase the performances in terms of sensibility and in terms of noise of these sensors. The best noise levels (in term of spectral density) measured for these types of sensors are respectively 5 pT/sqrt(Hz), 0.2 pT/sqrt(Hz) and around 50 fT/sqrt(Hz) at 1 Hz, at white noise zone and at resonant frequency.Some laboratories, including the GREYC, are interested more specifically on the studies of the ultimate performances of magnetic sensor by optimizing the conditioning electronics and by using their nonlinear properties. This thesis lies in this framework. It had for objective, to study the performances of the Magneto(Elasto)Electric sensor in nonlinear mode and at low frequencies. For these, some original conditioning structures have been developed in terms of polarization, excitation and servo system. The theoretical study of these performances show the sensor intrinsic noise can reach lower than pT/sqrt(Hz) at 1 Hz for the studied sensor if the obtained performances are not limited by the conditioning electronics and their sensitivity. This study has been the object of this thesis work.
|
37 |
Magnetoelectric (ME) composites and functional devices based on ME effectGao, Junqi 03 June 2013 (has links)
Magnetoelectric (ME) effect, a cross-coupling effect between magnetic and electric orders, has stimulated lots of investigations due to the potential for applications as multifunctional devices. In this thesis, I have investigated and optimized the ME effect in Metglas/piezo-fibers ME composites with a multi-push pull configuration. Moreover, I have also proposed several devices based on such composites.
In this thesis, several methods for ME composites optimization have been investigated. (i) the ME coefficients can be enhanced greatly by using single crystal fibers with high piezoelectric properties; (ii) the influence of volume ratio between Metglas and piezo-fibers on ME coefficients has been studied both experimentally and theoretically. Modulating the volume ratio can increase the ME coefficient greatly; and (iii) the annealing process can change the properties of Metglas, which can enhance the ME response as well. Moreover, one differential structure for ME composites has been proposed, which can reject the external vibration noise by a factor of 10 to 20 dB. This differential structure may allow for practical applications of such sensors in real-world environments.
Based on optimized ME composites, two types of AC magnetic sensor have been developed. The objective is to develop one alternative type of magnetic sensor with low noise, low cost and room-temperature operation; that makes the sensor competitive with the commercially available magnetic sensor, such as Fluxgate, GMR, SQUID, etc. Conventional passive sensors have been fully investigated, including the design of sensor working at specific frequency range, sensitivity, noise density characterization, etc. Furthermore, the extremely low frequency (< 10-3 Hz) magnetic sensor has undergone a redesign of the charge amplifier circuit. Additionally, the noise model has been established to simulate the noise density for this device which can predict the noise floor precisely. Based on theoretical noise analysis, the noise floor can be eliminated greatly. Moreover, another active magnetic senor based on nonlinear ME voltage coefficient is also developed. Such sensor is not required for external DC bias that can help the sensor for sensor arrays application.
Inspired by the bio-behaviors in nature, the geomagnetic sensor is designed for sensing geomagnetic fields; it is also potentially used for positioning systems based on the geomagnetic field. In this section, some works for DC sensor optimization have been performed, including the different piezo-fibers, driving frequency and magnetic flux concentration. Meanwhile, the lock-in circuit is designed for the magnetic sensor to replace of the commercial instruments. Finally, the man-portable multi-axial geomagnetic sensor has been developed which has the highest resolution of 10 nT for DC magnetic field. Based on the geomagnetic sensor, some demonstrations have been finished, such as orientation monitor, magnetic field mapping, and geomagnetic sensing.
Other devices have been also developed besides the magnetic sensor: (i) magnetic energy harvesters are developed under the resonant frequency condition. Especially, one 60 Hz magnetic harvester is designed which can harvester the magnetic energy source generated by instruments; and (ii) frequency multiplication tuned by geomagnetic field is investigated which potentially can be used for frequency multiplier or geomagnetic guidance devices. / Ph. D.
|
38 |
Enhanced Magnetoelectric Coupling in BaTiO3-BiFeO3 Multilayers—An Interface EffectHohenberger, Stefan, Jochum, Johanna K., Van Bael, Margriet J., Temst, Kristiaan, Patzig, Christian, Höche, Thomas, Grundmann, Marius, Lorenz, Michael 20 April 2023 (has links)
Combining various (multi-)ferroic materials into heterostructures is a promising route to enhance their inherent properties, such as the magnetoelectric coupling in BiFeO3 thin films. We have previously reported on the up-to-tenfold increase of the magnetoelectric voltage coefficient αME in BaTiO3-BiFeO3 multilayers relative to BiFeO3 single layers. Unraveling the origin and mechanism of this enhanced effect is a prerequisite to designing new materials for the application of magnetoelectric devices. By careful variations in the multilayer design we now present an evaluation of the influences of the BaTiO3-BiFeO3 thickness ratio, oxygen pressure during deposition, and double layer thickness. Our findings suggest an interface driven effect at the core of the magnetoelectric coupling effect in our multilayers superimposed on the inherent magnetoelectric coupling of BiFeO3 thin films, which leads to a giant αME coefficient of 480 Vcm−1 Oe−1 for a 16×(BaTiO3-BiFeO3) superlattice with a 4.8 nm double layer periodicity.
|
39 |
Magnetoelectric Device and the Measurement UnitXing, Zengping 12 June 2009 (has links)
Magnetic sensors are widely used in the field of mineral, navigational, automotive, medical, industrial, military, and consumer electronics. Many magnetic sensors have been developed that are generated by specific laws or phenomena: such as search-coil, fluxgate, Hall Effect, anisotropic magnetoresistance (AMR), giant magnetoresistance (GMR), magnetoelectric (ME), magnetodiode, magnetotransictor, fiber-optic, optical pump, superconducting quantum interference device (SQUID), etc. Each of these magnetic field sensors has their merits and application areas. For low power consumption (<10uW), quasi-static frequency (<10Hz) and high sensitivity (<nT) application, magnetoelectric laminate sensors offer the best potential capability and thus are the topic of my dissertation.
Here, in this thesis, I have focused on designs and optimizations of magnetoelectric sensor units (i.e., sensors and circuit). To achieve my goals, I have developed some useful rules for ME sensor and detection circuit design.
For ME sensor optimization, designs should consider both frequencies far away from resonance and at resonance. For the former one, both internal and external noise contribution must be considered, as one of them will limit practical applications. With regards to the internal noise sources, I have developed two design optimization methods, designated as ”'scale effect” and “ME array”. I showed that they have the ability to increase the magnetic field detection sensitivity, which was verified by experiments. With regard to external noise consideration, I have investigated how the fundamental extrinsic noise sources (temperature fluctuation, vibration, etc) affect ME laminate sensors. A concept of separating signal and noise modes into difference is put forward. Optimization with this concept in mind required us to redesign the internal structure of ME laminate sensors. At the resonant frequency, the ME voltage coefficient α<sub>ME</sub> is the most important parameter. To enhance resonant gain in α<sub>ME</sub>, I have developed a three phase laminate concept, which is based on increasing the effective mechanical factor Q while reducing the resonant frequency. A ME voltage coefficient of α<sub>ME</sub> ~40V/cm.Oe has been achieved at resonance, which is about 2x higher than that of a conventional bending mode.
Investigations of detection circuit optimization were also performed. Component selection strategies and a new charge topology were considered. Proper component values were required to optimize the charge detection scheme. It was also found, under some specific conditions to satisfy the circuit stability, that if the lowest required measurement frequency of the charge source was f1, then that it was not necessary to make the high corner frequency <i>f</i><sub>p</sub> of the charge amplifier lower than <i>f</i>₁: as doing so would decrease the system's signal-to-noise ratio (SNR). A high pass, high order filter placed behind the charge amplifier was found to increase the charge sensitivity, as it narrows the intrinsic noise bandwidth and decreases the output noise contribution, while only slightly affecting the signal's output amplitude.
Prototype ME unit were also constructed, and their noise level simulated by Pspice. Experimental results showed that prototypes ME unit can reach their detection limit. In addition, a new magneto-electric coupling mechanism was also found, which had a giant ME effect. / Ph. D.
|
40 |
Magnetoelectric Thin Film Heterostructures and Electric Field Manipulation of MagnetizationZhang, Yue 21 June 2015 (has links)
The coupling of magnetic and electric order parameters, i.e., the magnetoelectric effect, has been widely studied for its intriguing physical principles and potentially broad industrial applications. The important interactions between ferroic orderings -- ferromagnetism, ferroelectricity and ferroelasticity -- will enable the manipulation of one order through the other in miniaturized materials, and in so doing stimulate emerging technologies such as spintronics, magnetic sensors, quantum electromagnets and information storage. By growing ferromagnetic-ferroelectric heterostructures that are able to magneto-electrically couple via interface elastic strain, the various challenges associated with the lack of single-phase multiferroic materials can be overcome and the magnetoelectric (ME) coupling effect can be substantially enhanced. Compared with magnetic field-controlled electric phenomena (i.e., the direct magnetoelectric coupling effect), the converse magnetoelectric effect (CME), whereby an electric field manipulates magnetization, is more exciting due to easier implementation and handling of electric fields or voltages. CME also affords the possibility of fabricating highly-efficient electric-write/magnetic-read memories.
This study involved two avenues of inquiry: (a) exploring the strain-mediated electric field manipulation of magnetization in ferroelectric-ferromagnetic heterostructures, and (b) investigating coupling and switching behaviors at the nanoscale. Accordingly, a series of magnetoelectric heterostructures were prepared and characterized, and their electric field tunability of magnetic properties was explored by various techniques and custom-designed experiments. Firstly, the relevant properties of the individual components in the heterostructures were systematically investigated, including the piezoelectricity and ferroelectric/ferroelastic phase transformations of the ferroelectric substrates, lead magnesium niobate-lead titanate, or Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMN-PT). This investigation revealed significant information on the structure-property relationships in crystals oriented at <110>, as well as shed light on the effect of ferroelectric phase transformation on magnetoelectric coupling. This investigation of electric field controlled strain, in contrast to many prior studies, enables a more rational and detailed understanding of the magnetoelectric effect in complex ferroelectric-ferromagnetic heterostructures.
The magnetoelectric thin film heterostructures were fabricated by depositing ferromagnetic iron-gallium (Fe-Ga) or cobalt ferrite (CoFe2o4 or CFO) films on top of differently-oriented ferroelectric PMN-PT substrates. Through significant electric field-induced strain in the piezoelectric substrate, the magnetic remanence and coercive field, as well as the magnetization direction of the ferromagnetic overlayer, can be substantially tuned. These goals were achieved by the interfacial strain modification of the magnetic anisotropy energy profile. The observation and analysis of the electric field tunability of magnetization and the establishment of novel controlling schemes provide valuable directions for both theoretical development and future application endeavors. / Master of Science
|
Page generated in 0.0575 seconds